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Errors in curve and surface representation due to inaccuracies in the data are considered
and accounted for by introducing disk parametric curves and ball parametric surfaces.
Intersection test algorithms and interval extensions using blossoming are discussed for
each of the three cases of Bézier curves, tensor product surfaces, and triangular patches.
A stability analysis is also performed for each of the three cases. It is shown that under
certain restrictions disk Bézier curves and triangular ball Bézier patches are stable with
respect to perturbations of the control disks (balls); whereas tensor product ball Bézier
surfaces are in general not.
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1. Introduction

The curves and surfaces employed in classical geometric modeling represent the shapes of
objects. This representation is an abstraction where it is assumed that the curves have no
width and that the surfaces have zero thickness. This idealization does not carry over to
the real world. There are restrictions on how precisely a curve can be rendered, there are
restrictions on possible tool movements when a physical implementation is machined
and there are restrictions on material forming to mention a few of the sources of real
world problems in implementing abstract designs.

As an example consider the effects of drift and restriction of movement of a tool when
the tool is used to machine an object whose boundary is defined by a mathematical curve
or surface. As the tool operates, a small change in local position may result in a global
deviation from the intended object. As a result the topology of the object might change,
the object cannot be integrated used for its intended purpose and the object might not
have the intended mechanical properties. A more extensive discussion of problems with
machining accuracy is found in [18] and especially in the references therein.
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A second example is the problem of how to handle the modeling of an object by means
of curves and surfaces given that imprecise information about the object has been pro-
vided. If the curve is defined by control points, then how should these be adjusted to take
the imprecise information into account in the best possible manner and at the same time
to take into account the offset problem occurring in practical computations and opera-
tions?

In both of the above examples, curves of nonzero width, and surfaces having nonzero
thickness can be employed. They can also be used to fit double boundary lines and double
boundary faces. Further applications of such curves and surfaces can be found in [7, 13,
19, 20].

In this paper previous work by the authors on fitting of parametric curves [10], fitting
fat curves [9], and disk Bézier curves [8] is augmented by further results on disk curves,
tensor product ball surfaces, and triangular ball patches. For each case, bisection algo-
rithms suitable for intersection tests have been included (Sections 3, 6, 9). Complexity
analyses and implementation details are not included for the algorithms. Interval exten-
sions are, however, defined (Sections 4, 7, 10) as stability analyses are (Sections 5, 8, 11).

2. Disk and ball arithmetics

Interval analysis is a tool for inclusion and estimation of errors and uncertainties in nu-
merical calculations [1]. In one dimension, intervals are closed bounded subsets of the
real line R and the set of such intervals is denoted by I(R). An arithmetic can be defined
on I(R) and certain algebraic properties are observed (see, e.g., [16]) and an analysis can
be developed; see Moore [11]. The extension of one-dimensional intervals to higher di-
mensions in the space Im(R) is usually done componentwise in order to take advantage
of the properties in one dimension as far as possible. An m-dimensional interval in Im(R)
(also called a box) is therefore described by 2m real parameters (the componentwise lower
and upper bounds).

An alternate way of extending intervals to higher dimensions is given by disks in R2

and balls in Rm (m > 2). Denoting the set of nonnegative reals by R+, a ball(disk) in Rm

is defined to be the set

B := {x | |x− r| ≤ ρ, r ∈Rm, ρ∈R+} (2.1)

described by m+ 1 real parameters. The set of balls(disks) in Rm is denoted by Dm(R). If
B ∈Dm(R), then we also write

B = 〈r,ρ〉, (2.2)

where r = midB is the center of the ball(disk), and ρ = radB, the radius of the ball
(disk).

If B1 = 〈r1,ρ1〉, B2 = 〈r2,ρ2〉 ∈Dm(R) r1,r2 ∈Rm, ρ1,ρ2 ∈R are two disks (balls), then

B1 +B2 =
〈
r1 + r2, ρ1 + ρ2

〉
,

B1 ·B2 =
〈
r1r2,

∥
∥r1

∥
∥ρ2 +

∥
∥r2

∥
∥ρ1 + ρ1ρ2

〉
.

(2.3)
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Figure 3.1. A fat curve.

If additionally T = [t− δ, t+ δ]⊆ I(R) is a one-dimensional disk, then

TB1 =
〈
tr1, |t|ρ1 +

∥
∥r1

∥
∥δ + ρ1δ

〉
. (2.4)

Real ball(disk) arithmetic was discussed in [6] under the name “Hypernormballe.” Fur-
ther details of this arithmetic are found in [8].

3. The intersection of disk curves

In many applications it is important to know if two curves intersect or not. As an exam-
ple consider a piece of cloth which is intended for a garment. The garment outlines are
defined by curves on an abstraction of the piece of cloth. If the outlines do not intersect,
the cutting process is deemed feasible and when the curves are placed on the cloth it is
assumed that the garment pieces can be cut out of the cloth. In reality, there are several
sources of error such as tool movement, workpiece movement, and numerical evalua-
tion errors that may invalidate the cutting process; even though the abstract design was
feasible. In order to guard against such problems, the intersection test for the curves is
normally made with a tolerance.

Two curves p1(t) and p2(t) are therefore considered, and it is assumed that both curves
are defined over t ∈ [0,1] without loss of generality. In order to guarantee that the curves
do not intersect, we require that the minimum distance between the curves satisfies

min
∀s,t∈[0,1]

∥
∥p1(s)− p2(t)

∥
∥≥ 2δ∗, (3.1)

where δ∗ is a tolerance parameter.
This can then be rephrased in terms of disk parametric curves. A disk parametric curve

consists of a parametric axis curve r(t) and an associated variable radius ρ(t), and it is
written as B(t)= 〈r(t),ρ(t)〉. As t varies, the disk 〈r(t),ρ(t)〉 sweeps out a domain whose
inner and outer envelopes are r(t) and r(t) as shown in Figure 3.1. The interval extension
of B(t) to a parametric interval T is written as B(T) where it is assumed that the extension
is computed as, for example, a centered form (see [11, 17]).

The curve intersection problem considered above can then be stated in terms of para-
metric disk curves B1(t) = 〈p1(t),δ∗〉, B2(t) = 〈p2(t),δ∗〉, t ∈ [0,1], and requiring that
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these disk curves do not intersect. If the disk curves do not intersect, then we are guaran-
teed that the axis curves do not intersect up to the assumption on the possible errors of
representation.

We cast the intersection problem in a slightly more general setting where the two disk
curves are allowed to have width as a function of the parameter t. Let therefore Bi(t) =
〈ri(t),ρi(t)〉, i= 1,2, t ∈ [0,1], where ri(t)∈ Bi(t) is the axis curve and ρi(t) is the variable
perturbation of the axis curve due to an error, i= 1,2. We will test to see whether or not

B1(s)∩B2(t)=∅, s, t ∈ [0,1], (3.2)

holds. If the property does not hold, then we cannot guarantee that the nonintersection
of the axis curves will remain valid when the error perturbations are taken into account
and hence the topology of the curves might be changed by the perturbations.

From the above, we can see that our problem can be viewed as an intersection test
between two disk curves. This is shown in Figure 3.2. In the following, we will use circular
arithmetic to construct a test algorithm for the intersection of disk curves.

Note that

I = [0,1],

B1(s)= 〈r1(s),ρ1(s)
〉

, s∈ I ,

S= [s,s]⊆ I , w(S)= s− s,

B2(t)= 〈r2(t),ρ2(t)
〉

, t ∈ I ,

T = [t, t]⊆ I , w(T)= t− t.

(3.3)

Furthermore for any subintervals S ⊆ �, T ⊆�, it is assumed that a computational
procedure exists for finding inclusions for

B1(S)= {B1(s),s∈ S
}

, B2(T)= {B2(t), t ∈ T
}
. (3.4)

The proposed algorithm is based on an exhaustion method, that is, bisection together
with interval extension evaluations are used to progressively delete subintervals of [0,1]
which correspond to disk segments guaranteed not to intersect. The algorithm is included
here for completeness even though the principle of the algorithm is well known.

Because of finite machine precision, we have to prescribe an admissible error bound
EPS which is used to terminate the algorithm when the width of subintervals is less than
EPS.

We use lists � and � to store the subintervals of [0,1] for B1(s) and B2(t) that must be
processed further.

After each bisection, we put the uncertain subintervals that must be tested further at
the end of the list. This means that the widest subinterval remaining is always the first on
each list.
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Figure 3.2. Intersection computation.

For convenience, we let

�1(�)= {B1(S),∀S∈�
}

, �2(�)= {B2(T),∀T ∈�
}

(3.5)

and for any B1 ∈�1(�), B2 ∈�2(�), we define

B1∩�2(�)= {B1∩B,∀B ∈�2(�)
}

,

�1(�)∩B2 =
{
B∩B2,∀B ∈�1(�)

}
.

(3.6)

Algorithm 3.1. (1) Initialize lists �= {[0,1]}, �= {[0,1]}.
(2) Set S= first item on �, T = first item on �.
(3) If w(S) < EPS then go to (7).
(4) Delete S from �.
(5) Bisect S so that S= S1∪ S2.
(6) For i= 1,2 do

(i) Calculate B1(Si).
(ii) If B1(Si)∩�2(�) 
= ∅ then enter Si onto the list � as the last item.

(7) If w(T) < EPS then go to (11).
(8) Delete T from �.
(9) Bisect T so that T = T1∪T2.

(10) For j = 1,2 do
(i) Calculate B2(Tj).

(ii) If �1(�)∩B2(Tj) 
= ∅ then enter Tj onto the list � as the last item.
(11) If w(S) or w(T) > EPS then go to (2).
(12) End.

If the algorithm terminates with either � or � being empty, then the two disk curves
B1(s), B2(t) do not intersect. Conversely if the algorithm terminates with both � and �
being nonempty, then B1(s)∩B2(t) 
= ∅ holds to the precision EPS, that is, the two disk
curves B1(s), B2(t) intersect within that precision. In this case it might be necessary to
rerun the algorithm with smaller EPS in order to possibly get a more precise result.
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4. The interval extension of a disk Bézier curve

In this section the effect of errors in curve representation is considered for a Bézier curve.
Let {bi}, i = 1,2, . . . ,n be a series of control points. A planar Bézier curve defined on

these control points can be written as

b(t)=
∑

i+ j=n

(
n

i j

)

ti(1− t) jbi, t ∈ [0,1], (4.1)

where
(

n
i j

)

= n!
i! j!

; (4.2)

see, for example, [3].
There are two sources of errors in the computation of a Bézier curve. These are per-

turbations of the control points bi and perturbations of the parameter t.
In order to consider the perturbations of control points bi, we use control disks Bi =

〈bi,ρi〉 instead of the original bi’s obtaining a disk Bézier curve:

B(t)=
∑

i+ j=n

(
n

i j

)

ti(1− t) jBi

=
〈

∑

i+ j=n

(
n

i j

)

ti(1− t) jbi,
∑

i+ j=n

(
n

i j

)

ti(1− t) jρi

〉

=
〈

b(t),
∑

i+ j=n

(
n

i j

)

ti(1− t) jρi

〉

, t ∈ [0,1].

(4.3)

This means that a disk Bézier curve can be computed from two scalar Bézier curves form-
ing the center and radius of the disk curve, respectively.

In order to consider perturbations of the parameter t, we have to consider the interval
extension of a disk curve, and we use a one-dimensional disk parameter T = [t− δ, t+ δ]
instead of the original t, where δ > 0 is an error radius.

The polar form of the curve [2] is an efficient approach for computing the value of a
Bézier curve. This can be extended to the computation of a disk curve via the polar form
of the disk curve. If F is the polar form of b(t) and if t is written as t = (1− t) · 0 + t · 1,
we have

F(t, . . . , t)= (1− t) ·F(t, . . . , t,0) + t ·F(t, . . . , t,1)

=
∑

i+ j=n

(
n

i j

)

ti(1− t) jF

⎛

⎜
⎜
⎝0, . . . ,0
︸ ︷︷ ︸

j

,1, . . . ,1
︸ ︷︷ ︸

i

⎞

⎟
⎟
⎠= b(t),

(4.4)

where bi = F(0, . . . ,0
︸ ︷︷ ︸

j

,1, . . . ,1
︸ ︷︷ ︸

i

).
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Consider now the extension F(T , . . . ,T) of the polar form F to an interval T ⊆ [0,1].
This is a type of nested form which is an improvement over the extension of the Bézier
form which is defined by

B(T)=
∑

i+ j=n

(
n

i j

)

Ti(1−T) jBi. (4.5)

Due to the subdistributivity of interval or disk arithmetic, we have

F(T , . . . ,T)⊆
∑

i+ j=n

(
n

i j

)

Ti(1−T) jBi = B(T) (4.6)

and it is also of lower computational complexity when evaluated in a nested fashion.
The de Casteljau recursive process described in, for example, [3, page 45] can be used

to compute F(T , . . . ,T):

Input B0
i = Bi, i= 0,1, . . . ,n,T ,

For r = 1, . . . ,n,

For i= 0, . . . ,n− r,

Br
i = (1−T)Br−1

i +TBr−1
i+1 ,

Output Bn
0 ,

Return.

(4.7)

In the above process, T is an interval and Br
i is a disk; hence the result Bn

0 is a disk, that
is,

Bn
0 = F(T , . . . ,T). (4.8)

The polar form extension F(T , . . . ,T) is an inclusion for the disk Bézier curve which in
turn includes the Bézier curve perturbed with errors. Letting

T̃i j =
(

n
i j

)

Ti(1−T) j , T ⊆ [0,1], (4.9)

we have

B(T)=
∑

i+ j=n
T̃i j ·

〈
bi,ρi

〉

=
∑

i+ j=n

〈
mid T̃i j · bi,

∣
∣mid T̃i j

∣
∣ρi +

∥
∥bi

∥
∥ · rad T̃i j + ρi · rad T̃i j

〉

=
〈

∑

i+ j=n
mid T̃i j · bi,

∑

i+ j=n

∣
∣mid T̃i j

∣
∣ρi +

∑

i+ j=n

∥
∥bi

∥
∥ · rad T̃i j +

∑

i+ j=n
ρi · rad T̃i j

〉

.

(4.10)
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We can also view T as a disk so that it can be expressed as 〈t,δ〉; thus

T̃i j =
(

n
i j

)

Ti(1−T) j

=
(

n
i j

)

· 〈ti, (t+ δ)i− ti
〉 · 〈(1− t) j , (1− t+ δ) j − (1− t) j

〉

=
(

n
i j

)

· 〈ti(1− t) j , ti
[
(1− t+ δ) j − (1− t) j

]

+ (1− t) j
[
(t+ δ)i− ti

]
+
[
(t+ δ)i− ti

][
(1− t+ δ) j − (1− t) j

]〉

=
〈(

n
i j

)

ti(1− t) j ,

(
n

i j

)
[
(t+ δ)i(1− t+ δ) j − ti(1− t) j

]
〉

(4.11)

using (2.4) and where 0≤ t+ δ, 1− t+ δ ≤ 1. Therefore

F(T , . . . ,T)⊆ B(T)=
〈

∑

i+ j=n

(
n

i j

)

ti(1− t) jbi,

∑

i+ j=n

(
n

i j

)
[
(t+ δ)i(1− t+ δ) j − ti(1− t) j

]

×∥∥bi
∥
∥+

∑

i+ j=n

(
n

i j

)

(t+ δ)i(1− t+ δ) jρi

〉

.

(4.12)

When the perturbations ρi is the control points and the perturbation δ of the evalua-
tion point tends to zero, we would expect that the value of the Bézier curve be obtained.
This is indeed the case as can be seen from (4.12) and we have the following theorem for
the extension of the polar form.

Theorem 4.1.

rad
(
F(T , . . . ,T)− b(t)

)−→ 0
(
as ρ,w(T)−→ 0

)
, (4.13)

where ρ =max0≤i≤n{ρi}, t =midT .

This means that F(T , . . . ,T) converges to b(t).

5. Disk analysis for error generated from blossoming

Blossoming is a technique popularized in [2, 14, 15] for studying polynomials in com-
puter-aided geometric design by replacing them by simple multilinear functions.

A blossoming algorithm is now used to estimate the error propagation in computation
of a Bézier curve in order to analyze its computational stability. The stability of polynomi-
als expressed in the Bernstein form, which forms the basis for Bézier curves, was shown
to be computationally stable in [4, 5].
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A general disk curve can be generated by means of the following formula:

Br
i = αr−1

i Br−1
i +βr−1

i Br−1
i+1 , r = 1, . . . ,n, i= 0, . . . ,n− r, (5.1)

where B0
i = Bi = 〈bi,ρi〉, i = 0, . . . ,n, αr−1

i ,βr−1
i ∈ [0,1]. The result is the disk blossoming

Bn
0 .

Let

Λr
i =

〈
αri ,ε

r
i

〉
, Δr

i =
〈
βri ,δ

r
i

〉
, Br

i =
〈
bri ,ρ

r
i

〉
(5.2)

be the disk perturbations of αri , β
r
i . We get

〈
bri ,ρ

r
i

〉=Λr−1
i · 〈br−1

i ,ρr−1
i

〉
+Δr−1

i · 〈br−1
i+1 ,ρr−1

i+1

〉

= 〈αr−1
i br−1

i ,αr−1
i ρr−1

i +
∥
∥br−1

i

∥
∥εr−1

i + εr−1
i ρr−1

i

〉

+
〈
βr−1
i br−1

i+1 ,βr−1
i ρr−1

i+1 +
∥
∥br−1

i+1

∥
∥δr−1

i + δr−1
i ρr−1

i+1

〉
.

(5.3)

Considering only the error radii, we have

ρri = αr−1
i ρr−1

i +βr−1
i ρr−1

i+1 +
(∥∥br−1

i

∥
∥+ ρr−1

i

)
εr−1
i +

(∥∥br−1
i+1

∥
∥+ ρr−1

i+1

)
δr−1
i . (5.4)

In order to estimate the error bound further, we assume that

(
αr−1
i +βr−1

i )≤ 1,
∥
∥br−1

i

∥
∥+

∥
∥br−1

i+1

∥
∥≤ K ,

ρr = max
0≤i≤n

{
ρri
}

, τ = max
1≤r≤n
0≤i≤n

{
εri ,δ

r
i

}
. (5.5)

We then have

ρr ≤ (αr−1
i +βr−1

i

)
ρr−1 + τ

(
ρr−1
i + ρr−1

i+1

)
+ τ

(∥∥br−1
i

∥
∥+

∥
∥br−1

i+1

∥
∥)

= (1 + 2τ)ρr−1 +Kτ

≤ (1 + 2τ)2ρr−2 + τ
[
K +K(1 + 2τ)

]

≤ ··· ≤ (1 + 2τ)rρ0 +
1
2
K
[
(1 + 2τ)r − 1

]

≤ e2rtρ0 +
1
2
K
(
e2rt − 1

)
.

(5.6)

This shows that the perturbation error vanishes when ρ0 and τ → 0.
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B1(t) B2(t)

B3(t)

C1 continuous at join of B1(t) and B2(t)

Figure 5.1. The error propagation.

We now consider error propagation for a disk Bézier spline. Let the disk Bézier spline

B̃(t)= {Bk(t), t ∈ [0,1], k = 1, . . . ,m
}

(5.7)

be given, where

Bk(t)⊆
〈

∑

i+ j=n

(
n

i j

)

ti(1− t) jb(k)
i ,

∑

i+ j=n

(
n

i j

)

ti(1− t) jρ(k)
i

〉

(5.8)

and where the axis lines of Bk−1(t), Bk(t) (k = 2, . . . ,m) are C1 continuous; see Figure 5.1.
We now consider how the error perturbation of B1(t) will affect the other Bk(t) (k 
= 1).

When the error of B1(t) is evaluated at the join with B2(t), the value ρ(2)
0 will change from

the original value to ρ(2)
0 + Δρ0 which gives rise to an additional error radius (1− t +

δ)nΔρ0 for B2(t). It can be seen that this extra error increases further to (1 + δ)nΔρ0 at
the initial point of B2(t) (t = 0) due to floating point computational errors. This extra
error Δ0 is bounded by δnΔρ0 (0 < δ < 1) at the terminal of B2(t) (t = 1). This means that
although the perturbation increases at the initial point, it is damped during the compu-
tational process. In a similar manner this error is transmitted to B3(t) (t = 1) and so on.
At the terminal segment Bm(t), the extra error quantity Δρ0 generated from B1(t) results
in δmnΔρ0.

As we can see from above, for the disk Bézier curves, the extra perturbation generated
from a segment of a curve will be propagated to each of the following segments of the
curve along with the control points. This perturbation is attenuated as long as the com-
putation is precise enough, that is, if 0 < δ < 1. The construction of a disk Bézier curve is
therefore stable.

6. The intersection ball surfaces

The results in Sections 3–5 are now first generalized to ball surfaces and then later to
triangular ball patches.
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The topological relation between two given surfaces may be changed by a perturbation.
In practise we therefore often require that the minimum distance between two surfaces
p1(s, t), p2(s, t), s, t ∈ [0,1], satisfies

min
∀s,t,u,v∈[0,1]

∥
∥p1(s, t)− p2(u,v)

∥
∥≥ 2δ∗ (6.1)

and hence we need to consider the intersection of two ball surfaces

B1(s, t), B2(u,v), s, t,u,v ∈ [0,1], (6.2)

with thickness δ∗.
In this section we consider a more general version of the problem. Two ball surfaces

Bi(s, t)= 〈ri(s, t),ρi(s, t)〉, i= 1,2, s, t ∈ [0,1], where each ρi(s, t)∈ Bi(s, t) has to be under-
stood as the error perturbation applied to the surfaces ri(s, t). We want to check if

B1(s, t)∩B2(u,v)=∅, s, t,u,v ∈ [0,1], (6.3)

holds or not. If the relationship does not hold, then r1(s, t) and r2(s, t) may intersect.
From above we can see that our problem is equivalent to the problem of testing for in-

tersection of two ball surfaces. In the following we will use the ball arithmetic to construct
a test algorithm for this intersection computation.

Note that

I2 = [0,1]× [0,1],

B1(s, t)= 〈r1(s, t),ρ1(s, t)
〉

, s, t ∈ I ,

B2(u,v)= 〈r2(u,v),ρ2(u,v)
〉

, u,v ∈ I ,

X � (S,T)= ([s,s],[t, t]), S,T ⊆ I ,

w(X)=max
{
w(S),w(T)

}
,

(6.4)

where the notationX � (S,T) is used to define the variable on the left side of the equation.
Let Bi(X)= Bi(S,T), S,T ⊆ I , i= 1,2, be interval extensions of the ball surfaces Bi(s, t),

s, t ∈ I , i = 1,2. The proposed algorithm, along the lines of Algorithm 3.1, is based on
the exhaustion method which consists of bisection together with interval extension eval-
uations which are used to progressively delete rectangular subregions of I2 which corre-
spond to tensor product ball surface pieces guaranteed not to intersect.

Because of the finite machine precision, we also have to prescribe an error bound EPS
used to terminate the process.
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t t
s

s

X1 X2

Figure 6.1. Intersection computation.

Given a rectangular subregion X = (S,T) of I2 as in Figure 6.1, the bisection method
consists of subdividing X into two equal rectangles X1∪X2 = X at the midpoint max{s−
s, t− t} of the longer side of the rectangle.

We use lists � and � to store subregions of I2 that must be processed further. After
each bisection, we put the uncertain subregions that must be tested further at the end of
their list. This means that the largest subregion remaining is always first on a list.

For convenience, we let

�1(�)= {B1(X),∀X ∈�
}

,

�2(�)= {B2(Y),∀Y ∈�
} (6.5)

and for any B1 ∈�1(�), B2 ∈�2(�), define

B1∩�2(�)= {B1∩B,∀B ∈�2(�)
}

,

�1(�)∩B2 =
{
B∩B2,∀B ∈�1(�)

}
.

(6.6)

The test algorithm is as follows.

Algorithm 6.1. (1) Initialize lists �= {I2}, �= {I2}.
(2) Set X = first item of �, Y = first item of �.
(3) If w(X) < EPS then go to (7).
(4) Delete X from �.
(5) Bisect X so that X = X1∪X2.
(6) For i= 1,2 do

(i) Calculate B1(Xi).
(ii) If B1(Xi)∩�2(�) 
= ∅ then enter Xi onto the list � as the last item.

(7) If w(Y) < EPS then go to (11).
(8) Delete Y from �.
(9) Bisect Y so that Y = Y1∪Y2.

(10) For j = 1,2 do
(i) Calculate B2(Yj).

(ii) If �1(�)∩B2(Yj) 
= ∅ then enter Yj onto the list � as the last item.
(11) If w(X) or w(Y) > EPS then go to (2).
(12) End.
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If the algorithm terminates with � or � empty, then the two ball surfaces B1(s, t),
B2(u,v) do not intersect (to the precision EPS). Conversely, if both � and � are not
empty, then B1(s, t)∩B2(u,v) 
= ∅ holds to the precision EPS, that is, the two ball surfaces
intersect. In this case it is necessary to return to the algorithm with a smaller EPS if a more
precise result is required.

7. The interval extension of a tensor product ball Bézier surface

In this section we consider the particular case of tensor product ball surfaces.
Let {bi j}, i, j = 0,1, . . . ,n be a series of 3D-control points. A tensor product Bézier sur-

face defined on these control points is expressed as

b(s, t)=
∑

i+p=n

∑

j+q=n

(
n

i p

)(
n

j q

)

si(1− s)pt j(1− t)qbi j , s, t ∈ [0,1]. (7.1)

As in the case of Bézier curves, we consider errors both due to perturbations of the
control points bi j and due to the perturbations of the parameters s and t.

In order to reflect the perturbations of the control points bi j , we use a control ball
Bij = 〈bi j ,ρi j〉 instead of the original bi j . This results in a ball Bézier surface:

B(s, t)=
∑

i+p=n

∑

j+q=n

(
n

i p

)(
n

j q

)

si(1− s)pt j(1− t)qBi j

=
〈

∑

i+p=n

∑

j+q=n

(
n

i p

)(
n

j q

)

si(1− s)pt j(1− t)qbi j ,

∑

i+p=n

∑

j+q=n

(
n

i p

)(
n

j q

)

si(1− s)pt j(1− t)qρi j

〉

=
〈

b(s, t),
∑

i+p=n

∑

j+q=n

(
n

i p

)(
n

j q

)

si(1− s)pt j(1− t)qρi j

〉

, (s, t)∈ I2.

(7.2)

This means that a ball Bézier surface can be computed from two scalar Bézier surfaces
forming the center and radius of the ball surface, respectively.

In order to include the perturbation of the parameters s, t, we have to consider the
interval extension of a ball surface. We use S= [s− ε,s+ ε] and T = [t− δ, t + δ] instead
of the original s, t, where ε,δ > 0 are the error radii.

Let F be the polar form of b(s, t), and let s be written as s = (1− s) · 0 + s · 1 and t as
t = (1− t) · 0 + t · 1, then we obtain

F
(
s, . . . ,s; t, . . . , t

)= (1− s) ·F(s, . . . ,s,0; t, . . . , t) + s ·F(s, . . . ,s,1; t, . . . , t)

= (1− s)(1− t) ·F(s, . . . ,s,0; t, . . . , t,0) + (1− s)t ·F(s, . . . ,s,0; t, . . . , t,1)

+ s(1− t) ·F(s, . . . ,s,1; t, . . . , t,0) + st ·F(s, . . . ,s,1; t, . . . , t,1)
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=
∑

i+p=n

∑

j+q=n

(
n

i p

)(
n

j q

)

si(1−s)pt j(1−t)qF

×

⎛

⎜
⎜
⎝0, . . . ,0
︸ ︷︷ ︸

p

,1, . . . ,1
︸ ︷︷ ︸

i

;0, . . . ,0
︸ ︷︷ ︸

q

,1, . . . ,1
︸ ︷︷ ︸

j

⎞

⎟
⎟
⎠ , (7.3)

where bi j = F(0, . . . ,0
︸ ︷︷ ︸

p

,1, . . . ,1
︸ ︷︷ ︸

i

;0, . . . ,0
︸ ︷︷ ︸

q

,1, . . . ,1
︸ ︷︷ ︸

j

).

Consider now the interval extension F(S, . . . ,S;T , . . . ,T) of the polar form F over (S,T),
S,T ⊆ I . This is a type of nested form which is an improvement of the Bézier form which
is defined as

B(S,T)=
∑

i+p=n

∑

j+q=n

(
n

i p

)(
n

j q

)

Si(1− S)pT j(1−T)qBi j . (7.4)

Due to the subdistributivity of interval and ball arithmetic, we have

F(S, . . . ,S;T , . . . ,T)⊆ B(S,T), S,T ⊆ [0,1]. (7.5)

In practical computations, we use the following de Casteljau recursive process (see [3])
to obtain F(S, . . . ,S;T , . . . ,T):

Input B0,0
i, j = Bij , i, j = 0, 1, . . . ,n, S,T ,

For r = 1, . . . ,n,

For = i, j = 0, . . . ,n− r,

Br,r
i, j = (1− SS)

⎛

⎝
Br−1,r−1
i, j Br−1,r−1

i, j+1

Br−1,r−1
i+1, j Br−1,r−1

i+1, j+1

⎞

⎠

(
1−T
T

)

.

Output Bn,n
0,0 .

Return.

(7.6)

In the above process, S,T are symmetric intervals and Br,r
i, j is a ball; hence the result

Bn,n
0,0 is a ball, that is, Bn,n

0,0 = F(S, . . . ,S;T , . . . ,T). Let

S̃ip =
(

n
i p

)

Si(1− S)p, S⊆ [0,1],

T̃ jq =
(

n
j q

)

T j(1−T)q, S⊆ [0,1].

(7.7)
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We have

B(S,T)=
∑

i+p=n

∑

j+q=n
S̃ipT̃ jq ·

〈
bi j ,ρi j

〉

=
∑

i+p=n

∑

j+q=n

〈
mid

(
S̃ipT̃ jq

) · bi j ,
∣
∣mid

(
S̃ipT̃ jq

)∣∣ρi j

+
∥
∥bi j

∥
∥ · rad

(
S̃ipT̃ jq

)
+ ρi j · rad

(
S̃ipT̃ jq

)〉

=
〈

∑

i+p=n

∑

j+q=n
mid

(
S̃ipT̃ jq

) · bi j ,
∑

i+p=n

∑

j+q=n

∣
∣mid

(
S̃ipT̃ jq

)∣∣ρi j

+
∑

i+p=n

∑

j+q=n

∥
∥bi j

∥
∥rad

(
S̃ipT̃ jq

)
+
∑

i+p=n

∑

j+q=n
ρi j · rad

(
S̃ipT̃ jq

)
〉

.

(7.8)

Since S,T are disks, they can be written as 〈s,ε〉, 〈t,δ〉, and we have

S̃ipT̃ jq =
(

n
i p

)(
n

j q

)

Si(1− S)pT j(1−T)q

=
(

n
i p

)(
n

j q

)

· 〈si, (s+ ε)i− si
〉 · 〈(1− s)p, (1− s+ ε)p− (1− s)p

〉

· 〈t j , (t+ δ) j − t j
〉 · 〈(1− t)q, (1− t+ δ)q− (1− t)q

〉

=
〈(

n
i p

)(
n

j q

)

·si(1−s)pt j(1−t)q,

(
n

i p

)(
n

j q

)

si(1−s)p

× [(t+δ) j(1−t+ δ)q−t j(1−t)q]

+

(
n

i p

)(
n

j q

)
[
(s+ε)i(1−s+ ε)p−si(1−s)p]t j(1−t)q+

(
n

i p

)(
n

j q

)

× [(s+ε)i(1−s+ ε)p−si(1−s)p] · [(t+δ) j(1−t+ δ)q−t j(1−t)q]
〉

=
〈(

n
i p

)(
n

j q

)

si(1− s)pt j(1− t)q,

(
n

i p

)(
n

j q

)

× [(s+ ε)i(1− s+ ε)p(t+ δ) j(1− t+ δ)q− si(1− s)pt j(1− t)q
]
〉

, (7.9)

where 0≤ s+ ε, 1− s+ ε, t+ δ, 1− t+ δ ≤ 1. Therefore
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F(S, . . . ,S;T , . . . ,T)⊆ B(S,T)

=
〈

∑

i+p=n

∑

j+q=n

(
n

i p

)(
n

j q

)

si(1− s)pt j(1− t)qbi j ,

∑

i+p=n

∑

j+q=n

(
n

i p

)(
n

j q

)
[
(s+ ε)i(1− s+ ε)p(t+ δ) j

× (1− t+ δ)q− si(1− s)pt j(1− t)q
] ·∥∥bi j

∥
∥

+
∑

i+p=n

∑

j+q=n

(
n

i p

)(
n

j q

)

× (s+ ε)i(1− s+ ε)p(t+ δ) j(1− t+ δ)q · ρi j
〉

.

(7.10)

When the perturbations of the control points and the error radii ε, δ of the evaluation
point tend to zero, we would expect that the value of the tensor product Bézier surface to
be obtained. This is indeed the case as can be seen from (7.10), and we have the following
theorem for the extension of the polar form.

For the extension to polar form the following theorem follows.

Theorem 7.1.

rad
(
F(S, . . . ,S;T , . . . ,T)− b(s, t)

)−→ 0 (as ρ,w(S,T)−→ 0), (7.11)

where ρ =maxi, j{ρi j}, (s, t)=mid(S,T).

8. Ball analysis of error generated from blossoming for tensor product surfaces

A general ball surface generated by means of the following recursive formula:

Br,r
i, j =

(
ar−1
i βr−1

i

)
⎛

⎝
Br−1,r−1
i, j Br−1,r−1

i, j+1

Br−1,r−1
i+1, j Br−1,r−1

i+1, j+1

⎞

⎠

(
γr−1
j

ωr−1
j

)

, r = 1, . . . ,n i, j = 0, . . . ,n− r,

(8.1)

where

B0,0
i, j = Bij =

〈
bi j ,ρi j

〉
, i, j = 0, . . . ,n, αr−1

i ,βr−1
i ,γr−1

j ,ωr−1
j ∈ [0,1] (8.2)

is considered, where the ball blossoming is Bn,n
0,0 .

The blossoming algorithm is used to account for the error propagation in the compu-
tation of a ball Bézier surface. To analyze the errors in the algorithm the following balls
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are defined:

Λr
i =

〈
αri ,ε

r
i

〉
, Δr

i =
〈
βri ,δ

r
i

〉
, Γrj =

〈
γrj ,η

r
j

〉
,

Ωr
j =

〈
ωr

j ,σ
r
j

〉
, Br,r

i, j =
〈
br,r
i, j ,ρr,r

i, j

〉
.

(8.3)

When the above perturbations are entered into (8.1), we get

〈
br,r
i, j ,ρr,r

i, j

〉=
(
Λr−1
i Δr−1

i

)
⎛

⎝

〈
br−1,r−1
i, j ,ρr−1,r−1

i, j

〉 〈
br−1,r−1
i, j+1 ,ρr−1,r−1

i, j+1

〉

〈
br−1,r−1
i+1, j ,ρr−1,r−1

i+1, j

〉 〈
br−1,r−1
i+1, j+1 ,ρr−1,r−1

i+1, j+1

〉

⎞

⎠

⎛

⎝
Γr−1
j

Ωr−1
j

⎞

⎠

=Λr−1
i Γr−1

j · 〈br−1,r−1
i, j ,ρr−1,r−1

i, j

〉
+Δr−1

i Γr−1
j · 〈br−1,r−1

i+1, j ,ρr−1,r−1
i+1, j

〉

+Λr−1
i Ωr−1

j · 〈br−1,r−1
i, j+1 ,ρr−1,r−1

i, j+1

〉
+Δr−1

i Ωr−1
j · 〈br−1,r−1

i+1, j+1 ,ρr−1,r−1
i+1, j+1

〉

= 〈αr−1
i γr−1

j br−1,r−1
i, j ,αr−1

i γr−1
j ρr−1,r−1

i, j

+
(
αr−1
i ηr−1

j + γr−1
j εr−1

i +ηr−1
j εr−1

i

)(∥∥br−1,r−1
i, j

∥
∥+ ρr−1,r−1

i, j

)〉

+
〈
βr−1
i γr−1

j br−1,r−1
i+1, j ,βr−1

i γr−1
j ρr−1,r−1

i+1, j

+
(
βr−1
i ηr−1

j + γr−1
j δr−1

i +ηr−1
j δr−1

i

)(∥∥br−1,r−1
i+1, j

∥
∥+ ρr−1,r−1

i+1, j

)〉

+
〈
αr−1
i ωr−1

j br−1,r−1
i, j+1 ,αr−1

i ωr−1
j ρr−1,r−1

i, j+1

+
(
αr−1
i σr−1

j +ωr−1
j εr−1

i + σr−1
j εr−1

i

)(∥∥br−1,r−1
i, j+1

∥
∥+ ρr−1,r−1

i, j+1

)〉

+
〈
βr−1
i ωr−1

j br−1,r−1
i+1, j+1 ,βr−1

i ωr−1
j ρr−1,r−1

i+1, j+1

+
(
βr−1
i σr−1

j +ωr−1
j δr−1

i + σr−1
j δr−1

i

)(∥∥br−1,r−1
i+1, j+1

∥
∥+ ρr−1,r−1

i+1, j+1

)〉
.

(8.4)

If we only consider the error radius, we have

ρr,r
i, j = αr−1

i γr−1
j ρr−1,r−1

i, j +βr−1
i γr−1

j ρr−1,r−1
i+1, j +αr−1

i ωr−1
j ρr−1,r−1

i, j+1 +βr−1
i ωr−1

j ρr−1,r−1
i+1, j+1

+
(∥∥br−1,r−1

i, j

∥
∥+ ρr−1,r−1

i, j

)(
αr−1
i ηr−1

j + γr−1
j εr−1

i +ηr−1
j εr−1

i

)

+
(‖br−1,r−1

i+1, j

∥
∥+ ρr−1,r−1

i+1, j

)(
βr−1
i ηr−1

j + γr−1
j δr−1

i +ηr−1
j δr−1

i

)

+
(‖br−1,r−1

i, j+1

∥
∥+ ρr−1,r−1

i, j+1

)(
αr−1
i σr−1

j +ωr−1
j εr−1

i + σr−1
j εr−1

i

)

+
(‖br−1,r−1

i+1, j+1

∥
∥+ ρr−1,r−1

i+1, j+1

)(
βr−1
i σr−1

j +ωr−1
j δr−1

i + σr−1
j δr−1

i

)
.

(8.5)

In order to further estimate the error bound, the quantities in the error radius have to be
bounded as follows:

(
αr−1
i +βr−1

i

)≤ 1,
(
γr−1
j +ωr−1

j

)≤ 1,
∥
∥br−1,r−1

i, j

∥
∥+

∥
∥br−1,r−1

i+1, j

∥
∥+

∥
∥br−1,r−1

i, j+1

∥
∥+

∥
∥br−1,r−1

i+1, j+1

∥
∥≤ K ,

ρr =max
i, j

{
ρr,r
i, j

}
, τ =max

i, j,r

{
εri ,δ

r
i ,ηrj ,σ

r
j

}
.

(8.6)
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t

s

B11(s, t)

B12(s, t)

b(1,2)
0,n

B22(s, t)

b(1,2)
n,n

B21(s, t)

Figure 8.1. Perturbation for tensor product surface.

The error radius can then be estimated as

ρr ≤ (αr−1
i +βr−1

i

)(
γr−1
j +ωr−1

j

)
ρr−1

+ 3τ2(ρr−1,r−1
i, j + ρr−1,r−1

i+1, j + ρr−1,r−1
i, j+1 + ρr−1,r−1

i+1, j+1

)

+ 3τ2(∥∥br−1,r−1
i, j

∥
∥+

∥
∥br−1,r−1

i+1, j

∥
∥+

∥
∥br−1,r−1

i, j+1

∥
∥+

∥
∥br−1,r−1

i+1, j+1

∥
∥)

= (1 + 12τ2)ρr−1 + 3Kτ2

≤ ··· ≤ (1 + 12τ2)rρ0 + 3Kτ2[1 +
(
1 + 2τ2)+ ···+

(
1 + 2τ2)r−1]

= (1 + 12τ2)rρ0 +
1
4
K
[(

1 + 12τ2)r − 1
]

≤ e12rτ2
ρ0 +

1
4
K
(
e12rτ2 − 1

)
.

(8.7)

The error propagation among tensor product ball Bézier surfaces is considered next. Let
the ball Bézier surface

B̃(s, t)= {Bk,l(s, t), s, t ∈ [0,1], k, l = 1, . . . ,m
}

(8.8)

be given, where

Bk,l(s, t)⊆
〈

∑

i+p=n

∑

j+q=n

(
n

i p

)(
n

j q

)

si(1− s)pt j(1− t)qb(k,l)
i, j ,

∑

i+p=n

∑

j+q=n

(
n

i p

)(
n

j q

)

si(1− s)pt j(1− t)qρ(k,l)
i, j

〉

.

(8.9)

Moreover, we require that Bk−1,l(s, t) and Bk,l(s, t) (∀l) are C1 continuous on their bound-
ary curve, and that Bk,l−1(s, t) and Bk,l(s, t) (∀k) are C1 continuous on their boundary
curve; see also Figure 8.1.
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We wish to assess the effect of an error perturbation of B11(s, t) on the other Bk,l(s, t)
(k, l not equal to 1 at the same time).

When the error of B11(s, t) is transmitted to the curve

B1,2(0, t)=
〈

∑

j+q=n

(
n

j q

)

t j(1− t)qb(1,2)
0, j ,

∑

j+q=n

(
n

j q

)

t j(1− t)qρ(1,2)
0, j

〉

(8.10)

linked to B12(s, t), the value of ρ(1,2)
0, j changes from its original value to ρ(1,2)

0, j +Δρ0, which
then gives rise to a change of the global error radius of B12(s, t). In this case the change of
the error of B11(s, t) will add an extra quantity that is no larger than

∑

j+q=n

(
n

j q

)
(
1− s+ ε

)n
(t+ δ) j(1− t+ δ)qΔρ0

= (1− s+ ε)n
∑

j+q=n

(
n

j q

)

(t+ δ) j(1− t+ δ)qΔρ0

= (1− s+ ε)n(1 + 2δ)nΔρ0

(8.11)

to the error radius of B12(s, t). As this extra error is transmitted to the two boundary
curves (s = 1, t = 1) of B12(s, t), it will give rise to an increase in the error radii of those
curves bounded by

εn · (1 + 2δ)n ·Δρ0. (8.12)

When (s= 1, t = 1), that is, at the control ball center b(1,2)
n,n , the extra error quantity is

εn · (1 + 2δ)n ·Δρ0 < Δρ0 (8.13)

as long as the computational precision ε < (1 + 2δ)−1 satisfies ε < 1/3.
It should be noted that when s = 0, t = 1, the extra error quantity at the control ball

b(1,2)
0,n is

(1 + ε)n · (1 + 2δ)n ·Δρ0 > Δρ0, ∀ε, δ > 0. (8.14)

As can be seen from the above, the extra perturbation generated from a ball Bézier
surface patch will be propagated to each of the following surface patches along with the
control balls. In the general case, if the computation is not precise enough, that is, ε,δ

are not sufficiently small, we can find a control ball b(1,2)
n,n , where the extra error tends to

enlarge at this ball. Therefore the construction of tensor product ball Bézier surfaces may
be computationally unstable, that is, the construction for curves is absolutely stable but
that for surfaces is not.

9. The intersection of triangular ball patches

We sometimes have to consider the intersection of triangular ball patches in the applica-
tions where triangular patches are defined in, for example, [3].
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Letting the parameters (s, t) be the barycentric coordinates with regard to some do-
main triangle, we require that the minimum distance between two triangular patches
p1(s, t), p2(s, t), s, t ∈ [0,1], satisfies

min
∀s,t,u,v∈[0,1]

∥
∥p1(s, t)− p2(s, t)P

∥
∥≥ 2δ∗. (9.1)

We must therefore study the intersection of two triangular ball patches B1(s, t), B2(s, t),
s, t ∈ [0,1], both having thickness δ∗.

We are given Bi(s, t)= 〈ri(s, t), ρi(s, t)〉, i= 1,2, s, t ∈ [0,1], where each ρi(s, t)∈ Bi(s, t)
will be understood as a deformation of ri(s, t) due to an error, and we are going to consider
whether

B1(s, t)∩B2(u,v)=∅, s, t,u,v ∈ [0,1], (9.2)

holds. If not, it is possible that r1(s, t) and r2(s, t) will intersect because of the error per-
turbation.

From the above we can see that the problem can be viewed as one of intersecting two
triangular ball patches. In the following we will therefore construct a test algorithm for
the intersection of two triangular ball patches.

Note that

B1(s, t)= 〈r1(s, t),ρ1(s, t)
〉

, s, t ∈ I ,

B2(u,v)= 〈r2(u,v),ρ2(u,v)
〉

, u,v ∈ I ,

X � (S,T)= ([s,s],[t, t]
)
, S,T ⊆ I ,

w(X)=max
{
w(S),w(T)

}
.

(9.3)

Let Bi(S,T), S,T ⊆ I , i= 1,2, be an interval extension of the triangular ball patches Bi(s, t),
s, t ∈ I , i = 1,2. The proposed algorithm, which is another generalization of Algorithm
3.1, is based on bisection together with interval extension evaluations which are used to
delete subregions of (I ,I) which correspond to the two pieces of ball patches guaranteed
not to intersect. For a subregion X = (S,T) of (I ,I), the bisection method is the same
as for tensor product surfaces, that is, X is partitioned into two subregions X1∪X2 = X
at the midpoint max{s− s, t− t} of the interval component with the longer length. For
instance, if s− s < t− t, then

(

S,

[

t,
t+ t

2

])

∪
(

S,

[
t+ t

2
, t,

])

= X. (9.4)

We use a list � to store the subregions of (I ,I) for B1(X) that must be processed further,
and use another list � to store the subregions of (I ,I) for B2(Y) that must be processed
further.

After each bisection we put the uncertain subregions that must be tested further at the
end of their list.
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For convenience, we let

�1(�)= {B1(X),∀X ∈�
}

, �2(�)= {B2(Y),∀Y ∈�
}

(9.5)

and for any B1 ∈�1(�), B2 ∈�2(�), we define

B1∩�2(�)= {B1∩B,∀B ∈�2(�)
}

,

�1(�)∩B2 =
{
B∩B2,∀B ∈�1(�)

}
.

(9.6)

The test algorithm is as follows.

Algorithm 9.1. (1) Initialize lists �= {(I ,I)}, �= {(I ,I)}.
(2) Set X = first item on �, Y = first item on �.
(3) If w(X) < EPS then go to (7).
(4) Delete X from �.
(5) Bisect X so that X = X1∪X2.
(6) For i= 1,2 do

(i) Calculate B1(Xi).
(ii) If B1(Xi)∩�2(�) 
= ∅ then enter Xi onto the list � as the last item.

(7) If w(Y) < EPS then go to (11).
(8) Delete Y from �.
(9) Bisect Y so that Y = Y1∪Y2.

(10) For j = 1,2 do
(i) Calculate B2(Yj).

(ii) If �1(�)∩B2(Yj) 
= ∅ then enter Yj onto the list � as the last item.
(11) If w(X) or w(Y) > EPS then go to (2).
(12) End.

10. The interval extension of a triangular ball Bézier patch

Let {bi jk}, i+ j + k = n, be a set of 3D-control points. A triangular Bézier patch defined
by these control points is expressed as

bΔ(s, t)=
∑

i+ j+k=n

(
n

i j k

)

sit j(1− s− t)kbi jk, s, t, (1− s− t)∈ [0,1], (10.1)

where

(
n

i j k

)

= n!
i! j!k!

. (10.2)
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In order to consider the error perturbation of the control points bi jk, we use a control ball
Bijk = 〈bi jk,ρi jk〉 instead of the original bi jk. This results in a ball Bézier patch

BΔ(s, t)=
∑

i+ j+k=n

(
n

i j k

)

sit j(1− s− t)kBi jk

=
〈

∑

i+ j+k=n

(
n

i j k

)

sit j(1−s−t)kbi jk,
∑

i+ j+k=n

(
n

i j k

)

sit j(1−s−t)kρi jk
〉

=
〈

bΔ(s, t),
∑

i+ j+k=n

(
n

i j k

)

sit j(1− s− t)kρi jk

〉

, s, t ∈ I.

(10.3)

In order to further consider the error perturbation of the parameter s, t, we consider the
interval extension of a ball patch. We use S= [s− ε,s+ ε] and T = [t− δ, t+ δ] instead of
the original s and t. Since the parameters (s, t) are the barycentric coordinates with regard
to some domain triangle Δ= Δ(λ,μ,θ), a point z on Δ can be represented as

z = sλ+ tμ+ (1− s− t)θ. (10.4)

Let FΔ be the polar form of bΔ, then we have

FΔ(z, . . . ,z)= sFΔ(z, . . . ,z,λ) + tFΔ(z, . . . ,z,μ) + (1− s− t)FΔ(z, . . . ,z,θ)

=
∑

i+ j+k=n

(
n

i j k

)

sit j(1− s− t)kFΔ

⎛

⎜
⎜
⎝λ, . . . ,λ
︸ ︷︷ ︸

i

, μ, . . . ,μ
︸ ︷︷ ︸

j

, θ, . . . ,θ
︸ ︷︷ ︸

k

⎞

⎟
⎟
⎠

= bΔ(s, t),

(10.5)

where bΔ(s, t)= FΔ(λ, . . . ,λ
︸ ︷︷ ︸

i

,μ, . . . ,μ
︸ ︷︷ ︸

j

,θ, . . . ,θ
︸ ︷︷ ︸

k

).

Consider the interval extension FΔ(S, . . . ,S,T , . . . ,T) of the polar form FΔ on the (S,T),
S,T ⊆ I . This is a type of nested form which is an improvement of the following Bézier
extension:

BΔ(S,T)=
∑

i+ j+k=n

(
n

i j k

)

SiT j(1− S−T)kBi jk. (10.6)

Due to the subdistributivity of interval or ball arithmetic, we have

FΔ(S, . . . ,S,T , . . . ,T)⊆ BΔ(S,T), S,T ⊆ [0,1]. (10.7)

In practical computations we use the following de Casteljau recursive process (see [3]) to
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obtain FΔ(S, . . . ,S,T , . . . ,T):

Input B0
i, j,k = Bijk, i= 0,1, . . . ,n, S,T ,

For r = 1, . . . ,n,

For i+ j + k = n− r,

Br
i, j,k = SBr−1

i+1, j,k +TBr−1
i, j+1,k + (1− S−T)Br−1

i, j,k+1,

Output Bn
0,0,0,

Return.

(10.8)

That is, Bn
0,0,0 = FΔ(S, . . . ,S,T , . . . ,T).

Letting

W̃i jk =
∑

i+ j+k=n

(
n

i j k

)

SiT j(1− S−T)k, S,T ⊆ [0,1], (10.9)

we have

BΔ(S,T)=
∑

i+ j+k=n
W̃i jk ·

〈
bi jk,ρi jk

〉

=
∑

i+ j+k=n

〈
midW̃i jk · bi jk,

∣
∣midW̃i jk

∣
∣ · ρi jk +

∥
∥bi jk

∥
∥ · radW̃i jk + ρi jk · radW̃i jk

〉

=
〈

∑

i+ j+k=n
midW̃i jk · bi jk,

∑

i+ j+k=n

∣
∣midW̃i jk

∣
∣ · ρi jk

+
∑

i+ j+k=n

∥
∥bi jk

∥
∥radW̃i jk +

∑

i+ j+k=n
ρi jk · radW̃i jk

〉

.

(10.10)

By considering S,T as disks they can be expressed as 〈s,ε〉, 〈t,δ〉, and we have

W̃i jk =
(

n
i j k

)

· 〈si, (s+ ε)i− si
〉 · 〈t j , (t+ δ) j − t j

〉

· 〈(1− s− t)k, (1− s− t+ ε+ δ)k − (1− s− t)k
〉

=
(

n
i j k

)

· 〈sit j , (s+ ε)i(t+ δ) j − sit j
〉

· 〈(1− s− t)k, (1− s− t+ ε+ δ)k − (1− s− t)k
〉

=
〈(

n
i j k

)

sit j(1− s− t)k,

(
n

i j k

)
[
(s+ ε)i(t+ δ) j(1− s− t+ ε+ δ)k

− sit j(1− s− t)k
]
〉

,

(10.11)
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where it is assumed that 0≤ s+ ε, t+ δ,1− s− t+ ε+ δ ≤ 1. Therefore

FΔ(S, . . . ,S,T . . . ,T)

⊆ BΔ(S,T)

〈
∑

i+ j+k=n

(
n

i j k

)

sit j(1− s− t)kbi jk,

∑

i+ j+k=n

(
n

i j k

)
[
(s+ ε)i(t+ δ) j(1− s− t+ ε+ δ)k − sit j(1− s− t)k

]

·∥∥bi jk
∥
∥+

∑

i+ j+k=n

(
n

i j k

)

(s+ ε)i(t+ δ) j(1− s− t+ ε+ δ)k · ρi jk
〉

.

(10.12)

For the extension of polar form the following theorem follows.

Theorem 10.1.

rad
(
FΔ(S, . . . ,S,T , . . . ,T)− bΔ(s, t)

)−→ 0
(
as ρ,w(S,T)−→ 0

)
, (10.13)

where ρ =maxi+ j+k=n{ρi jk}, s=midS, t =midT .

11. Ball analysis of error generated from blossoming for triangular patches

We first use the blossoming algorithm to take account of the error propagation in the
computation of a triangular ball Bézier patch so as to analyze its computational stability.

A general triangular ball patch can be generated by means of the following recursive
formula:

Br
i, j,k = αr−1

i Br−1
i+1, j,k +βr−1

j Br−1
i, j+1,k + γr−1

k Br−1
i, j,k+1, r = 1, . . . ,n, i+ j + k = n− r, (11.1)

where

B0
i, j,k = Bijk =

〈
bi jk,ρi jk

〉
, i+ j + k = 0, . . . ,n, αr−1

i ,βr−1
j ,γr−1

k ∈ [0,1]. (11.2)

The ball blossoming Bn
0,0,0 is obtained from this computation.

Letting

Λr
i =

〈
αri ,ε

r
i

〉
, Δr

i =
〈
βri ,δ

r
i

〉
, Γri =

〈
γri ,η

r
i

〉
, Br

i, j,k =
〈
bri, j,k,ρri, j,k

〉
, (11.3)



Q. Lin and J. G. Rokne 25

it follows from (11.1) that

〈
bri, j,k,ρri, j,k

〉
=Λr−1

i ·
〈
br−1
i+1, j,k,ρr−1

i+1, j,k

〉
+Δr−1

j ·
〈
br−1
i, j+1,k,ρr−1

i, j+1,k

〉
+Γr−1

k ·
〈
br−1
i, j,k+1,ρr−1

i, j,k+1

〉

=
〈
αr−1
i br−1

i+1, j,k,αr−1
i ρr−1

i+1, j,k +
(∥∥br−1

i+1, j,k

∥
∥+ ρr−1

i+1, j,k

)
εr−1
i

〉

+
〈
βr−1
j br−1

i, j+1,k,βr−1
j ρr−1

i, j+1,k +
(∥∥br−1

i, j+1,k

∥
∥+ ρr−1

i, j+1,k

)
δr−1
j

〉

+
〈
γr−1
k br−1

i, j,k+1,γr−1
k ρr−1

i, j,k+1 +
(∥∥br−1

i, j,k+1

∥
∥+ ρr−1

i, j,k+1

)
ηr−1
k

〉
.

(11.4)

Considering only the error radius, we have

ρi jk = αr−1
i ρr−1

i+1, j,k +βr−1
j ρr−1

i, j+1,k + γr−1
k ρr−1

i, j,k+1

+
(∥∥br−1

i+1, j,k

∥
∥+ ρr−1

i+1, j,k

)
εr−1
i +

(∥∥br−1
i, j+1,k

∥
∥+ ρr−1

i, j+1,k

)
δr−1
j

+
(∥∥br−1

i, j,k+1

∥
∥+ ρr−1

i, j,k+1

)
ηr−1
k .

(11.5)

In order to further estimate the error bound, let

(
αr−1
i +βr−1

j + γr−1
k

)≤ 1,
(∥∥br−1

i+1, j,k

∥
∥+

∥
∥br−1

i, j+1,k

∥
∥+

∥
∥br−1

i, j,k+1

∥
∥)≤ K ,

ρr = max
i+ j+k=n

{
ρri, j,k

}
, τ =max

i, j,k,r

{
εri ,δ

r
j ,η

r
k

}
.

(11.6)

Then we have

ρr ≤ (αr−1
i +βr−1

j + γr−1
k

)
ρr−1 + τ

(
ρr−1
i+1, j,k + ρr−1

i, j+1,k + ρr−1
i, j,k+1

)

+ τ
(∥∥br−1

i+1, j,k

∥
∥+ +

∥
∥br−1

i, j+1,k

∥
∥+

∥
∥br−1

i, j,k+1

∥
∥)

= (1 + 3τ)ρr−1 +Kτ

≤ ··· ≤ (1 + 3τ)rρ0 +Kτ
[
1 + (1 + 3τ) + ···+ (1 + 3τ)r−1]

= (1 + 3τ)rρ0 +
1
3
K
[
(1 + 3τ)r − 1

]≤ e3rτρ0 +
1
3
K
(
e3rτ − 1

)
.

(11.7)

Next we consider error propagation among triangular ball Bézier patches as indicated
in Figure 11.1.

Let the triangular ball Bézier patch:

B̃Δ(s, t)= {Bl(s, t), s, t ∈ [0,1], l = 1, . . . ,m
}

, (11.8)
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B2(s, t)

B1(s, t)

B3(s, t)

b(2)
0,0,n

b(2)
n,0,0

b(2)
0,n,0

Figure 11.1. Perturbation of triangular patch.

where

Bl(s, t)⊆
〈

∑

i+ j+k=n

(
n

i j k

)

sit j(1− s− t)kb(l)
i jk,

∑

i+ j+k=n

(
n

i j k

)

sit j(1− s− t)kρ(l)
i jk

〉

,

(11.9)

be given.
Moreover, two adjacent patches Bv1 (s, t) and Bv2 (s, t)(v1 
= v2) are assumed to be C1

continuous on their common boundary curve. We now wish to discuss how the error
perturbation of B1(s, t) disrupts the other Bl(s, t)(l 
= 1).

When the error of B1(s, t) is transmitted to the curve

B2(0, t)⊆
〈

∑

j+k=n

(
n

i j k

)

t j(1− t)kb(2)
0 jk,

∑

j+k=n

(
n

i j k

)

t j(1− t)kρ(2)
0 jk

〉

(11.10)

which is linked up, B2(s, t) the value of ρ(2)
0, j,k will change from the original value to ρ(2)

0, j,k +
Δρ0 which then gives rise to a global change in the error radius of B2(s, t). In this case the
change in the error radius of B1(s, t) will result in a quantity that is no more than

∑

j+k=n

(
n

i j k

)

(t+ δ) j(1− s− t+ ε+ δ)k ·Δρ0 = (1− s+ ε+ 2δ)n ·Δρ0 (11.11)

added to the error radius of B2(s, t). As this extra error is transmitted to the control point
b(2)
n,0,0 (s= 1, t = 0) of B2(s, t), this will give rise to changes in the error radius at that point,

which are no more than (ε+ δ)n ·Δρ0. It is easy to see that we can guarantee

(ε+ δ)n ·Δρ0 < Δρ0 (11.12)

as long as ε+ δ < 1 is valid.
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As we can see from above, in the triangular ball Bézier patches, the perturbation gen-
erated from a piece of ball patch will be transmitted to each of the following pieces of
patches along with the control points. This perturbation is attenuated, however. There-
fore the construction of triangular ball Bézier patches is stable.

12. Conclusion

In this paper disk parametric curves, tensor ball surfaces, and triangular ball patches were
considered from the point of including errors in representation. Algorithms for intersec-
tion testing were given for each case, and analyses for errors were considered. It was found
that disk parametric curves and triangular ball patches were stable under bounded error
perturbations, whereas tensor ball surfaces were not.
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translated by J. Rokne from Einführung in die Intervallrechnung. Bibliographisches Institut,
Mannheim.

[2] T. DeRose, M. Lounsbery, and R. Goldman, A tutorial introduction to blossoming, Geometric
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