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Symmetry is a powerful tool to reduce the freedom degrees of a system. But the applica-
bility of the symmetry tool strongly depends on the ability to calculate the symmetries
of the system. There exists an interesting algorithmic problem to search for the symme-
try of a high-dimensional system. In this paper, a genetic algorithm-based permutation
symmetry detection approach is proposed for pattern set. Firstly, the permutation sym-
metry distance (PSD) is defined to measure the similarity of a pattern set before and after
being transformed by a permutation operator. Secondly, the permutation symmetry de-
tection problem is converted into an optimization problem by taking the PSD as a fitness
function. Lastly, a genetic algorithm-based approach is designed for the symmetry detec-
tion problem. Computer simulation results are also given for five pattern sets of different
dimensionality, which show the efficiency and speediness of the proposed detection ap-
proach, especially in high-dimensional cases.

Copyright © 2006 D. Ji-Yang and Z. Jun-Ying. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Symmetry, as a powerful tool, may reveal the intrinsic relations inherent in the objects
or phenomena that seem to be uncorrelated and is used widely to almost all areas of the
natural science [2, 6, 9]. The study of symmetry begins in the early stage of the neural net-
works research [21], and recently more and more researchers devoted themselves to this
field. For example, Baldi demonstrated in his paper [1] that the global properties of an in-
dividual network could be found from symmetry considerations of the invariance group
of the specific pattern set stored by some learning rules. Reimann showed in his paper
[17] that the symmetry of the network structure is already determined by the symmetry
of the set of test sequences, indicating that learning a set of elements applied is concerned
with finding invariant relations inherent in this set. He also showed how to design the
artificial autoassociative neural networks using group theoretical methods [18]. All this
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research reveals the importance and usefulness of the symmetry method in the study of
neural networks.

The applicability of the symmetry method, however, strongly depends on the potential
ability of calculating the symmetry group of the system efficiently. In general, the sym-
metry group is usually calculated by the generators of the symmetry group of the given
system itself. When the generators are unknown, one has to calculate the symmetry group
by the method of exhaustive search, which is impractical in fact for a high-dimensional
case because of the tremendous search space. For example, the order of the symmetric
group Sn grows with n!, that is, there are n! potential solutions in an n-dimensional system
[18]. There is, to our knowledge, no report of using an efficient algorithm to detection
the permutation symmetry of a high-dimensional system. Almost all of the up-to-the-
date symmetry studies in neural networks done at the low-dimensional cases because of
the symmetry calculation problem. There still exists an interesting algorithmic problem
when the system is sufficiently large.

We define in this paper a permutation symmetry distance (PSD) to measure the simi-
larity of a pattern set before and after being transformed by a permutation operator, then
convert the permutation symmetry detection problem into an optimization problem.
There are many stochastic approaches for the optimization problem [11–13, 15, 19, 20],
the genetic algorithm is a simple and effective one. We do not want to study the algorithm
itself here. Our intent is to test the feasibility of such a global random search algorithm in
the permutation symmetry detection problem. Instead of developing a new search algo-
rithm, we use the standard genetic algorithms (GAs) to search for the symmetric permu-
tation operators of a given pattern set in this paper. A permutation operator is encoded
by a set of consecutive integers (chromosome). The PSD is taken as the fitness function.
The three chosen genetic operators (crossover, mutation, selection) are related to those
in some works of GAs for the traveling salesman problem, which have the same encoding
method to our work. Results are presented for five different dimensional binary pattern
sets. When compared with exhaustive search, genetic algorithms show greater efficiency,
especially in high-dimensional cases.

The organization of this paper is as follows. Section 2 gives some definitions used in
this paper and presents the detailed definition of permutation symmetry measure. In
Section 3, we outline the search algorithm and the corresponding operators. In Section 4,
we present the computer simulation results. Conclusions and discussions are given in
Section 5.

2. Measure of the permutation symmetry

2.1. Permutation symmetry. We begin our discussion with some important definitions
[3].

Definition 2.1. A set V = {v1,v2, . . . ,vn} consists of n elements. Then a permutation op-
erator (or called permutation for short) of V is a bijection σ : V → V , which reindexes
the set. When omitting the symbol v, the set V can be understood as a set of consecu-
tive integers (or an order set), that is, (1,2, . . . ,n), and the permutation can be written as
σ = ( 1 2 ··· n

i1 i2 ··· in

)
, i j ∈ {1,2, . . . ,n}, where it is understood that σ maps 1 to i1, 2 to i2, and

so forth.
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Definition 2.2. The set of all permutation operators on the set {1,2, . . . ,n} is denoted by
Sn, which is called the symmetric group of degree n.

The order of Sn is n! as is easily seen using the “two-row” method to write a permuta-
tion operator. For example, let V = {1,2,3}, there are six permutation operators for this
set, namely,
(

1 2 3
1 2 3

)

,

(
1 2 3
1 3 2

)

,

(
1 2 3
2 1 3

)

,

(
1 2 3
2 3 1

)

,

(
1 2 3
3 2 1

)

,

(
1 2 3
3 1 2

)

. (2.1)

The permutation operator
(

1 2 ··· n
1 2 ··· n

)
is called the identity element and is denoted as e.

Definition 2.3. Let x = (xi), i= 1,2, . . . ,n, be an n-dimensional pattern vector. The action
of a permutation operator (s ∈ Sn) on x is defined as (s · x)i = xs(i), which reindexes the
components of the pattern vector.

For example, let x = (a,b,c,d), that is, x1 = a, x2 = b, x3 = c, x4 = d. Let the per-
mutation operator be s = (1 2 3 4

3 2 4 1

)
, then s · x = (xs(1),xs(2),xs(3),xs(4)) = (x3,x2,x4,x1) =

(c,b,d,a).

Definition 2.4. Let X = {x1,x2, . . . ,xm} be an m-pattern set. The action of permutation
operator (s) on the set X is defined as s ·X = {s · x1,s · x2, . . . ,s · xm}. If s ·X = X , the
permutation operator (s) is a symmetric permutation operator of the set X .

The set of all symmetric permutation operators of the set X is denoted by SX . SX is a
group and is called the permutation symmetry group of X , or permutation symmetry of
X in brief (readers desiring a more exactly definition can refer to the book [3]).

For example, let X = {(2,1,2),(2,2,1),(2,1,1)}. The permutation symmetry of X is
SX =

{
e,
(

1 2 3
1 3 2

)}
, which consists of 2 symmetric permutation operators.

Definition 2.5. The action of a permutation operator (s) on a matrix w = (wij) is defined
as (s ·w)i j = xs(i)s( j), for all s ∈ Sn, which reindexes the rows and columns of the matrix
simultaneously. If s ·w = w, the permutation operator s is a symmetric permutation op-
erator of w. The set of all symmetric permutation operators of w is called the permutation
symmetry group of w, denoted as Sw.

Property 2.6. Let G= {gi} be a symmetry group, and gi, gj ∈G. If gk = gi · gj , then gk ∈G.
For example, the pattern set V = {(1,1,0,0),(1,0,0,1),(0,0,1,1),(0,1,1,0)}, which has

8 symmetric permutation operators. Assume that we know two of the symmetric permu-
tation operators, s1 =

(
1 2 3 4
1 4 3 2

)
and s2 =

(
1 2 3 4
2 1 4 3

)
. Then the other symmetric permutation

operators can be obtained by

s3 = s1 · s2 =
(

1 2 3 4
4 1 2 3

)

, s4 = s2 · s1 =
(

1 2 3 4
2 3 4 1

)

,

s5 = s3 · s1 =
(

1 2 3 4
4 3 2 1

)

, s6 = s4 · s2 =
(

1 2 3 4
3 2 1 4

)

,

s7 = s5 · s2 =
(

1 2 3 4
3 4 1 2

)

, s8 = s1 · s1 =
(

1 2 3 4
1 2 3 4

)

.

(2.2)

Then S= {s1,s2,s3,s4,s5,s6,s7,s8} is the permutation symmetry group of the pattern set V.
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Property 2.7. Let G= {gi} be a group, and gi ∈G, then gk = g−1
i ∈G.

For example, if s1 =
(

1 2 3 4
1 4 3 2

)∈G, then s−1
1 = (1 2 3 4

1 4 3 2

)∈G.

2.2. Measure for permutation symmetry. Symmetry is treated as a binary feature in the
exact mathematical definition (an object is either symmetric or nonsymmetric). How-
ever, the exact definition of symmetry is inadequate to describe and quantify neither the
symmetries found in the natural world nor those found in the visual world. For exam-
ple, we say that the equilateral triangle has “more” symmetry than the isosceles triangle.
Thus, although symmetry is usually considered a binary feature, we view symmetry as
a continuous feature where intermediate values of symmetry denote some intermediate
“amount” of symmetry. This concept of continuous symmetry is in accord with our per-
ception of symmetry as can be seen in [22].

Zabrodsky et al. [22] present a concept “symmetry distance” to measure the symmetry
in an image. But they treat the shape of an image as a point sequence, that is, an order-
dependent points set. So the symmetry distance is limited to measure the symmetries of a
sequence. There are no reports of the continuous measure of the permutation symmetry
of a pattern set which is order independent to its patterns.

In this section, we aim to define a measure for permutation symmetry in a pattern set.
Let a set V = {vk ∈Rn, k = 1,2, . . . ,m} contain m patterns, and let each pattern be an

n-dimensional vector vk = (vk1 ,vk2 , . . . ,vkn), then the out-product matrix of V is denoted as
W ,

Wij =
m∑

k=1

vki ·vkj . (2.3)

W = (Wij) is an n×n real matrix.
For example, the pattern set V = {(2,3,2),(2,2,3)} has 2 patterns. According to for-

mula (2.3), the out-product matrix of V would be

W =
⎛

⎜
⎝

4 6 4
6 9 6
4 6 4

⎞

⎟
⎠+

⎛

⎜
⎝

4 4 6
4 4 6
6 6 9

⎞

⎟
⎠=

⎛

⎜
⎝

8 10 10
10 13 12
10 12 13

⎞

⎟
⎠ . (2.4)

We have the following theorem.

Theorem 2.8. Let SV be the permutation symmetry group of the pattern set V = {vki }, and
let W be the out-product matrix of V , then all permutation operators in SV are also the
symmetric permutation operators of W , that is,

s ·W =W , ∀s∈ SV . (2.5)

Proof. We prove this theorem by contradiction.
Assume there is a permutation operator s of SV , and s is not the symmetric permuta-

tion operator of W , that is,

s ·W �=W. (2.6)



D. Ji-Yang and Z. Jun-Ying 5

Assume s · v1 = vi1 , s · v2 = vi2 , . . . , s · vm = vim , because s∈ SV , then {vi1 ,vi2 , . . . ,vim} =
{v1,v2, . . . ,vm}.

We can rewrite (2.3) as

W =
m∑

k=1

(
vk
)t
vk, (2.7)

where (vk)t is the transposed vector of vk.
So

s ·W = {(s · v1)t · (s · v1)+
(
s · v2)t · (s · v2)+ ···+

(
s · vm)t · (s · vm)}

= {(vi1)t · vi1 +
(
vi2
)t · vi2 + ···+

(
vim
)t · vim}

= {(v1)t · v1 +
(
v2)t · v2 + ···+

(
vm
)t · vm}=W ,

(2.8)

that is, the permutation operator s is a symmetric permutation operator of W . It is op-
posite.

So all permutation operators in SV are also the symmetric permutation operators of
W . �

Theorem 2.8 implies SV ⊆ SW . In fact, SV = SW can easily be satisfied by modifying
the out-product matrix as

Wij =
m∑

k=1

(
vki +α

)(
vkj +α

)
, (2.9)

where α is a real parameter. In general, SV = SW when vki +α≥ 0 for any i and k.
So we can search for the permutation symmetry of a given pattern set by its out-

product matrix.
Let W be the out-product matrix of a given pattern set V , and let Ws be the per-

mutated out-product matrix by the permutation operator s. We define the permutation
symmetry distance (PSD) of the permutation operator s on the given pattern set V as a
quantifier of the difference between W and Ws, that is,

PSD(s)=
n∑

i=1

n∑

j=1

(
Ws

ij −Wij
)2
. (2.10)

We can normalize by scaling the matrix element Wij so that the maximum PSD of
a permutation operator is a given constant, for example, 1 or n. Thus the PSD value
is limited in range, where PSD(s) = 0 for perfectly symmetric permutation operator s.
What we do in this work is to search out for all the permutation operators, whose PSD
are equal to 0, of a given pattern set.

For example, the out-product matrix of the pattern set V = {(2,3,2),(2,2,3)} is W =( 8 10 10
10 13 12
10 12 13

)
. Let the permutation operator be s = (1 2 3

1 3 2

)
, then Ws =

( 8 10 10
10 13 12
10 12 13

)
. Because

Ws =W , PSD(s) =∑n
i=1

∑n
j=1 (Ws

ij −Wij)2 = 0. So s = (1 2 3
1 3 2

)
is a symmetric permuta-

tion operator of the set V .
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In the next section, we describe the genetic algorithm for searching for the symmetric
permutation operators of a pattern set.

3. Genetic algorithm-based approach

Genetic algorithms are search algorithms based on the mechanics of natural selection
and natural genetics and are used to search for large, nonlinear search spaces where expert
knowledge is lacking or difficult to encode and where traditional optimization techniques
fall short [8]. The basic principles of GAs were first designed by Holland [10]. They work
with a population of individual strings (chromosomes), each representing a possible so-
lution to a given problem. Each chromosome is assigned a fitness value according to the
result of the fitness function. Highly fit chromosomes are given more opportunities to
reproduce and the offspring share features taken from their parents.

The permutation symmetry detection problem gives all the symmetric permutation
operators, whose PSD are equal to 0, of a given pattern set. We know that a pattern set
often has more than one symmetric permutation operator. That is, permutation sym-
metry detection is a multioptimization problem. We aim to use the genetic algorithm to
find as many different symmetric permutation operators as possible in a single run. So
we modify the standard genetic algorithm [23] as follows.

(1) Initialization: a starting population with N individuals is (randomly) generated.
(2) Evaluation: every individual of the initial population is evaluated.
(3) Recombination: relatively “fit” individuals are selected for recombination. Then

a new generation with N parents and N children is created using crossover and
mutation.

(4) Evaluation: these new individuals are evaluated.
(5) Save the symmetric permutation operators: save the individuals whose fitness val-

ues are 0, then replace them with individuals randomly generated.
(6) Selection: choose the best N individuals to propagate to the next generation using

the CHC selection [7].
(7) Termination check: if a given amount of time (a number of generations) has

elapsed, the algorithm stops. Otherwise, it goes back to step (3) and continues.
We present the algorithm operators in detail as follows.

3.1. Representation of the chromosomes. Coding all possible solutions into different
chromosomes is a key problem of genetic algorithms. The chromosome often is a binary
string in traditional coding, but the binary coding scheme is not suitable for our problem.

A permutation operator can be written in the form of “two rows,” for example,( 1 2 ··· n
i1 i2 ··· in

)
, when omitting the top line, the permutation operator is written as

[i1 i2 ··· in], where it is understood that the permutation operator maps 1 to i1,
2 to i2, and so forth. For example, the chromosome [3 4 1 2] stands for the permu-
tation operator

(
1 2 3 4
3 4 1 2

)
. This coding method is used widely in GAs for TSP [7, 8, 14].

For an n-dimensional pattern set, we initialize the population by randomly placing 1 to
n into n length chromosomes and guaranteeing that each number appears exactly once.
Thus chromosomes stand for legal permutation operator.
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3.2. Crossover. Because the chromosomes must be a sequence of 1 to n, the traditional
single-point crossover is not suitable. Partially mapped crossover (PMX) which is a good
crossover operator for this kind of chromosome is proposed by Glodberg and Lingle [8].
It works as follows.

First two crossover points are selected at random, for example,
(i) Parent 1: [1 2 3 4 5 6 7 8 9],

(ii) Parent 2: [2 5 1 9 6 7 3 4 8].
They define a matching section (in shadow and bold).
The corresponding elements of the matching section define an interchange mapping,

for example,

{3⇐⇒ 1,4⇐⇒ 9,5⇐⇒ 6,6⇐⇒ 7}, (3.1)

which is applied pointwise to the parents to get the offspring, the other positions are filled
with “#,”

(i) Offspring 1: [# # 1 9 6 7 # # #],
(ii) Offspring 2: [# # 3 4 5 6 # # #].

The elements duplicated with the mapped matching section define the conflicting genes.
Copy the remains elements except for the conflicting genes to the original positions

from the corresponding parents,
(i) Offspring 1: [# 2 1 9 6 7 # 8 #],

(ii) Offspring 2: [2 # 3 4 5 6 # # 8].
Collect the conflicting genes from the parents in a list,

(i) Conflicting genes in offspring 1: [1 9 7],
(ii) Conflicting genes in offspring 2: [5 3 4].

Then, the conflicting genes define another interchange mapping, for example,

{1⇐⇒ 5,9⇐⇒ 3,7⇐⇒ 4}. (3.2)

Fill in the “#” positions one by one according to the mapping,
(i) Offspring 1: [5 2 1 9 6 7 4 8 3],

(ii) Offspring 2: [2 1 3 4 5 6 9 7 1].
The PMX operator can preserve efficiently the similarity between a parent and its off-

spring. In this way, the better permutation operator sections in parents may be inherited
and combined for the offspring, which would speed the search process.

3.3. Mutation. For the same reason that we do not use the traditional crossover operator,
we cannot use the traditional mutation operator. Instead of using the traditional muta-
tion operator, we randomly select two genes in one chromosome and swap them. Thus,
we still have legal permutation operator after swap mutation. For example,

(i) Parent: [1 2 3 4 5 6 7 8 9],
(ii) Offspring: [1 2 3 9 5 6 7 8 4].

3.4. Selection. When using traditional roulette wheel selection, the best individual has
the highest probability of survival but does not necessarily survive. We use CHC selection
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to guarantee that the best individual will always survive in the next generation [7]. In
CHC selection, if the population size is N , we generate N children by using roulette wheel
selection, then combine the N parents with the N children, sort these 2N individuals
according to their fitness value, and choose the best N individuals to propagate to the next
generation. To prevent convergence to a local optimum, we save the top 10% individuals
and reinitialize the rest of the population randomly if the population has converged [14].

4. Experimental results

In order to test the effectiveness of the genetic algorithms described above, we performed
experiments on data with different dimensions and with different parameter values on
a DELL computer (Optiplex G1, C400/128M SDRAM/Windows 2000 Server). The pro-
gram is coded in Visual C++ 6.0. Here we present some experimental results (Table 4.1–
Table 4.6) of some pattern set, in which the number of the symmetric permutation oper-
ators is known in advance, that is, the test sets have Dn-symmetry which has 2n (n is the
dimension of the pattern) symmetric permutation operators [4, 5]. To restrict length, we
just list three test pattern sets (n= 8,9,10) as follows.

For n= 8, the test pattern set is

{(1,1,1,1,0,0,0,0),(1,1,1,0,0,0,0,1),(1,1,0,0,0,0,1,1),(1,0,0,0,0,1,1,1),

(0,0,0,0,1,1,1,1),(0,0,0,1,1,1,1,0),(0,0,1,1,1,1,0,0),(0,1,1,1,1,0,0,0)}. (4.1)

For n= 9, the test pattern set is

{
(1,1,1,1,1,0,0,0,0),(1,1,1,1,0,0,0,0,1),(1,1,1,0,0,0,0,1,1),

(1,1,0,0,0,0,1,1,1),(1,0,0,0,0,1,1,1,1),(0,0,0,0,1,1,1,1,1),

(0,0,0,1,1,1,1,1,0),(0,0,1,1,1,1,1,0,0),(0,1,1,1,1,1,0,0,0)
}
.

(4.2)

For n= 10, the test pattern set is

{
(1,1,1,1,1,0,0,0,0,0),(1,1,1,1,0,0,0,0,0,1),

(1,1,1,0,0,0,0,0,1,1),(1,1,0,0,0,0,0,1,1,1),

(1,0,0,0,0,0,1,1,1,1),(0,0,0,0,0,1,1,1,1,1),

(0,0,0,0,1,1,1,1,1,0),(0,0,0,1,1,1,1,1,0,0),

(0,0,1,1,1,1,1,0,0,0),(0,1,1,1,1,1,0,0,0,0)
}
.

(4.3)

In Tables 4.1–4.6, “m” is the number of symmetric permutation operators found by the
program, “time” is the corresponding search time in seconds, “u” is the population size,
“maxgen” is the maximum iteration generation. Table 4.1 shows the results of exhaustive
search for 6 different pattern sets. Tables 4.2–4.6 show the results of our approach with
different parameter values for 5 different pattern sets, respectively. The crossover and
mutation rates are 0.7 and 0.01, respectively, in all experiments.
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Table 4.1. Search results of 6 different dimensional pattern sets by exhaustive search.

Dimension 8 9 10 11 12 13

m 16 18 20 22 24 26

time ≈ 0.3 4 49 605 8379 107932

Table 4.2. Search results of 5 different parameter values for an 8-dimensional set by our approach.

u 20 20 20 30 100

maxgen 200 1000 500 1000 1000

m 8 13 11 13 16

time < 1 3 2 5 13

Table 4.3. Search results of 5 different parameter values for a 10-dimensional set by our approach.

u 20 20 50 50 20

maxgen 1000 2000 1000 2000 4000

m 15 18 16 18 18

time 3 7 10 20 15

Table 4.4. Search results of 5 different parameter values for a 12-dimensional set by our approach.

u 50 50 80 100 100

maxgen 1000 2000 1000 1000 1200

m 15 18 16 19 21

time 12 25 20 25 30

5. Conclusions and discussions

From the simulation results shown in Tables 4.1–4.6, we can see the following.
(1) All of the symmetric permutation operators of a pattern set can be found by ex-

haustive search in theory, but it is so time consuming that it becomes impossible in fact
for a high-dimensional case. This is seen from Table 4.1. The program requires more
than 12-times search time to search for the symmetric permutation operators when the
dimension of pattern set increases one. The search time is about 1.2 days for n = 13. At
this rate, the program has to spend at least 5.5 years to find out all the symmetric permu-
tation operators of a 16-dimensional pattern set. It is obvious that exhaustive search can
only be used in small-dimensional case in practice.

(2) Our approach is not superior to exhaustive search in small-dimensional cases, that
is, n < 10. However, when the dimension of the test pattern set is bigger than 10, our
approach is faster than exhaustive search. For example, n= 12 in Table 4.4, genetic algo-
rithm can find out 21 symmetric permutation operators in 30 seconds, but the exhaustive
search has to spend 8379 seconds to find out all the 24 symmetric permutation operators
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Table 4.5. Search results of 5 different parameter values for a 14-dimensional set by our approach.

u 100 100 100 80 70

maxgen 1000 2000 4000 2000 3000

m 14 19 23 17 23

time 33 66 133 53 70

Table 4.6. Search results of 5 different parameter values for a 16-dimensional set by our approach.

u 100 200 50 300 100

maxgen 2000 500 2000 1000 4000

m 16 8 9 10 23

time 84 43 41 134 169

(see Table 4.1). The most important advantage of our approach is that the search time
increases slower than the exhaustive search as the dimensionality of the pattern set in-
creases. For example, when the dimension n = 16 (see Table 4.6), the program can find
out the majority of symmetric permutation operators in 169 seconds, it is less than 3
times of that for n= 14.

Of course, there is a shortcoming in our approach, for example, there are not any
criteria to know whether all of the symmetric permutation operators have been found, so
the search results are often incomplete. However, the permutation symmetry of a pattern
set is a group, so we can apply Properties 2.6 and 2.7 to obtain more or even all the
symmetric permutation operators.

(3) The total computational time needed is the product of single-measure time and
the evaluation times needed in the global search algorithm. There are many other global
optimization algorithms which may be better than the traditional genetic algorithms de-
scribed in this paper, for example, immune algorithms [12] and quantum algorithms
[20]. This paper illustrates with the traditional genetic algorithms how global optimiza-
tion algorithms can be applied to search for the permutation symmetry of a pattern set.

(4) Moreover, as to effectiveness, our approach is relatively similar to the genetic al-
gorithm for TSP, which is well documented, because both problems have the same ge-
netic operations and representation. The dimension of pattern set corresponds to the city
number in TSP, which can be several thousands [16].

(5) There are many algorithms to solve the optimization problem, for example, sim-
ulated annealing [19] and evolutionary strategies [15]. In recent years, more and more
efficient algorithms have been presented, such as immune algorithms [12] and quantum
algorithms [20]. Many of those algorithms are proven to be more effective than the stan-
dard genetic algorithms in all kinds of optimization problems. It is believed that it would
be more effective when such algorithms are utilized instead of the standard genetic algo-
rithm used in this paper for the permutation symmetry detection problem.

In this paper, we define a measure of permutation symmetry that transforms the sym-
metry detection problem to an optimization problem, which is the main contribution of
this paper, and show how the genetic algorithms can be applied to detect the permutation



D. Ji-Yang and Z. Jun-Ying 11

symmetry of a given pattern set, which overcomes the computing complexity of permu-
tation operators search and makes it possible to study the high-dimensional system with
the symmetry tool, for example, designing of artificial neural networks.
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