
 
 

 

 

I. INTRODUCTION 

 

Abstract—Every type of wire-driven parallel robots can be 
used in cargo handling as a robot crane. Concerning the 6- 
degree-of–freedom (DOF) wire-driven parallel robot with three 
wires, its mechanism configuration belongs to URPMs (Under 
Restrained Positioning Mechanisms), if one translational or 
rotational DOF rigid mechanism is added to each of its kinematic 
chains. In this case the mechanism becomes a new type 6-DOF 
robot. It has been found, in the research survey that the 
mechanism configuration of such kind of 6-DOF robot CABLEV 
is not powerful enough because of its limited workspace. A novel 
6-DOF parallel crane robot containing three rigid-and-flexible 
hybrid sub-chains is proposed which can access to a larger 
workspace. The differential flatness of its inverse kinematics and 
dynamics is analyzed by a simulation. The results of this 
simulation will lay a basis for the future trajectory tracking 
control of the payload. 

Wire-driven parallel robots are characterised by simple 
structure, low inertia, large workspace and high speed. 
According to the relationship between the number of wires m 
and the number of degrees of freedom (DOFs) of the 
end-effector n, wire-driven parallel robots can be classified 
into the following four types [1] : i) Incompletely Restrained 
Positioning Mechanisms (IRPMs), with m=n; ii) Completely 
Restrained Positioning Mechanisms (CRPMs), with m=1+n; iii) 
Redundantly Restrained Positioning Mechanisms (RRPMs), 
with m>1+n and iv) Under Restrained Positioning Mechanisms 
(URPMs), with m<n. 

All of these four types of wire-driven parallel robots can 
be introduced to crane technology as the concept of 
wire-driven parallel crane robot. Because the payload of the 
crane robot usually moves in a three dimensional space with 
three translational and three rotational independent motions, 
the concept of 6-DOF wire-driven parallel crane robot is 
addressed in this paper. In fact, such a RoboCrane belongs to 
IRPMs [2]. 
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The 6-DOF wire-driven parallel robot driven by seven 
wires proposed by Kino Hithoshi belongs to RRPMs [3]. The 
6-DOF wire-driven parallel crane robot proposed by 
Kleinschnittger belongs to RRPMs [4, 5]. The 6-DOF 
wire-driven parallel crane robot with three wires proposed by 
LIU Shuqing belongs to URPMs [6]. Let us note that in [6], it is 
wrong to assume that the robot is a 3-DOF manipulator because 
the end-effector is a 3-dimensional solid which is connected by 
three wires via three point-shaped joints.  

The four kinds of 6-DOF wire-driven crane robots 
mentioned above have their own special applications in 
practice. Till now, the mechanism theory and control 
technology for the first three kinds of them are mature and there 
are a lot of literature and prototypes for reference, so there is a 
promising future for their application. 

Concerning the fourth  kind of wire-driven parallel robot, 
its application is limited because of the property of being 
under-constrained. In 1992, Arai presented a 6-DOF hybrid 
crane robot by adding a three DOFs (two Translational DOFs 
and one Rotational DOF) strut serial robot into it [7]. Thus, the 
robot is able to lift a heavier payload than the classic cranes and 
has a weak stiffness because of its hybrid structure. Inverse 
kinematics and kinematic control of the hybrid robot have been 
presented in [8, 9] for a deeper understanding of this robot. 

Instead, since 1998, a new kind of crane robot, CABLEV, 
is proposed by adding a translational DOF rigid mechanism 
into each kinematic chain of the fourth kind of robot, in which 
the three rigid mechanisms are in parallel [10]. The flatness of 
the CABLEV system is analyzed and the trajectory tracking of 
the payload based on differential flatness is carried out in the 
prototype [11]. Yamamoto Motoji has presented another similar 
kind of 6-DOF crane robot by implementing a feedback 
linearization control scheme in a prototype [12]. The authors call 
the two kinds of robots mentioned above as “6-DOF 
under-restrained wire-driven parallel crane robot with three 
wires” [13]. However, the three rails of the CABLEV system are 
in parallel, so three wire coordinates should satisfy four 
equations for describing the problem of its generalized inverse 
kinematics, with the result that the trajectory of the payload is 
limited and the volume of the workspace cannot fill the total 
space of the base. In order to overcome the disadvantage of the 
limited workspace, a new 6-DOF wire-driven parallel crane 
robot is proposed here, in which two parallel rails are vertical 
to the third one. Inverse systems based on differential flatness 
are analyzed and a simulation is given under the environment 
of Matlab, which will lay on foundation for the further 
trajectory tracking of the payload. 
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II. MECHANISM CONFIGURATION OF A 6-DOF WIRE-DRIVEN 
PARALLEL CRANE ROBOT 

The mechanism configuration of the presented novel 
6-DOF wire-driven parallel crane robot with three wires is 
shown in Fig.1 (a).The base is composed of two landing legs 
and three rails, and each trolley moves along its corresponding 
rail by a girder. Each of the three capstans is mounted on the 
frame of every trolley, which will drive its own wire to handle 
the payload in three dimensional space in order to realize 
6-DOF motions. In the real cargo-handling trajectory, the three 
trolleys are moving along their own rails and the three wires 
actuated by the winches change their lengths to make the 
payload realize its desired trajectory. 

 
(a) mechanism configuration 

 
 (b)  geometric   parameters 

Fig.1：Mechanism sketch of  the 6-DOF wire-driven parallel crane robot with 
3 wires 

As shown in Fig.1(b), the independently controllable 
robot coordinates of the actuators can be expressed: 

( )T
321321 lllsss=q 6R∈ , the vector of the three 

trolley coordinates is ( )T
3211 sss=q ，and the vector of the  

wire length is =2q ( )T
321 lll .The posture of the reference 

point P of  the payload is 







=

α
r

yP ， here, 

=r ( )T
zyx rrr and =α ( )T

321 ϕϕϕ . The position vector 
of the reference point P of the payload in the fixed coordinate 
system 0K is r and the orientation vector α is the vector of 
three Cardan angles of the payload in the moving coordinate 
system, PK , corresponding to fixed coordinate system , 0K . 
The 1st rail is parallel to the 3rd one (rail), the distance between 
which is d, and both of them are parallel to the 2nd rail. 

III. MODELLING OF THE  6-DOF WIRE-DRIVEN PARALLEL 
CRANE ROBOT 

A. Coordinate Systems of   the  Actuators and the Payload 
The payload should realize 6-DOF motions in the real 

handling task, the posture of which can not be determined by 
the length of three wires, so it is necessary to solve the problem 
of generalized inverse kinematics of the robots to determine the 
length of the three wires and the positions of the three trolleys. 

 The velocity vector of  the reference point P of  the 
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system 0K .The derivatives of the posture vector 
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B. Constraint Equations 

B.1 Geometric constraints on position level 
According to Fig.1, the geometric constraints equations 

between the coordinates of the actuators q  and the posture 
vector Py , are as follows： 

0lllyqg =−=
2T);( iiiPi                                    (1) 

The wire vector );( Pi yql  in the fixed coordinate system 

0K  can be expressed by the following equation： 

ii
PP

i bpαTrl −+= )( ( 3,2,1=i )                              (2) 
The above three vectors are as follows:  

( )T
111 00)( sPP −+= pαTrl , −+= 22 )( pαTrl PP  

( )T
2 00 s , 23 )( pαTrl PP+= ( ) ( )T

3
T 0000 sd −− .  

Vectors ip ( 3,2,1=i ) are three constant vectors of the 
payload in the moving coordinate system PK ， here: 

( )T

1 0033 lP =p , ( )T

2 02/63 llP −−=p ,

( )T3 02/63 llP −=p . 

Vector )(αTP  is the transformation   matrix between the 
fixed coordinate system 0K  and the moving coordinate 
system, PK , which satisfies:  
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expressions can be obtained: 
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B.2  Constraints on velocity level 
The derivatives of the vectors   of   the length of three 

wires in Eq. (2) corresponding to time, t, can be shown in the 
following equations: 
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The derivatives of the vector of wire length in Eq.(1) 
corresponding to time, t, can be shown in the following 
equations: 
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The derivatives of ip ( 3,2,1=i ) corresponding to 

time,  t, can be expressed as the following equations: 
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According   to   Eqs. (3), (4) and (5), we can obtain: 
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Also we can obtain the following equation: 
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B.3 Constraints on the acceleration level 
The derivatives of Eq.(7) corresponding to time, t, can be 

shown in the following equation: 
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C. Dynamic Equation 

C.1 Dynamic equation of the payload using Py ,
•

Ps  and 
••

Ps  

The dynamic equation of the payload can be expressed 
by the following 6 equations: 
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It can be expressed as λGWksM T
G ssPs +=+

••
 in matrix 

form， here m is the mass of the payload, Pθ is the inertia tensor 
of the payload corresponding to the moving coordinate system 
KP，FG is the gravity vector of the payload ， 13×∈ Rλ  , the 
Lagrange multiply, stands for the coordinates of the wire 
tensions， and the vector of  tension of three wires can be 
expressed by: i

T
ii λlF 2= ( 3,2,1=i ). 

C.2   Dynamic  equations  of  the actuators 
The dynamic equations of the actuators composed by the  

three trolleys and the capstans are as follows: 
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Here， q  is the vector of the actuators accelerations， qM  
is the mass matrix of the actuators, i.e., 
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)3,2,1( =iuli the torques driving the capstans. T
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in Eq.(9)， λ  can be obtained from  Eq. (11)，and 
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q  can be 
obtained from  Eq. (10)，thus the expression of the vector u  

can be obtained as follows: )()( T1 λGqMBu qqq −=
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IV. THE DIFFERENTIAL FLATNESS OF THE 6-DOF WIRE-DRIVEN 
PARALLEL CRANE ROBOT  

A. The Problem of   Generalized   Inverse Pose Kinematics 

A.1 On the position level 
The problem of generalized inverse position kinematics 

of the robots can be described as the determination of the 
vector )(tq  when the vector of the desired posture )(tPy  is 
given. There are only three equations for determination of the 
length of the three wires, so there needs three additional 
equations. 

The vector of the reference point P, )(tPs  and its velocity 

vector
.

)(tPs can be obtained from the vector of  )(tPy . And 
the payload is in the dynamic equilibrium along the trajectory, 

)(tPy , which can be expressed by: 
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The components of the wire tension, λ  can be calculated 

by the 3rd, 4th and 5th row of Eq. (10), i.e., 
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If we insert Eq. (15) into the 1st, 2nd and 6th of Eq. (13), we 
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3211 sss=q ，and the vector of wire length 
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A.2 On the velocity level 
The derivatives of Eq. (11) corresponding to time, t, can 

be shown in the following equation: 
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The vector 
•
q  can be obtained from Eq. (7), and if λ  and 

•
q  are inserted into Eq. (16),

•
λ  can be obtained. We can find 

that 
•
q and 

•
λ can be expressed by Py ，

•

Ps ，
••

Ps  and )3(
Ps . 

A.3 On the acceleration level 
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From Eq. (10), we can obtain  

));(()( 1 PP Psqsq

••••••
+

••
−−−= syqGqGsGGq            (17) 

The derivatives of Eq. (16) corresponding to time, t, can 
be expressed by Eq. (18), then if we insert Eq. (17) into Eq.(18) 

we can get the expression of 
••
λ . 

),,,,,,,(),( )4()3(
••••

••

••

=













qqsssssyb

λ

qqyA PPPPPPP      (18) 

Obviously, 
••

q  and 
••
λ  can be expressed by Py ,

•

Ps ,
••

Ps ，

)3(
Ps  and )4(

Ps . 
B. The solutions to dynamics equation 

Given the condition is satisfied, i.e., 

)()( T1 λGqMBu qqq −=
••

− , we can get the following equation: 

),,,,,( )4()3(
PPPPPP sssssyφu u

•••
=        (19) 

The static variables 16T R],[ ×
•

∈= qqx  can be expressed 
by: 

),,,,( )3(
PPPPPx ssssyφx

•••
=         (20) 

Given that the condition is satisfied, i.e., PPP
•

−
•

= yyHs )(1 , 
we can obtain: 

),,,( )3(
PPPPx yyyyφx

•••
=           (21) 

),,,,( )4()3(
PPPPP yyyyyφu u

•••
=         (22) 

So the robot system is characterized by differential 
flatness on the basis of kinematic and dynamic levels. 
Simulation about this performance will be performed (made) in 
the next section. 

V. SIMULATION 
As shown in Fig. (1), the dimension of the robot system 

is as follows: d=5 m，m=0.5 Kg，l=0.1 m， Pθ = 

























000

0
6

0

00
6

2

2

ml

ml

，mk=30 kg，J=0.06 Kg.m2，r= 0.1 m. 

Here we discuss the simulation of the solutions to the 
problems of inverse kinematics and dynamics when the 
payload moves along the z axis with pure translation. The 
problems can be described as follows: 

Known:
••
r =

T

1.000 





 ===

••••••

zyx rrr )( 2−ms ， 

•
r =

T

1.000 





 ===

•••
trrr zyx )( 1−ms ， 

r =
T

205.0600 







+−=== trrr zyx )(m ， 

 
=α ( )T

321 000 === ϕϕϕ ， 

=ω ( )T000 === zyx ωωω ， 

=ε
T

000 





 ===

•••

zyx ωωω , the curves of  the vectors 

q ，
•
q ，

••
q  and u  corresponding to t  are ready to be calculated 

when t  begins from 0 to 10 seconds. The curve of the vector, 

i
T
ii λlF 2= ( 3,2,1=i ), corresponding to t can be obtained as 

well. 
According to the theoretical results presented in Section 

Ⅳ , a simulation under the environment of Matlab was 
performed. The results for these vectors are presented in  Fig.2, 
Fig.3, Fig.4 , Fig.5,  and Fig.6 respectively. 

 
(a) s1, s2 and s3  versus rz 

 
(b) l1 versus rz 

 
(c) l2 versus rz 

 
(d) l3 versus rz 

Fig.2：q  versus rz 
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Fig.3：
•
q  versus rz 

 

Fig.4：
••

1q and 
••

2q  versus rz 

 
Fig.5：F  versus rz 

 
Fig.6： u  versus rz 

From the simulation results, we can find that the values of 
position, velocity, acceleration and the control forces (torques) 
of the 1st trolley and the 1st wire are a bit large. It may be noted 
that the higher the payload moves, the larger variations are 
which may generate swing motions. Consequently an 
anti-swing control is necessary in the future design of the 
position controller of the payload. Concerning the issue of its 
stiffness and dynamic stability, it will be investigated in the 
further research using ANSYS software. 

VI. CONCLUSIONS 
(1)  There are a lot of advantages for introducing the 

technology of wire-driven parallel robots into the automation 

of cranes, and different types of wire-driven parallel robots can 
satisfy different applications. 

(2) A new 6-DOF wire-driven parallel crane robot is 
proposed, in which two parallel rails are vertical to the 3rd one,  
so that the workspace of the payload can fulfill the total volume 
of the base of the robot. 

(3) Inverse kinematic and dynamic systems based on 
differential flatness of the robot have been analyzed. The 
simulation results have shown that the property is useful for 
trajectory generation, but the payload is easy to swing at high 
speed which should be considered in the future design of the 
position controller. 

(4) Currently a prototype is being built in order to validate 
the simulation results presented above. 
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