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The Floquet spectrum of a class of driven SU(2) systems is shown to display a butterfly pattern with

multifractal properties. The level crossing between Floquet states of the same parity or different parities is

studied. The results are relevant to studies of fractal statistics, quantum chaos, coherent destruction of

tunneling, and the validity of mean-field descriptions of Bose-Einstein condensates.
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Hofstadter’s butterfly spectrum of the Harper model [1]
has attracted tremendous mathematical, theoretical, and
experimental interest. For an arbitrary irrational value of
one system parameter, the spectrum of the Harper model is
a fractal, which has been strictly proved after decades of
research on the ‘‘ten martini problem’’ [2]. As one impor-
tant implication, a fractal butterfly spectrum suggests the
closing of a quantum gap infinite times and hence the
occurrence of infinite quantum phase transitions [3].

Early quantum chaos studies established that the Floquet
(quasienergy) spectrum of periodically driven systems may
display a fractal butterfly pattern as well [4,5]. However,
the nature of the fractal Floquet spectrum is still poorly
understood. Indeed, because the eigenphase of Floquet
states is restricted to a range of 2�, understanding a
Floquet spectrum associated with an infinite-dimensional
Hilbert space is subtle and challenging [6]. Furthermore,
previous findings regarding the fractal Floquet spectrum
were largely limited to the so-called kicked-Harper model
(a driven version of the Harper model) [7–9] and its variant
[5,9,10].

Because of vast interests in quantum control especially
in dressed matter waves [11–14], there are now promising
possibilities for the engineering and simulation of driven
ultracold systems with a prescribed Floquet spectrum. In
this Letter, we show that the Floquet spectrum of a decep-
tively simple class of SU(2) systems, constructed from a
driven two-mode Bose-Einstein condensate (BEC), dis-
plays a butterfly pattern and possesses truly remarkable
properties. For example, we show that with one certain
system parameter fixed the overall butterfly pattern is
insensitive to the number of bosons (denoted N) in the
BEC, but some detailed features depend on whether N is
odd or even. We shall reveal that the found butterfly pattern
contains many level crossings between states of different
parities and thus many points of coherent destruction of
tunneling (CDT) [15], with the total number of CDT points
found to scale as �N3:0. As an analog of first-order quan-
tum phase transitions, we discover that the found butterfly

pattern also contains many level crossings between same-
parity eigenstates. These results suggest that the class of
driven SU(2) systems studied here may become a test bed
for a number of research topics. Several specific applica-
tions of this work are also discussed.
Driven two-mode BEC systems were proposed before

[13,16,17] to realize the well-known kicked-top model [18]
in the quantum chaos literature. In its most general form, a
driven two-mode Bose-Hubbard model can be written as

H ¼ fðtÞ@ðay1a2 þ ay2a1Þ þ gðtÞ@ðay1a1 � ay2a2Þ2; (1)

where ai and ayi are the bosonic annihilation and creation
operators, respectively, for the ith mode, fðtÞ describes the
time-dependent tunneling rate between the two modes, and
the gðtÞ term describes the self-interaction between same-
site bosons, whose time dependence can be achieved by
Feshbach resonance induced by a magnetic field. The total

number of bosons N ¼ ay1a1 þ ay2a2 is a conserved quan-

tity, and the dimension of the Hilbert space isN þ 1. Using
the Schwinger representation of angular-momentum op-

erators, namely, Jx ¼ ðay1a2 þ ay2a1Þ=2, Jy ¼ ðay2a1 �
ay1a2Þ=ð2iÞ, and Jz ¼ ðay1a1 � ay2a2Þ=2, Eq. (1) reduces to

H ¼ 2fðtÞ@Jx þ 4gðtÞ@J2z : (2)

Clearly, the dynamics is solely determined by the SU(2)
generators Jx, Jy, and Jz. The total angular-momentum

quantum number J is given by J ¼ N=2. The Hilbert space
can be expanded by the eigenstates of Jz, denoted jmi, with
Jzjmi ¼ mjmi. The population difference between the two
modes is given by the expectation value of 2Jz. If we
exchange the indices of the two modes, then Jx is invariant,
Jz ! �Jz, and as a result the Hamiltonian in Eq. (2) is
unchanged. This reflects a parity symmetry of our model.
Consider then two specific forms of fðtÞ and gðtÞ. In the

first case fðtÞ ¼ �=ð2�Þ and gðtÞ ¼ g0
P

n½�ðt� 2n��
�Þ � �ðt� 2n�Þ�. The Floquet operator, i.e., the unitary
evolution operator F from 2n�þ 0þ to ð2nþ 2Þ�þ 0þ, is
then given by
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F ¼ ei�J
2
z =2Je�i�Jxe�i�J2z =2Je�i�Jx ; (3)

where � ¼ 4g0N. Because the first two or the last two
factors in Eq. (3) constitute the Floquet operator for a
standard kicked-top model [18], our driven system here
can be regarded as a ‘‘double-kicked-top model.’’
Alternatively, if we set gðtÞ ¼ g0=� and fðtÞ ¼ �

2

P
n½�ðt�

n�Þ þ �ðt� n�� �Þ�, where � is the time delay between
the two delta kicking sequences, then the associated propa-
gator F0 from n�� 0þ to ðnþ 1Þ�� 0þ is given by

F0 ¼ ei�J
2
z =2Je�ið4g0�=�ÞJ2z e�i�Jxe�i�J2z =2Je�i�Jx : (4)

Under the special condition 4g0�=� ¼ 2k� (8k�) for in-
teger J (half integer J), where k is an integer, the factor

e�ið4g0�=�ÞJ2z is unity in the (2J þ 1)-dimensional Hilbert
space, and hence F0 becomes identical with F. Thus, there
exist two different scenarios for realizing F, the key op-
erator to be analyzed below.

In the jmi representation, the third factor e�i�J2z =2J of F

equals e�i�m2=2J, which is a pseudorandom number for
irrational �=J. The first factor of F, however, effectively
induces a time reversal of the third factor and thus partially
cancels this pseudorandom phase. Indeed, using the SU(2)
algebra, the product of the first three factors of F in Eq. (3)
is given by

ei�J
2
z =2Je�i�Jxe�i�J2z =2J ¼ e�i�fðJx=2þiJy=2Þei½�ð2Jzþ1Þ=2J�þc:c:g;

(5)

showing that the �-dependent term entering into F be-

comes ei½�ð2Jzþ1Þ=2J�, which is always a quasiperiodic num-

ber ei½�ð2mþ1Þ=2J� in the jmi representation. This partial
cancellation of quasirandom dynamical phases implies
intriguing spectral properties [19].

To study the classical limit of F, we consider scaled
variables x ¼ Jx=J, y ¼ Jy=J, and z ¼ Jz=J. The three

operators x, y, and z also satisfy the angular-momentum
algebra but with an effective Planck constant @eff � 1=J.
By taking the @eff ! 0 limit with fixed � and �, the
classical dynamics associated with F can be obtained,
with variables x, y, and z restricted on a unit sphere.
Because � ¼ 4g0N, this classical limit with fixed � re-
quires N ! þ1 and g0 ! 0. This condition is apparently
equivalent to that in a standard mean-field limit of the
driven BEC.

Figure 1 shows the typical eigenphase spectrum of F vs
@� � �@eff ¼ �=J ¼ 8g0, for J ¼ 20; 20:5; 100 and

�=@eff ¼ 1:0. Because the spectrum of F is invariant if
@� ! @� þ 4�, we set @� 2 ½0; 4�Þ. Though in Fig. 1 the

involved Hilbert space is rather small, spectacular butterfly
patterns are already obtained (their symmetry with respect
to @� ¼ 2� can be proved). They resemble the famous

Hofstadter’s butterfly but also present remarkable differ-
ences in several aspects. First, if we take a vertical cut of
the butterfly patterns in Fig. 1, the spectrum is not found to
present any large gap. Second, the butterfly patterns shown

in each panel of Fig. 1 possess a double-butterfly structure,
with each butterfly covering a 2� range of @�. This double-

butterfly structure is somewhat analogous to the spectrum
of a Harper-like effective Hamiltonian considered in
Ref. [9]. More interestingly, though Fig. 1(c) has many
more levels than Figs. 1(a) and 1(b), the overall outline of
the double-butterfly structure is seen to be insensitive to J
for fixed �=@eff ¼ �J. For a fixed value of J but for other
not too large values of �, the qualitative features of the
butterfly spectrum remain but at different scales. For very
large values of � (e.g., �=@eff > 10), the butterfly pattern
for a fixed value of J will gradually dissolve, in a similar
fashion as in the kicked-Harper model [4].
Some detailed aspects of the spectrum are also note-

worthy. For example, it is observed that the spectrum
collapses to one point for @� ¼ 2�, if and only if J is an

integer. This can be explained as follows. If J is an integer

and if @� ¼ 2�, then in the jmi representation, e�i�J2z =2J ¼
e�i�m2 ¼ e�i�m ¼ e�i�Jz . So in this case e�i�J2z =2J is
equivalent to a rotation of � around the z axis, and hence
the first three factors of F exactly cancel its last factor. This
cancellation will not occur if J is a half integer, i.e., if N is
odd.
Figure 2 depicts the phase space structure of the classical

limit of F. As � increases, the classical dynamics changes

FIG. 1. Eigenphase spectrum (denoted �) of the Floquet op-
erator F in Eq. (3). J ¼ 20 in (a), 20.5 in (b), and 100 in (c).
�=@eff ¼ �J ¼ 1:0 in all panels.
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from being regular to being chaotic. On the other hand, the
Floquet spectrum shown in Fig. 1 can be, however, very
similar for radically different values of � ranging from 0 to
4�=@eff ¼ 4J�. Therefore, upon quantization the regular
or chaotic nature of the classical dynamics might not
necessarily be reflected in the spectrum and hence can be
irrelevant to the quantum dynamics.

The statistical behavior of the found butterfly spectrum
is also examined. To have good statistics we consider a
much larger value of J. Figure 3(a) presents the cumulative
level density Nð�Þ for a representative value of @�. Nð�Þ is
highly irregular but does not show any clear flat steps. This
is consistent with our early observation that no large gap
exists in the spectrum. Figures 3(b)–3(d) show the associ-
ated level distribution Pð�Þ at three different scales.
Evidently, Pð�Þ has a fascinating self-similar property.

This motivates us to quantitatively characterize the spec-
trum via the generalized fractal dimension Dq, with the

results shown in Fig. 3(e). As expected from theNð�Þ result
in Fig. 3(a),D0 ¼ 1. However, Dq for q � 0 clearly shows

that the spectrum has multifractal properties. For compari-
son, Fig. 3(e) also shows the Dq result for a standard

kicked-top model with the same values of � and � (i.e.,
considering an operator comprising only the first two
factors of F). The Dq behavior in the kicked-top case is

as trivial as that of a random sequence: It remains close to
unity and slightly decreases with increasing q due to finite-
size effects. Based on these results, we conjecture and
invite a formal mathematical proof that the butterfly pat-
terns found here contain true fractals in the limit of J !
þ1.
We next study the level crossings in the butterfly pat-

terns. Interestingly, the minimal distance in @� between

two level crossings is found to decrease sharply with J. So
even for a rather small J � 10 it is already computationally
demanding to identify all of the level crossings. As an
example, Fig. 4(a) presents the typical level crossing be-
havior in the vicinity of a null eigenphase for J ¼ 10. The
Floquet states are seen to cross each other frequently,
between different-parity states and between same-parity
states. Both types of level crossings are of enormous
interest. For the first type, at a crossing point an arbitrary
superposition of two crossing states of different parities
remains an eigenstate but generally breaks the parity sym-
metry, thereby maintaining a nonzero population differ-
ence between the two modes forever [13]. This makes it
clear that the first type of level crossings give rise to the
seminal CDT phenomenon [15] that has attracted broad
experimental interests. Note that in some regimes of @�, to

FIG. 3 (color online). (a) The cumulative Floquet state density
and (b)–(d) the Floquet state density distribution at different
scales, for @� ¼ ð ffiffiffi

5
p � 1Þ�=2, �=@eff ¼ 1, and J ¼ 2999.

Panel (e) shows the generalized fractal dimension Dq. Crosses

and circles are for odd-parity and even-parity states, respectively.
Triangles represent the result for a standard kicked-top model.

FIG. 4. (a) Level crossings between three even-parity states
(dashed lines) and two odd-parity states (solid lines), for J ¼ 10
and �=@eff ¼ 1:0. (b) Number of level crossings versus J, for
@� 2 ½0; 4�Þ and �=@eff ¼ 1:0. The cross (square) symbols are

for crossings between different-parity (same-parity) states, and
the fitting suggests a power law scaling J3:0 (J2:7).

FIG. 2. Poincaré surfaces of a section (with Jx > 0) of the
classical or mean-field limit of F in Eq. (3), with � ¼ 0:05
[the same as in Fig. 1(a)] and � ¼ 5 in (a), 30 in (b), and 75
in (c).
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the naked eye two curves of opposite parities in Fig. 4(a)
are almost on top of each other, and as a result many CDT
points are found in these regimes. Note also that CDT-
induced population trapping is fundamentally different
from the well-known self-trapping effect on the mean-field
level. Indeed, the CDT effect here depends on � and J,
whereas mean-field self-trapping is transient and indepen-
dent of J. Now turning to the second type of level cross-
ings, they come as a surprise because avoided crossings
between same-parity states are generally anticipated for
classically nonintegrable systems (see Fig. 2). The second
type of crossings therefore suggest the uniqueness (e.g.,
some effective local ‘‘symmetry’’) of F whose matrix
elements in the jmi representation are quasiperiodic.
Recalling the above-mentioned extreme example where
all levels cross at @� ¼ 2� for integer J, we expect that

special arithmetic properties of @� play a key role in both

types of level crossings.
By obtaining all of the level crossings with high accu-

racy for J � 12, we obtain in Fig. 4(b) that the number of
CDT points contained in the butterfly patterns scales as J3:0

and the number of same-parity crossings scales as J2:7. In
particular, we conclude that, as N goes to infinity, on
average each pair of Floquet states in a butterfly pattern
sees infinite CDT points.

In the kicked-Harper model, the quantization rule varies
with the boundary condition adopted [20] and a compact
toroidal phase space arises only if the Planck constant
assumes special values [21]. A general treatment of the
kicked-Harper model leads to a band structure that often
complicates the issue. By contrast, the phase space here is
necessarily on a sphere [18], with no arbitrariness in quan-
tization and no band structure in the spectrum. For these
reasons the new butterfly Floquet spectrum discovered in
this work can stimulate more studies of the fractal Floquet
spectrum in driven systems. Results here also suggest that
our strategy in generating a butterfly quasienergy spec-
trum, namely, the use of partial cancellation of quasiran-
dom phases (first advocated in a kicked-rotor system [5]),
is widely applicable. Furthermore, it is now clear that three
quantum chaos paradigms, i.e., the kicked-top, kicked-
Harper, and kicked-rotor models, are all linked together
for the first time, because all of them can display fractal
statistics.

Finally, we mention two specific applications. First,
because the found butterfly spectrum collapses at @� ¼
2� (or g0 ¼ �=4) for integer J, one may experimentally
determine if N is even or odd by scanning the dynamics in
the neighborhood of g0 ¼ �=4. This possibility does not
exist in the mean-field dynamics of a BEC. Similarly, one
may study the CDT points to reveal non-mean-field effects.
Second, it is now of great interest, both experimentally and
computationally, to revisit early results of how a multi-
fractal spectrum can be manifested in time-dependent
properties [22].

Detailed results of this work will be published elsewhere
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