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Quantum systems with Hofstadter’s butterfly spectrum are of fundamental interest to many research areas.
Based upon slight modifications of existing cold-atom experiments, a cold-atom realization of quantum maps
with Hofstadter’s butterfly spectrum is proposed. Connections and differences between our realization and the
kicked Harper model are identified. This work also exposes, for the first time, a simple connection between the
kicked Harper model and the kicked rotor model, the two paradigms of classical and quantum chaos.
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The Harper model �1� plays a fundamental role in many
research areas because it yields the famous Hofstadter’s but-
terfly spectrum �2,3�. This fractal spectrum, first discovered
in two-dimensional electron systems subject to a square lat-
tice potential and a perpendicular magnetic field �2�, has
found applications in studies of quantum Hall effect �4,5�,
the renormalization group �6�, high-temperature supercon-
ductivity �7�, to name a few. Various effects on Hofstadter’s
butterfly spectrum were carefully examined �8�. Systems
with a butterfly spectrum should also be of general interest to
quantum phase transition studies because it implies an infi-
nite number of phases when some external parameters are
scanned. Systems with Hofstadter’s butterfly spectrum were
also studied experimentally �4,9�.

Hofstadter’s butterfly can emerge in the quasienergy spec-
trum of periodically driven systems as well. In this context,
the kicked Harper model �KHM�, adapted from the Harper
model by considering a delta-kicking potential, has attracted
vast interests �10�. The Hamiltonian of the KHM is given by
HKHM= �L /T�cos�p�+Kcos�q��n��t−nT�, where L and K are
two system parameters, T is the kicking period, p and
q �q� �0,2��� are conjugate momentum and angle variables,
with their commutation relation defining the effective Planck
constant �, namely, �q , p�= i�. The Hilbert space with the
periodic boundary condition in q is spanned by the
eigenfunctions �m� of p, with p �m�=m� �m�, �q �m�
=exp�imq� /	2�, and m being an integer. The KHM quantum
map associated with the unitary evolution for each period T
is given by

UKHM = e−i�L/��cos�p�e−i�K/��cos�q�. �1�

Because the classical limit of the quantum map UKHM is
chaotic in general, this map has become a paradigm for un-
derstanding �i� how a fractal quasienergy spectrum affects
the quantum dynamics and the associated quantum-classical
correspondence, and �ii� how the underlying classical chaos
affects the butterfly. For experimental realizations of the
KHM, one early study proposed to use Fermi-surface elec-

trons in external fields �11�. Another study showed that the
system of a charged particle kicked by a designed field se-
quence �12� can be mapped onto the KHM. However, these
two proposals have not led to experiments. Connections be-
tween the KHM and the so-called kicked harmonic oscillator
model were also noticed �13�, but only for the special case of
K=L.

Using cold atoms periodically kicked by an optical lattice,
about ten laboratories worldwide �14–17� have realized the
so-called kicked-rotor model �KRM� �18� as another quan-
tum map paradigm. Using similar notation as above and in
the same Hilbert space as the KHM, the Hamiltonian of the
KRM is given by HKRM= p2 /2+Kcos�q��n��t−nT�. Many
variants of the KRM, obtained by considering different types
of kicking sequences or additional external potentials, have
also been achieved. In these studies the experimental setup
itself has also advanced, from using thermal atoms to using a
Bose-Einstein condensate �BEC� �15,16� that has very large
coherence width. These ongoing experimental efforts moti-
vate the following bold and important question: can these
cold-atom laboratories working on the KRM also realize the
kicked Harper model or its variants by slightly modifying
their existing apparatus? If yes, quantum maps with Hofs-
tadter’s butterfly spectrum can soon be experimentally real-
ized in many cold-atom laboratories, an entirely new genera-
tion of experiments can be planned, and novel applications
of cold-atom researches may be established.

Stimulated by our early work seeking a potential connec-
tion between KHM and a variant of KRM �19�, a very posi-
tive answer to the above question is indeed provided here. In
particular, we show that previous experimental setup for the
so-called double-kicked rotor model �DKRM� �17,20� al-
ready suffices for synthesizing a quantum map displaying
Hofstadter’s butterfly, provided that one quantum resonance
condition therein is met and the initial atom cloud is a BEC
that has sufficient coherence width. The butterfly spectrum
associated with the obtained quantum map is almost indistin-
guishable from the standard result previously calculated for
the KHM. We then show connections and dramatic dynami-
cal differences between our quantum map and the KHM. In
addition to experimental interests, the results should also mo-
tivate more theoretical work on quantum maps with Hofs-
tadter’s butterfly spectrum.*phygj@nus.edu.sg
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Consider then a DKRM that is already experimentally re-
alized �17�. Using the same notation as above, the
Hamiltonian of a DKRM can be written as HDKRM
= p2 /2+K1cos�q��n��t−nT�+K2cos�q��n��t−nT−��. Evi-
dently, in addition to kicks at t=nT, the rotor in a DKRM is
also subject to kicks at t=nT+�. The associated quantum
map UDKRM for a period from nT+0− to �n+1�T+0− is given
by

UDKRM = e−i�T−���p2/2��e−i�K2/��cos�q�e−i��p2/2��e−i�K1/��cos�q�.

�2�

Remarkably, if we now require the parameter T to satisfy the
quantum resonance condition of the KRM, i.e., T�=4�, then
due to the discreteness of the momentum eigenvalues, one
obtains e−iT�p2/2��=1 when operating on any state in the Hil-
bert space defined above. Under this resonance condition we
are able to reduce UDKRM to UDKRM

r ,

UDKRM
r = ei��p2/2��e−i�K2/��cos�q�e−i��p2/2��e−i�K1/��cos�q�. �3�

Because the cold atoms are actually moving in a flat space
rather than a compact angular space, the quantum resonance
condition is relevant only if the initial quantum state is pre-
pared in a definite quasi-momentum state. This is certainly
within reach of today’s experiments. For example, two recent
experiments �16� studied directed transport in a KRM on
quantum resonance, with a delocalized BEC �with negligible
self-interaction� effectively realizing appropriate initial states
such as �m=0�. Note also that the quantum map UDKRM

r of-
fers a cold-atom realization of a modified kicked-rotor model
we recently proposed �19�, where the kinetic energy term can
take “negative” values.

With the UDKRM
r realized above, we now present one key

numerical result of this work. Figure 1 displays the calcu-
lated quasi-energy spectrum of UDKRM

r by the standard diago-

nalization method �10� as a function of �̃
��, for
K1 /�=K2 /�=1, compared with that of UKHM as a function
of �, for K /�=L /�=1. The map UDKRM

r is seen to generate a
beautiful Hofstadter’s butterfly. Even more dramatically, the
butterfly of UDKRM

r resembles the previously calculated but-
terfly of KHM �10� to such a degree that the top panel ap-
pears to be indistinguishable from the bottom panel in Fig. 1.
The generalized fractal dimensions, denoted by Dq, have also
been calculated for many system parameters, confirming that
the spectrum is indeed a fractal in general �e.g., for

K1=K2=1, �̃=2� / �1+��, �= �	5+1� /2, Dq=0�0.5, same as

the result for the KHM for �= �̃, K=L=1�. Similar results
have been found for many other system parameters as well,

so long as �= �̃, K1=K, and K2=L. To confirm a fractal
butterfly spectrum experimentally, one may connect the as-
sociated characteristics of the quantum diffusion dynamics
�e.g., time dependence of the survival probability, the diffu-
sion exponent, etc.� with the spectrum �21� or attempt to
reconstruct the spectrum by first reconstructing the time
evolving wave function.

Results in Fig. 1 suggest a strong connection between a
DKRM under quantum resonance and the KHM. To uncover
this connection let us return to Eq. �3� and temporarily treat

it in a flat phase space without the periodic boundary condi-
tion. Using the equality ei��p2/2��f�q�e−i��p2/2��= f�q+�p�, this
treatment leads to

UDKRM
r → ŨDKRM

r = e−i�K̃2/�̃�cos�q+p̃�e−i�K̃1/�̃�cos�q�, �4�

where p̃
�p is a rescaled momentum variable with

�q , p̃�= i�̃, K̃1=�K1, and K̃2=�K2. Equation �4� now clearly
resembles UKHM in Eq. �1�, with the only difference being

that the first exponential factor of ŨDKRM
r in Eq. �4� contains

the cos-function of the angle plus the momentum, rather than
just the momentum. This already partially rationalizes the
strong resemblance between the two panels in Fig. 1.

So is the spectrum of ŨDKRM
r identical with that of the

KHM? Put differently, does there exist a unitary transforma-
tion G to ensure G†�q+ p̃�G= p̃, G†qG=q? If such a G exists,

then G†ŨDKRM
r G becomes precisely the UKHM in Eq. �1� �with

K̃1→K, K̃2→L, and �̃→��. Significantly, such a G does not
exist for the Hilbert space here. In particular, the above G
transformation is found to assume the analytical form

G=eiq2/2�̃, which violates the periodic boundary condition as-

sociated with q→q+2�. As such, the spectrum of ŨDKRM
r ,

and hence also the spectrum of UDKRM
r in Eq. �3�, should

contain substantial elements that are absent in the KHM.

(b)

(a)

FIG. 1. �Color online� Quasienergy spectrum �denoted ��
of the quantum map UDKRM

r given by Eq. �3� �top�, compared with
that of the KHM map UKHM �bottom� given by Eq. �1�. K1 /�
=K2 /�=K /�=L /�=1.
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Indeed, as shown in Fig. 2, a more careful comparison
does expose spectral differences between UDKRM

r and UKHM.
Motivated by this observation, we are also able to find some
major differences analytically. For example, for fixed L /�
and K /�, the spectrum of UKHM is invariant upon a �-change
from �0 to 2�−�0. Such a symmetry does not exist in the
case of UDKRM

r �see Fig. 2�. A second example is for the

special case of �= �̃=4�. Therein the spectrum range can be

easily found, which is �−�K̃1+ K̃2� / �̃ , �K̃1+ K̃2� / �̃� for UDKRM
r

and �−�K+L� /� , �K−L� /�� for UKHM �if none of these range
boundaries exceeds ���.

More insights emerge if we examine one interesting

classical limit of the DKRM, i.e., the �̃→0 limit �by letting

�→0 with fixed K̃1 and K̃2� while keeping T�=4�. Denote
�ql , p̃l� as a classical trajectory right before the lth kick

in the �̃→0 limit of UDKRM
r . Then one obtains p̃2l+1

= p̃2l+ K̃2sin�q2l�; q2l+1=q2l+ p̃2l+1; p̃2l+2= p̃2l+1+ K̃1sin�q2l+1�;
and q2l+2=q2l+1− p̃2l+2. We stress that this classical limit is
obtained under quantum resonance, and is hence unrelated to
the direct classical analog �22� of the quantum DKRM.
Upon making a classical canonical transformation

�q , p̃+q�→ �Q , P̃�, we obtain P̃2l+2= P̃2l+ K̃2sin�Q2l�; Q2l+2

=Q2l− K̃1sin�P̃2l+2�, which is precisely the classical map of
the kicked Harper model. This finding hence firmly binds the
butterfly spectrum of UDKRM

r with the standard KHM. The

emergence of the classical KHM map from the �̃→0 limit of
UDKRM

r further demonstrates that the spectral differences be-
tween UDKRM

r and UKHM arise from genuine quantization ef-
fects. Indeed, it is the periodic boundary condition in the
quantization that disallows the above mentioned unitary
transformation G as the quantum analogy of the classical

canonical transformation �q , p̃+q�→ �Q , P̃�.
The spectral differences between UDKRM

r and UKHM are
found to result in profound consequences in the quantum
dynamics. One excellent example is shown in Fig. 3, dem-
onstrating clearly that the butterfly associated with UDKRM

r

violates a symmetry property of the butterfly associated with

FIG. 2. �Color online� Part of quasienergy spectrum of UDKRM
r

in Eq. �3� and UKHM in Eq. �1� for �̃=�=�0=26� /41 �the upper

two rows� and �̃=�=2�−�0 �the lower two rows�. K̃1 / �̃= K̃2 / �̃
=K /�=L /�=1. The spectral differences between UDKRM

r and UKHM

are evident.

FIG. 3. �Color online� Dynamics of m variance �denoted �2� for
quantum maps UDKRM

r and UKHM, for the initial state �0�. The val-

ues of �̃=� are given by �0 or 2�−�0, with �0=26� /41.

K̃1 / �̃= K̃2 / �̃=L /�=K /�=1. The map UKHM, not UDKRM
r , is seen to

be invariant upon the change �0→2�−�0. Note also that one case
associated with UDKRM

r displays localization, and all the others
show quadratic diffusion.

(a)

(b)

FIG. 4. �Color online� Momentum distribution profile P�m� vs
m, evolving from the initial state �0�, for UDKRM

r �top� and UKHM

�bottom�, for �̃=�=2, K̃1= K̃2=K=L=3.7. In the order of increas-
ing width of the distribution profile, the evolution times are given
by n=400, n=1600, n=3200, n=7400, and n=20 000. The staircase
structure seen for UDKRM

r does not exist for UKHM, despite the fact
that their two butterfly spectrum is hardly distinguishable.
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UKHM. Note also that in one case of UDKRM
r shown in Fig. 3,

the quantum diffusion displays evident localization that is in
clear contrast to the KHM dynamics. This localization be-
havior suggests that the width of the subbands of the butter-
fly is effectively zero, in agreement with the result shown as
the second row in Fig. 2. Indeed, in our numerical analysis
the associated bandwidth is found to be less than 10−16.

To further motivate interests in the new quantum map
UDKRM

r we also present in Fig. 4 the time dependence of the

momentum distribution profile, for a more generic �= �̃ that
is irrational with �. Results therein show again striking dif-
ferences between UDKRM

r and UKHM, especially in that the
former case shows a staircase structure in the profile. Unlike
previous observations of analogous staircase structure with a
classical origin in an off-resonance DKRM �20�, the staircase
structure here is purely quantum mechanical. Indeed, both
the localization shown in Fig. 3 and the staircase profile
shown in Fig. 4�a� can be related to the unique blocked band
structure of UDKRM

r in the momentum representation �23�.
The important lesson here is that many important features of
a quantum map can be hidden in the overall pattern of its
butterfly spectrum. For experimental interests, we note that

one may tune the value of �̃ and other system parameters to
generate different block sizes of UDKRM

r �23�, thus attaining
staircase steps of less height and hence more accessible to

experiments. For example, for K1=K2=14.4, �̃�118� /61,

the associated staircase steps in P�m� have a width of 61, and
a height 2–3 orders of magnitude smaller.

Cold-atom realizations of the nonkicked Harper model us-
ing static optical lattices were proposed before �24�. How-
ever, due to the deep lattice approximation therein they can-
not be extended for the kicked Harper model. Based on
already available experimental techniques that can achieve a
double-kicked rotor model tuned on quantum resonance,
here we have proposed a rather simple cold-atom realization
of a variant of the kicked Harper model. The results should
open up a new generation of cold-atom experiments on quan-
tum maps with a butterfly spectrum. This work also estab-
lishes, for the first time, a direct connection between the
kicked-rotor model and the kicked Harper model, arguably
the two most important paradigms of classical and quantum
chaos.
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