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We study the properties of strange quark matter in equilibrium with normal nuclear matter. Instead of using the
conventional bag model in quark sector, we achieve the confinement by a density-dependent quark mass derived
from in-medium chiral condensates. In nuclear matter, we adopt the equation of state from the Brueckner-
Bethe-Goldstone approach with three-body forces. It is found that the mixed phase can occur, for a reasonable
confinement parameter, near the normal nuclear saturation density and goes over to pure quark matter at about
5 times the saturation. The onset of mixed and quark phases is compatible with the observed class of low-mass
neutron stars, but it hinders the occurrence of kaon condensation.
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I. INTRODUCTION

By far the study of neutron stars (NS) has been mainly
focused on the relationship between the equation of state
(EOS) of nuclear matter and the observed maximum mass.
The connection has been achieved by solving the hydrostatic
equilibrium equations based on general relativity. The first-
generation observed masses exhibited an average value around
1.5 solar masses. This value requires a soft EOS that can
be easily obtained by introducing new degrees of freedom
like hyperons, kaons, or quarks accompanied or not by a
phase transition. Sometimes the softening was so large that
the neutron star is predicted to collapse into a black hole, as
for the SN1987A [1]. In the new generation of observations
the masses are distributed within a large range, up to two solar
masses, that requires a stiff EOS, i.e., hadronic matter without
new degrees of freedom. Because it is hard to imagine pure
hadronic matter sustaining the high pressure predicted in the
inner core, new scenarios have to be advanced to explain the
coexistence, in the phenomenology of neutron stars, of low-
and high-mass spectra.

Recently [2] it has been argued that the two observed classes
of neutron stars might correspond to two different evolutionary
scenarios of neutron stars. In one case, the hot and dense
remnant of the supernova explosion rapidly evolves into a
hybrid star, where the transition to a quark phase softens the
nuclear matter so that M ≈ 1.5M�; in the other case a slow
evolution could lead the neutron star to a large mass via a mass
accreting from the coupling with a white dwarf. From this
point of view the destiny of the remnant is strongly affected by

the initial conditions, i.e., density, temperature, leptonization
degree, etc. For instance, if the mass of the remnant is below
the mass threshold for quark nucleation the transition to the
quark phase is forbidden [3]. If the mass is slowly accreting
the transition is allowed. The role of temperature or other
parameters defining the initial state of a newborn neutron star
has not yet been studied.

To investigate the possible phase transition to quark matter
in neutron stars, we need also to know the EOS of quark
matter. Although we have in hand the fundamental theory
of strong interactions, i.e., quantum chromodynamics (QCD),
we still do not know the true ground state. It is now generally
expected that quark matter is in the color-flavor locked phase
(CFL) [4] at extremely high densities when the finite current
mass of strange quarks becomes unimportant. In the density
range from nuclear saturation to CFL, there may exist a
rich and varied landscape of phases, e.g., the 2SC, g2SC,
gCFL, etc. Presently, however, these phases suffer from the
so-called chromomagnetic instability problem for both the
two- [5] and three-flavor [6–8] cases. However, experiments
show that quarks become asymptotically free rather slowly [9].
Therefore, in the present study we are dealing with the ordinary
strange quark matter (SQM) [10,11].

The special problem in studying the EOS of ordinary quark
matter is to treat quark confinement in a proper way. In the
conventional standard approach an extra term, the famous bag
constant B, is added to the energy density of the system, which
provides a negative pressure to confine quarks within a finite
volume, usually called a “bag.” The quark mass is infinitely
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large outside the bag, and a finite constant within the bag. A
vast quantity of investigations have been performed within the
framework of the bag model [12].

As is well known, however, particle masses vary with
environment. Such masses are usually called effective masses.
Effective masses of hadrons and quarks have been extensively
discussed, e.g., within the Nambu-Jona-Lasinio model [13]
and within a quasi-particle model [14]. In principle, the density
dependence of quark masses should be connected to the
in-medium chiral condensates [15,16].

Taking advantage of the density dependence, one can
describe quark confinement without using the bag constant.
Instead, the quark confinement is achieved by the density
dependence of the quark masses derived from in-medium
chiral condensates [17–19]. The two most important aspects
in this model are the quark mass scaling [17,19] and the ther-
modynamic treatment [18,19]. Both aspects will be reviewed
in this article.

In the present contribution, the transition from hadron
phase (HP) to strange quark phase (SQP) in the inner core
of a neutron star is investigated within the fully consistent
nuclear and quark models. In the hadron sector we adopt
the equation of state from Brueckner-Bethe-Goldstone (BBG)
approach with three-body forces (TBF) [20–22]. This the-
ory, being a completely microscopic approach, can easily
incorporate degrees of freedom such as nucleon resonances
[�(1232) or N∗(1440)], which are expected to appear at higher
hadron densities. It is found that the mixed hadron-quark
phase can occur, for reasonable values of the confinement
parameter, a little above the normal saturation density, and
can undergo the transition to pure quark matter at about
five to six times the saturation. This result is quite different
from the previous results from Nambu-Jona Lasinio (NJL)
model in which the mixed quark phase cannot appear at
neutron-star densities [23,24]. Afterwards, the influence of
the mixed and quark phase on the structure of compact stars is
discussed by solving the Tolman-Oppenheimer-Volkov (TOV)
equation and extracting the mass-radius plots for neutron
stars. Finally, it is shown that the transition to the deconfined
phase turns out to be incompatible with the onset of kaon
condensation.

II. EOS OF QUARK MATTER

SQM has been one of the hot topics in nuclear physics
since the presentation of Witten’s famous stability theory [10].
In many studies, the quark confinement was treated adopting
the bag mechanism [11,25]. An alternative approach to obtain
confinement is based on the density dependence of quark
masses [26]. This mechanism has been extensively applied to
investigate the properties of SQM [27–30]. In this section, we
first give a short review on the two most important aspects and
point out the main inconsistencies of the original model. Then
we present a fully self-consistent thermodynamic treatment.
The properties of SQM will be given in the new treatment. In
the present article, however, the main application of the new
approach is to study the phase transition in compact stars after

describing the Brueckner-Hartree-Fock (BHF) nuclear EOS in
the next section.

A. Confinement by density-dependent masses

As mentioned above, the quark confinement in this model
is achieved by the density dependence of quark masses.
Therefore, the first important question is how to determine the
quark mass scaling that can reasonably produce confinement.
Originally, the interaction part of the quark masses was
assumed to be inversely proportional to the density [26,27].
This linear scaling has been extensively applied to studying
the properties of SQM [27–30]. There are also other mass
scalings [31,32]. Their main drawback is that they are pure
parametrizations without a convincing derivation. Therefore,
a cubic scaling was derived based on the in-medium chiral
condensates and linear confinement at both zero [17] and
finite temperature [19]. This new scaling has been applied
to investigating the viscosity of SQM and the damping time
scale due to the coupling of the viscosity and r mode [33],
the quark-diquark equation of state and compact star structure
[34], the properties of strangelets versus the electric charge and
strangeness [35], and the new solutions for CFL slets [36]. In
the present article, we use the chirally determined quark mass
scaling [17,19] to study the phase transition in neutron stars.
For this we need a completely self-consistent thermodynamic
treatment of the EOS of quark matter.

The thermodynamic treatment of the system with confine-
ment via the density-dependent quark masses has been a long
story. Originally, the thermodynamic formalism was regarded
as the same with those of the constant-mass case [27]. In this
first treatment, the internal pressure cannot be zero, and the
properties of SQM were rather different from those in the bag
model. But it was later pointed out that the difference was
caused by the incorrect thermodynamic treatment [28]. It was
found that an additional term is to be added to the pressure
and energy expressions [28]. This second treatment makes it
possible that SQM could be self-bound. However, two serious
problems came out: one is the unreasonable vacuum limits and
the other is the discrepancy between the energy minimum and
zero pressure. It was shown that the added term in the pressure,
due to the density dependence of quark masses, should not
be appended to the energy. After discarding this term in the
energy while keeping it in the pressure, the two inconsistencies
mentioned above were immediately removed [18]. This third
treatment has recently been extended to finite temperature [19].
The thermodynamic formalism in Ref. [18] was also adopted
in Ref. [30], though a different quark mass scaling was used
there.

A common feature of the last two thermodynamic treat-
ments [18,19,28], as well as other recent references using this
model [30], is that they all regard the thermodynamic potential
as the same form with that of a Fermi gas. Because of the
additional term, the pressure becomes obviously not equal
to the minus thermodynamic potential density, contradicting
the thermodynamic equality P = −� for a homogeneous
system. One can also easily check that the fundamental
differentiation equality dE = ∑

i µidni for homogeneous
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systems at zero temperature was not fulfilled in the mentioned
references.

In the rest of this section, we will present a fully self-
consistent thermodynamic treatment of the confinement by
density-dependent mass model (CDDM).

B. Self-consistent thermodynamics in CDDM

Let us consider a quark model with three flavors. Denoting
the Fermi momentum in the phase space by νi , the particle
number densities can then be expressed as

ni = gi

∫
d3p

(2πh̄)3
= gi

2π2

∫ νi

0
p2 dp = giν

3
i

6π2
, (1)

and the corresponding energy density as

E =
∑

i

gi

2π2

∫ |νi |

0

√
p2 + m2

i p2 dp. (2)

Equations (1) and (2) are familiar expressions, where the
summation index goes over all considered particle types. To
let the model be valid for both particles and antiparticles, the
particle number density, or accordingly the Fermi momentum,
is formally assumed to be negative for antiparticles. Therefore,
in the upper limit of the integration, the absolute value has to
be taken.

If the particle masses mi are constant, the relation between
the Fermi momenta νi and the chemical potentials µi is

νi =
√

µ2
i − m2

i or µi =
√

ν2
i + m2

i . (3)

As is well known, however, the quark mass depends on density
and temperature. In principle, the quark mass scaling should
be determined from QCD, which is obviously impossible
presently. Based on the in-medium chiral condensates, a cubic
scaling was derived at zero temperature [17], and it has
been recently extended to finite temperature [19]. At zero
temperature, we have the simple cubic scaling

mq = mq0 + D

nz
, (4)

where mq0 is the quark current mass, n is the total baryon
number density, the exponent of density is z = 1/3 [17], and
the constant D is to be discussed a bit later.

In the following, we show that the density dependence of
particle masses will modify the Fermi momentum, i.e., the
relation in Eq. (3) for free-particle systems should be modified
to include interactions. In fact for the quark flavor i we have

µi = dE

dni

∣∣∣∣
{nk �=i }

= ∂Ei

∂νi

dνi

dni

+
∑

j

∂E

∂mj

∂mj

∂ni

. (5)

Because the quark masses are density dependent, the deriva-
tives generate an additional term with respect to the free Fermi
gas model. We get

µi = ni

|ni |
√

ν2
i + m2

i +
∑

j

|nj |∂mj

∂ni

f

(
νj

mj

)
, (6)

where

f (x) ≡ 3

2x3

[
x
√

1 + x2 − ln
(
x +

√
1 + x2

)]
. (7)

The pressure is then given by

P = −E +
∑

i

µini

= −�0 +
∑
ij

ni |nj |∂mj

∂ni

f

(
νj

mj

)
, (8)

with �0 being the free-particle contribution:

�0 = −
∑

i

gi

48π2

[
νi

√
ν2

i + m2
i

(
2ν2

i − 3m2
i

)

+ 3m4
i arcsinh

(
νi

mi

)]
. (9)

Due to the additional term in the chemical potential, the
pressure also has an extra term. The inclusion of such a term
guarantees that the Hughenoltz-Van Hove theorem is fulfilled
in the calculations.

In the quasiparticle model [37], one also has an extra term.
Because the quark masses there depend on chemical potentials,
and the extra term is not used in the relation between the Fermi
momenta and chemical potentials, an effective bag constant
has to be added to the energy expression [14] to consider
confinement.

In CDDM quark model, however, we no longer need a
bag constant. Quark confinement is achieved automatically
by the density dependence of quark masses or by the strong
interaction between quarks. In fact, the exponent z = 1/3 in
Eq. (4) is derived from the linear confinement interaction [17].

In the present model, the parameters are the electron mass
me = 0.511 MeV; the quark current masses mu0,md0,ms0;
and the confinement parameter D. Although the light-quark
masses are not without controversy and remain under active
investigations, they are very small, and so we simply take
mu0 = md0 = 0. The current mass of strange quarks is 95 ±
25 MeV according to the latest version of the Particle Data
Group [38].

Conventionally, the stability of strange quark matter (SQM)
is judged by the minimum energy per baryon [10,11,27,28]. If
it is less than 930 MeV (the mass of 56Fe divided by 56), then
SQM is absolutely stable. If it is bigger than 930 MeV but less
than 939 MeV (the mass of nucleons), then it is metastable.
Otherwise, if it is larger than 939 MeV, SQM is unstable.
However, for two-flavor quark matter, it should be no less than
930 MeV to not contradict standard nuclear physics. This is
the Witten-Bodmer hypothesis [10,11].

In Fig. 1, we show the different regimes in the
√

D-ms0

plane. The area below the full line is forbidden where the
energy per baryon of two-flavor quark matter is less than
930 MeV. Above the dotted line, the energy per baryon of
SQM is more than 939 MeV, and thus SQM is unstable. The
area bounded by the dotted and dashed lines is the metastable
region where the energy per baryon is between 930 and
939 MeV. Only when the (D1/2,ms0) pair is in the range
between the full and dashed lines, SQM can be absolutely
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FIG. 1. Confinement constant range determined by stability
arguments. SQM is absolutely stable only in the region bounded
by the full and dashed lines.

stable, i.e., its energy per baryon is less than 930 MeV.
Therefore, the range of D values is vary narrow for a chosen
ms0 value if the Witten-Bodmer hypothesis is correct. If we
take the modest value ms0 = 100 MeV, for example, then D1/2

is in the range of 158–160 MeV. The lower bound 158 MeV is
obtained by taking mu0 = md0 = 0. If mu0 and md0 are given
a small finite value, the lower bound can then be a little bit
smaller, e.g., 156 MeV [18].

Unfortunately we presently do not have a definite con-
clusion on the stability of SQM, so we treat D as a free
parameter. However, the first condition, i.e., D greater than
about (158 MeV)2, should always be satisfied. However, we
can connect D to the pion mass mπ , pion decay constant fπ ,
pion-nucleon sigma term σN , string tension σ0, and the vacuum
chiral condensate 〈q̄q〉0 by [19]

D = 3(2/π )1/3σ0m
2
πf 2

π

−σN

∑
q〈q̄q〉0

. (10)

From the known range of the vacuum condensate, we can have
an upper bound (270 MeV)2. Therefore, D1/2 should not be
out of the range (156, 270) MeV.

C. Properties of strange quark matter

As usually done, we consider SQM as a mixture of
u, d, s quarks and electrons. The relevant chemical potentials
µu,µd, µs , and µe satisfy the weak-equilibrium condition

µu + µe = µd, (11)

µd = µs. (12)

Because all particle masses do not depend on the density of
electrons, i.e., ∂mj/∂ne = 0, Eq. (6) gives

µi =
√

(π2ni)2/3 + m2
i − µI (13)

with

µI = −1

3

∂mI

∂nb

∑
j=u,d,s

njf

(
νj

mj

)
(14)

for i = u, d, s quarks and

µe =
√

(3π2ne)2/3 + m2
e (15)

for electrons.
In Eq. (14), mI is the second term on the right-hand side

of Eq. (4), so we have ∂mI/∂n = −zD/nz+1 = −zmI/n. The
pressure is then obtained from Eq. (8) as

P = −�0 + nb
dmI

dnb

∑
j=u,d,s

njf

(
νj

mj

)
. (16)

Substituting these expressions into Eqs. (11) and (12), we have√
(π2nu)2/3 + m2

u +
√

(3π2ne)2/3 + m2
e =

√
(π2nd )2/3 + m2

d .

(17)

and

(π2nd )2/3 + m2
d = (π2ns)

2/3 + m2
s . (18)

We also have the baryon number density

n = 1
3 (nu + nd + ns) (19)

and the charge density

Qq = 2
3nu − 1

3nd − 1
3ns − ne. (20)

The charge-neutrality condition requires Qq = 0.
For a given total baryon number density n, we can obtain the

respective nu, nd, ns , and ne by solving the four Eqs. (17), (18),
(19), and (20). The chemical potentials µu,µd, µs , and µe can
then be calculated by Eqs. (13) and (15). Therefore, the energy
density of the quark matter is a function of the baryon number
density n and the charge density Qq , i.e., Eq = Eq(n,Qq) or

dEq = ∂Eq

∂n
dn + ∂Eq

∂Qq

dQq, (21)

where the two partial derivatives, ∂Eq/∂n and ∂Eq/∂Qq , are
called the baryon chemical potential and charge chemical
potential, respectively. It can be easily shown that they are
connected to the quark chemical potentials by

∂Eq

∂n
= µu + 2µd,

∂Eq

∂Qq

= µu − µd. (22)

In fact, according to the fundamental differentiation equality
of thermodynamics at zero temperature, we have

dEq = µudnu + µddnd + µsdns + µedne. (23)

However, we have µe = µd − µu,µs = µd, ns = 3n − nu −
nd , and ne = nu − n − Qq from Eqs. (11), (12), (19),
and (20). Substituting these four equalities into Eq. (23) leads
to dE = (µu + 2µd )dn + (µu − µd )dQq . Comparison of this
with Eq. (21) immediately gives Eq. (22).

In Fig. 2, the quark fractions, i.e., nu/(3n), nd/(3n),
ns/(3n), and the 104 times the electron number divided by the
total quark number, 10000ne/(3n), have been shown versus
the baryon number density for D1/2 = 160 MeV and ms0 =
80 MeV. It is seen that the fraction of up quarks is nearly
always one third, the fraction of down quarks increases rapidly
with decreasing densities, while the fraction of strange quarks
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FIG. 2. Quark fraction vs. baryon number density for D1/2 =
160 MeV and ms0 = 80 MeV.

approaches to zero when the density decreases to a certain
lower density.

To compare the relation between the Fermi momentum and
chemical potential, we plot, in Fig. 3, the Fermi momentum of
up (solid line), down (dotted line), and strange (dashed line)
quarks, respectively, as a function of the corresponding quark
chemical potential, in both the present model (lines with a solid
circle) and the previous model (lines with an open circle). It
is very obvious that the difference is very large, especially
at comparatively lower densities. In both models, the Fermi
momentum of up or down quarks is higher than that of strange
quarks due to the fact that strange quarks are heavier than up
or down quarks. For the same chemical potential, however, the
Fermi momentum in the present model is generally bigger
than that in the previous model, due to the quark-mass
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FIG. 3. Comparison between the Fermi momenta and chemical
potentials. Parameters are the same as described in the caption for
Fig. 2.
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FIG. 4. Energy per baryon of quark matter in the present model.
The parameter pair (D1/2, ms0) in MeV for the solid, dashed,
dotted, and dash-dotted cures are (200,150), (180,120), (170,95),
and (160,80), respectively. The dash-dot-dot line is for the two-flavor
quark matter at D1/2 = 160 MeV. It is very obviously shown that the
energy minimum, marked with a full triangle on each line, is located
exactly at the same point of the zero pressure indicated by an open
circle.

density dependence that reflects the strong interaction between
quarks.

Figure 4 shows the energy per baryon of quark matter for
different parameter sets in the present model. Each line has a
minimum, corresponding to the lowest energy state (marked
with a solid triangle). One can see that the pressure at this
minimum is exactly zero. So this special point is marked with
an open circle as well. At the same time, we also display
the energy per baryon for the two-flavor quark matter by a
dash-dot-dot line. We see that the two-flavor quark matter
is less stable than SQM. Even for a smaller D value, e.g.,
(160 MeV)2, its energy will finally exceed that of SQM for a
bigger D with increasing densities.

In principle, the CDDM quark model contains more physics
than the simple bag model. To demonstrate this we plot, in
Fig. 5, the baryon chemical potential in CDDM with D1/2 =
180 MeV and ms0 = 120 MeV and in the bag model with
B1/4 = 180 MeV. In CDDM, the baryon chemical potential
decreases with decreasing density to a certain value depending
on D and ms0, then it increases very rapidly, i.e., it saturates at a
definite density marked with a bullet. When the density is lower
than the bullet, the derivative d2E/dn2 becomes negative, and
so quark matter is unstable against phase separation and falls
apart at lower densities. In the bag model, however, the baryon
chemical potential is always a monotonic function of density,
which means that quark matter does not fall apart at any lower
densities. The velocity of sound has also been plotted on the
right axis. We observe that it is, in the bag model, nearly the
same as that of a noninteracting Fermi gas. But in CDDM, it
decreases to zero with decreasing densities. At high densities, it
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D =
180 MeV, ms0 = 120 MeV) and in the bag model (B1/4 = 180 MeV).
The former has a minimum at a lower density depending on the value
of D and ms0, whereas the latter is always a monotonic function of
density. The velocity of sound in both models has also been given on
the right axis.

becomes asymptotically identical to the ultrarelativistic limit,
as expected.

D. Quark matter at finite temperature

Because the single particle energies depend on density
and temperature via the quark masses, the thermal properties
should be founded on the canonical ensemble, but, as is well
known, the partition function is not easy to calculate. Therefore
a different statistical procedure is usually adopted, which is
based on the quasiparticle assumption. According to that the
energy density is written as

E =
∑

i

gi

∑
p

√
p2 + m2

i fi(p, T ), (24)

where the Fermi distribution function is

fi(p, T ) = 1

1 + e[εi (p,T )−µi ]/T
. (25)

If antiparticles are included, the sum must be extended to
antiparticles for which µi must be replaced by −µi . From
the Landau definition of the single-particle energy extended to
finite temperature, we have

εi(p) = δE

δfi(p, T )

=
√

p2 + m2
i +

∑
j

gj

mjfj (p, T )√
p2 + m2

j

∂mj

∂ni

≡ εi(p) − µI, (26)

where εi(p) ≡
√

p2 + m2
i is the dispersion relation of free

particles. The extra term µI can be added to the chemical
potential, so defining

µ∗
i ≡ µi + µI. (27)

Accordingly, the net density of the particle type i is ni =
gi

∑
p[fi(p, T ) − fī(p, T )], or, explicitly, we have

ni = gi

∫ ∞

0

{
1

1 + e[εi (p)−µ∗
i ]/T

− 1

1 + e[εi (p)+µ∗
i ]/T

}
p2dp

2π2
.

(28)

Inverting this equation, one determines µ∗
i as a function of ni

so that the free energy density

F =
∑

i

Fi(T ,µ∗
i , mi) =

∑
i

[F+
i + F−

i ] (29)

with

F±
i = gi

∫ ∞

0

{
− T ln

[
1 + e−(

√
p2+m2

i ∓µ∗
i )/T

]

± µ∗
i

1 + e(
√

p2+m2
i ∓µ∗

i )/T

}
p2dp

2π2
(30)

will be a function of respective particle densities instead of
chemical potentials. One can then determine the real chemical
potentials and pressure, according to the well-known relations

µi = ∂F

∂ni

, P = −F +
∑

i

µini . (31)

These quantities will completely describe the thermal equi-
librium of pure quark phase and the transition to the quark-
hadron mixed phase. A more detailed analysis, where the
thermodynamic formalism is developed to much more extent,
is reported in Appendix A. In Ref. [19], the µi should be
implicitly understood as µ∗

i .
In Fig. 6, we give the energy per baryon of SQM as a

function of both density and temperature. The parameters used
for this three-dimensional plot are

√
D = 180 MeV and ms0 =

120 MeV.
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FIG. 6. Density and temperature dependence of the energy per
baryon for the parameters
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D = 180 MeV and ms0 = 120 MeV.
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III. NUCLEAR MATTER IN BRUECKNER THEORY WITH
THREE-BODY FORCES

The BBG theory is among the most advanced microscopic
theories of nuclear matter. In recent years it was recognized
that the three-body forces, which are expected to have a
dominant role at high nuclear density, also affect the saturation
point and, in fact, after including the three-body forces in
the Brueckner theory, the empirical saturation properties are
reproduced quite well [21,39]. In the neutron star interior,
where high baryonic density values are reached, processes like
the excitation of nucleon-antinucleon pairs (Z diagrams) and
nucleonic resonances (together with the production of other
hadrons) sizeably influence the two-body nuclear interaction.
The former process involves the virtual excitation of negative
energy states, which is absent from the standard Brueckner
theory, and thus it represents a pure relativistic effect. From
the comparison with the Dirac-Brueckner theory it turns out
that it is by far the most important relativistic effect [39]. This
process together with nucleon resonances can be incorporated
in the interaction as medium virtual excitations in TBFs. One
could guess that many body (more that three) forces are
also important at high density as large as ρ ≈ 1 fm−3, but
it is hard to imagine that pure baryon matter can exist at so
high density. At lower density two and three-body forces are
dominant because the hole line expansion is, roughly speaking,
an expansion in density powers.

The global effect of TBFs at high density is strongly
repulsive, leading to a remarkable increase of the maximum
mass in the study of the neutron star structure. But also a
correct estimate of the saturation point is important, because,
as we will see below, in strongly asymmetric nuclear matter
the threshold for the transition to mixed nucleon-quark phase
can appear close to the saturation density. Therefore the
corresponding EOS could be used as input for transport-model
simulations of heavy-ion collisions, where strongly isospin-
asymmetric systems are formed in central events.

A. BBG equations

The Brueckner theory extended to TBF is described
elsewhere [20,21]. Here we simply give a brief review of
the BHF approximation at finite temperature T [40–42]. The
starting point is the reaction G matrix, which satisfies the BBG
equation,

G(ω, T ) = υNN + υNN

∑
k1k2

|k1k2〉Qk1,k2 (T )〈k1k2|
ω − εk1 (T ) − εk2 (T )

G(ω, T ),

(32)

where ki ≡ (�ki, σi, τi), denotes the single-particle momentum,
the z component of spin and isospin, respectively, and ω

is the starting energy. The G matrix, the Pauli operator Q, and
the single-particle energies εk(T ) = k2/2m + Uk(T ) depend
on the neutron and proton densities and temperature. The
interaction υNN given by

υNN = V bare
2 + V eff

3 , (33)

where V bare
2 is the bare two-body force (2BF) and V eff

3 is an
effective 2BF derived by the average of the bare TBF on the
third particle as follows

〈�r1�r2|V eff
3 (T )|�r ′

1�r ′
2〉 = 1

4
Tr

∑
n

∫
d�r3d�r ′

3φ
∗
n(�r ′

3)[1 − η(r ′
13,T )]

× [1 − η(r ′
23, T )] × W3(�r ′

1�r ′
2�r ′

3|�r1�r2�r3)

×φn(r3)[1 − η(r13, T )][1 − η(r23, T )].

(34)

Because the defect function η(r, T ) is directly determined
by the solution of the BBG equation [20], V eff

3 must be
calculated self-consistently with the G matrix and the single-
particle potential Uk on the basis of BBG equation. It is clear
from Eq. (34) that the effective force rising from the TBF in
nuclear medium is density and temperature dependent through
the defect function. A detailed description and justification of
the method can be found in Ref. [20], including a discussion
on the averaging procedure. The validity of such a procedure
has been numerically tested in the comparison between the
BHF EOS plus Z diagrams with σ meson exchange and
the Dirac-BHF EOS, which are expected to be equal. The
calculation [39] gives an impressive agreement between the
two EOS’s, although the TBF due to the Z diagrams is averaged
according to Eq. (34).

For V bare
2 we adopt the Argonne V18 two-body interaction

[43]. The TBF is constructed from the meson-exchange current
approach [20] and contains virtual particle [� and N∗(1440)]
excitations and, in addition, relativistic effects induced by the
excitations of particle-antiparticle pairs. This description of the
interaction is not completely consistent because, in principle,
the two and three body forces should be derived from the
same meson parameters, but a recent calculation [39] replacing
Argonne potential with Bonn potential [44] and the TBF built
up with the Bonn meson parameters substantially leads to the
same results.

B. Thermodynamics

Let us start with symmetric nuclear matter. In the BHF
approximation, the thermodynamic potential can be written

�N = �0
N + WL, (35)

�0
N = −T

∑
k

ln
[
1 + e−(εk−µ)/T

]
, (36)

WL = −1

2

∑
k

fk(T )Uk(T ), (37)

where �0
N is the thermodynamic potential for a system of

independent particles with the single-particle spectrum εk =
h̄2k2

2m
+ Uk(T ) and WL is the sum of all linked cluster diagrams

to the lowest order in the hole line expansion [40]. Uk(T ) is
the self-consistent mean field,

Uk(T ) =
∑
k′

〈kk′|G|kk′〉Afk′(T ). (38)

The finite temperature BHF approximation suffers from the
same difficulty as any strongly interacting Fermi system.
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The difficulty is the same as in the CDDM quark model,
because in both cases the single-particle spectrum is density
and temperature dependent. Whereas at T = 0 the density (or
Fermi momentum) can be fixed, at T > 0 the role of density is
taken by chemical potential µ (grand canonical ensemble),
and one is forced to fix the chemical potential at each
iteration due to the presence of the Fermi distribution fk(T ) =
{1 + exp([εk(T ) − µ]/T )}−1. Because this procedure does
not converge [40], one should fix the density and invert the
equation relating density and chemical potential,

ρ = 1

V

∑
k

fk(T ) −
(

∂WL

∂µ

)
T

, (39)

which is not a viable task. The usual approximation is to drop
out the derivative in the previous equation, which corresponds
to the quasiparticle approximation above discussed within the
CDDM quark model. In so doing, the resulting µ̃ looses its
meaning of chemical potential. In this approximations the
energy and entropy densities are given by:

EN = 1

V

∑
k

fk(T )

[
h̄2k2

2m
+ Uk(T )

]
, (40)

SN = − 1

V

∑
k

{fk(T ) ln fk(T ) + [1 − fk(T )] ln[1 − fk(T )]}.

(41)

After one calculates µ̃ in terms of ρ, the thermodynamics is de-
veloped from the free energy density FN(ρ, T ) = EN(ρ, T ) −
T SN (ρ, T ). The free energy per particle, calculated from BHF
approximation, is depicted in Fig. 7. Due to the difficulty
of extending the BHF code to very high temperature an
extrapolation from the real numerical results to high T has been
performed adopting the so called frozen approximation based
on T -independent single-particle spectrum, i.e., the latter is
frozen at T = 0. This turns out to be a good approximation up
to ∼10–20 MeV [45].

The relevant thermodynamical quantities, i.e., chemical
potentials and pressure, are derived from free energy as follows

µ = ∂FN

∂ρ

∣∣∣∣
T

, P = ρ2 d(FN/ρ)

dρ
. (42)

FIG. 7. Isotherms of symmetric nuclear matter (left side) and
pure neutron matter (right side) as a function of the nucleon density
at different temperature.

Let us consider asymmetric nuclear matter with baryon
density ρ = ρn + ρp and asymmetry parameter β = (ρn −
ρp)/ρ, where ρn (ρp) is the neutron (proton) density. The
baryon chemical potentials can be expressed as

µn =
(

∂FN

∂ρn

)
T ,ρp

, µp =
(

∂FN

∂ρp

)
T ,ρn

, (43)

where FN is the free energy density.
Assuming the parabolic law for the latter, we get the simple

expression for the chemical momentum isotopic shift

µn − µp = 4βFsym(ρ, T ), (44)

where Fsym is the symmetry free energy density. The parabolic
law is well satisfied at low density, but at high density
additional terms of the β expansion must be considered.

In neutron star inner core nuclear matter is supposed to be
in β equilibrium under the condition of charge neutrality. As-
suming that only electrons are present (the muon contribution
is negligible), the two preceding conditions require

µe = µn − µp, (45)

QN = ρp − ρe. (46)

QN is the net charge density of nuclear matter. It is zero for
pure neutral nuclear matter. For a given set of (ρ,QN ), we
can solve the chemical potentials µn,µp, and µe from the
above equations. Then all other quantities can be obtained
for a fixed temperature. In other words, all thermodynamic
quantities can be regarded as a function of the nucleon density
ρ, charge density QN , and temperature T . At zero temperature,
for example, the energy density can be regarded as a function
of ρ and QN , i.e., EN = EN (ρ,QN ). With a similar approach
as in the preceding section to obtain Eq. (22), we can easily
show that the baryon chemical and charge chemical potentials
of nuclear matter can be expressed as

∂EN

∂ρn

= µn,
∂EN

∂QN

= µp − µn. (47)

The system turns out to be in a strongly isospin asymmetric
state. The isotherms of free energy and pressure of nuclear
matter in β equilibrium are shown in Fig. 8.

IV. PHASE DIAGRAM STRUCTURE AT ZERO AND FINITE
TEMPERATURES

Let us study the nuclear matter, consisting of nucleons
and electrons, in equilibrium with a gas of u, d, s quarks
and electrons. According to Glendenning [46,47], we assume
the total charge conservation, in addition to total baryon and
energy conservation. Now we first consider the case of zero
temperature and then extend to finite temperatures.

The conservation laws can be imposed by introducing the
quark fraction χ defined as

χ ≡ Vq/V . (48)

where V is the total volume and Vq is the volume occupied by
quarks. Then the total baryon density is

ρt = (1 − χ )ρ + χn, (49)
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FIG. 8. The free energy per baryon (left y axis) and pressure
(right y axis) of nuclear matter in β equilibrium. Three values of the
temperature are considered.

the total electric charge is

Qt = (1 − χ )QN + χQq, (50)

and the total energy density is

Et = (1 − χ )EN + χEq, (51)

where ρ,QN , and EN are, respectively, the baryon number
density, electric charge density, and energy density of nuclear
matter, whereas n,Qq , and Eq are the corresponding quantities
of quark matter. EN is a function of ρ and QN,Eq is a func-
tion of n and Qq , i.e., EN = EN (ρ,QN ), Eq = Eq(n,Qq).
Differentiating Eq. (51), one obtains

dEt = (1 − χ )

(
∂EN

∂ρ
dρ + ∂EN

∂QN

dQN

)

+χ

(
∂Eq

∂n
dn + ∂Eq

∂Qq

dQq

)
+ (Eq − EN )dχ. (52)

However, differentiating Eqs. (49) and (50) at a given pair of
ρt and Qt , we have

(1 − χ )dρ = (ρ − n)dχ − χdn, (53)

(1 − χ )dQN = (QN − Qq)dχ − χdQq. (54)

To minimize Et , we substitute Eqs. (53) and (54) into Eq. (52).
Then setting dEt = 0, we find

∂EN

∂ρ
= ∂Eq

∂n
,

∂EN

∂QN

= ∂Eq

∂Qq

, PN = Pq, (55)

where

PN = −EN + ρ
∂EN

∂ρ
+ QN

∂EN

∂QN

, (56)

Pq = −Eq + n
∂Eq

∂n
+ Qq

∂Eq

∂Qq

. (57)

The conditions in Eq. (55) are nothing but the Gibbs ones, i.e.,
the baryon chemical potential, the charge chemical potential,
and the pressure in nuclear and quark matter should be equal
to each other to minimize the total energy of the mixed phase.

In the previous two sections, we have linked the baryon
chemical potential and charge chemical potential to the
respective constituent particle chemical potentials in Eqs. (22)
and (47). As application of these equalities, we immediately
see that the first two equations in (55) are equivalent to

µn = µu + 2µd,

µp = 2µu + µd.
or

µu = (2µp − µn)/3,

µd = (2µn − µp)/3.
(58)

In general, all other chemical potentials in quark sector
can be related to µu and µd , e.g., µs = µd,µe = µd − µu.
Similarly, all chemical potentials in nuclear sector can be
linked to µn and µp, e.g., µe = µn − µp. Therefore, Eq. (58)
means that we can choose either (µu,µd ) or (µn,µp) as the
two independent chemical potentials. The latter can then be
determined by solving the charge neutrality equation and the
pressure balance equation for a given total baryon number or
a given quark fraction.

At finite temperature, we similarly have the phase equilib-
rium condition

PN = Pq (mechanical), (59)

µN = µq (chemical), (60)

TN = Tq ≡ T (thermodynamical). (61)

The condition in Eq. (61) tells us only that the temperature
in nuclear and quark sectors are equal, so we have a common
temperature T . The chemical equilibrium condition in Eq. (60)
is equivalent to that in Eq. (58). Therefore, we still have only
two independent chemical potentials. For a given total density
ρt at a fixed temperature T , the two independent chemical
potentials and the quark fraction χ can then be determined
by solving the three equations in Eqs. (49), (50) with Qt = 0,
and (59).

Similar to the case at zero temperature, the lower critical
density ρc1, which separates the nuclear and mixed phases, is
defined by χ = 0, whereas the critical density ρc2 between the
mixed and quark phases is determined by χ = 1.

In Fig. 9, we display, for the parameter
√

D = 170 MeV, the
density dependence of the energy per baryon in pure nuclear
matter, in pure quark matter, and in the mixed phase. The
quark fraction has also been depicted in the right y axis. In
Fig. 10 the corresponding pressure is reported. It is seen that the
nuclear matter is the most favorite phase at lower densities, and
the quark matter is the most stable phase at higher densities,
whereas at intermediate densities, the mixed phase has the
lowest energy.

The quark baryon number density n and nuclear density
ρ are also plotted on the right axis of Fig. 10. We see that
the quark density is always higher than the nuclear density.
The transition from hadron phase to mixed phase occurs at the
density a bit less than 0.15 fm−3, well below the saturation
density. But it is hard to observe in terrestrial laboratories,
because the nuclear matter so far realized in exotic nuclei or
heavy-ion collisions is much less neutron rich. The transition
from mixed phase to pure quark phase occurs at the total
density ρt = 0.85 fm−3, where the nuclear density is only
ρ = 0.64 fm−3. The density range of the mixed phase depends
only slightly on the temperature, at least in the temperature
range of interest in neutron stars.

065807-9



G. X. PENG, A. LI, AND U. LOMBARDO PHYSICAL REVIEW C 77, 065807 (2008)

FIG. 9. The free energy per baryon as a function of density in the
nuclear (dashed curves), mixed (solid), and quark phase (dotted). The
quark fraction is also shown on the right axis with dash-dotted lines.
The curves with an open circle are at zero temperature, whereas those
with a full circle are for the temperature T = 20 MeV.

The critical densities depend on the parameter D. In the left
panel of Fig. 11, both nuclear critical density (the solid line,
separating the pure nuclear phase and the mixed phase) and
the quark critical density (the dashed line, delimiting the pure
quark phase) are displayed as a function of D1/2. If D1/2 <

161.6 MeV, the two critical densities approach zero, and
accordingly SQM is absolutely stable. When 161.6 MeV
<D1/2 < 162.5 MeV, the mixed phase can exist at any lower
densities. The nuclear matter is more stable at lower densities
only when D1/2 > 162.5 MeV. If we have only two flavor
quarks in the quark sector, the critical densities are usually
higher. In the same panel we also plot the lower critical
density for the two-flavor case. Because we know in our real
world the two-flavor quark matter does not exist below the
saturation density, D1/2 should be on the right of the first full

FIG. 10. The pressure in nuclear (dashed curve), mixed (solid),
and quark phase (dotted) vs. density at temperature T = 0 (cures with
an open circle) and 20 MeV (cures with an solid circle). The nuclear
density ρ and the quark density n in the mixed phase are also shown
on the right axis.

FIG. 11. (Left panel) The critical density of nuclear matter to
quark matter as a function of the confinement parameter D. The
horizontal line is the nuclear saturation density. The dotted line is the
quark critical density in the case of two-flavor quark system. (Right
panel) Phase diagram for three values of the confinement parameter
and ms0 = 95 MeV.

dot at D1/2 ≈ 168 MeV (the intersection of the dotted and
dot-dashed lines) in Fig. 11. However, to let SQM have a
chance to appear below the saturation density, D1/2 should be
on the left of the second full dot where D1/2 = 171.3 MeV.
In plotting Figs. 9 and 10, we adopt D1/2 = 170 MeV.
The temperature dependence of the lower and higher crit-
ical densities is also plotted in Fig. 11 (right panel). The
two lines at fixed D mark the boundaries of the three
phases.

V. PROPERTIES OF HYBRID STARS

With the equation of state that has the mixed and/or quark
phase derived in Sec. IV, we are ready to study the structure
of hybrid stars by solving the Tolman-Oppenheimer-Volkov
equation

dP

dr
= −GmE

r2

(1 + P/E)(1 + 4πr3P/m)

1 − 2Gm/r
, (62)

where G = 6.707 × 10−45 MeV−2 is the gravitational con-
stant, r is the distance from the center of the star, and E = E(r)
and P = P (r) are the energy density and pressure at the radius
r , respectively. The subsidiary condition is

dm/dr = 4πr2E, (63)

with m = m(r) being the mass within the radius r .
At variance with pure nuclear or quark stars, a hybrid star

contains pure quark matter in the core, pure nuclear matter near
the outer part, and, in between, a mixed phase of the quark and
nuclear matter. In this case, therefore, we must use the EOS in
the whole density range.

The resulting gravitational mass for the hybrid star is
plotted in Fig. 12, as a function of both radius and central
density for four values of the confinement parameter D1/2

of 170, 180, 190, 200 MeV. The main effect of the phase
transition is, as expected, a large reduction of the maximum
mass due to softening of the EOS. Concerning the confinement
parameter D, we observe a slight decrease of the maximum
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FIG. 12. Mass-radius relation of hybrid stars at ms0 = 95 MeV
for four values of the confinement parameter D1/2 of 170, 180, 190,
200 MeV.

mass when the D value becomes smaller, from 1.74M� at
D1/2 = 200 MeV down to 1.6, 1.55, 1.52M� corresponding
to D1/2 = 190, 180, 170 MeV. This can be easily understood
in this way: because the quark phase occurs at a lower
density for smaller values of D, sometimes even less than
the nuclear saturation density (for example only 0.15 fm−3

for D1/2 = 170 MeV), then the quark population of the star
would be more numerous, because the stronger softening of the
EOS may only support less gravitational mass. In particular,
the most favorable case of D1/2 = 180 and 190 MeV, when
the quark confinement appears at around 2ρ0 consistent with
the heavy-ion experiment, the predicted maximum mass can
match very well the S branch of neutron stars mentioned by
Haensel et al. with an error less than 5% [2].

To study the temperature effect on the mass of hybrid stars,
in Fig. 13 we plot the star mass against the star radius or
central density at T = 0 and T = 20 MeV. It is seen that the
temperature influence on the maximum mass is very limited.
Otherwise the effect is a quite strong increase of the NS radius
for a fixed amount of gravitational mass. But the larger the
mass the smaller the radius variation, which is similar to a few
other calculations [48].

FIG. 13. Temperature effect on the mass-radius relation of hybrid
stars.

A. Kaon condensation

The condensation of K− mesons in neutron stars is widely
discussed in the literature (see Refs. [49,50] and references
therein). In dense matter, the condensation of K− mesons is
originated by the reaction

e− → K− + ν. (64)

If the effective mass of the K− drops below the chemical
potential of the electron, this reaction becomes possible in
dense matter, indicating the presence of kaon condensation.
Because almost all the studies of kaon medium properties [51]
suggest the consistent picture that the attraction from nuclear
matter would bring the K− mass down, so the threshold
condition for the onset of K− condensation µe = m∗

K , which
follows from Eq. (64), could be fulfilled in the center of neutron
stars [51] at ρ >∼ 3ρ0. However, the deconfinement phase
transition from the hadronic phase to the quark phase occurs
also at rather low density, which leads to the onset of mixed
phase in neutron stars. It is then very interesting to explore
how the quark deconfinement affects the K− condensation
threshold.

We take the antikaon dispersion relation constrained by
the heavy-ion data as empirical indication of an attractive
antikaon potential in dense matter [51] and combine this
with the BHF model of nuclear matter together with the
above quark model without bag constant to calculate the
effective kaon mass in hybrid stars. The result is illustrated in
Fig. 14, where the effective kaon mass and the electron
chemical potential are shown in normal nuclear matter and
especially in mixed phase for three selected values of the
confinement parameter D. One sees that in normal nuclear
matter, K− medium mass decreases with increasing density
and meets the electron chemical potential at ∼0.6 fm−3

(the solid bullet in Fig. 14), so the kaon condensation would be
present for sure in this case. However, once the quark phase sets
in at the total density of 0.26, 0.4, 0.53 fm−3, respectively, for

FIG. 14. The effective kaon mass and the electron chemical
potential are shown in normal nuclear matter and also in mixed
phase at ms0 = 95 MeV for three selected values of the confinement
parameter D1/2 of 180, 200, 225 MeV.
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D1/2 = 180, 200, 225 MeV, the decreasing speed of the kaon
effective mass in the matter slows down a little bit. In addition,
more conclusively, the electron population begins to decrease
instead, because the electric charge neutrality can be achieved
more efficiently through the charged quarks themselves. As
a result the threshold condition of K− condensation is much
more difficult to satisfy, unless the confinement parameter D is
chosen to be extremely high (at least D1/2 = 225 MeV) when
the presence of quark phase is pushed to very high densities,
then one may expect that m∗

K can finally equal to µe (which
is indicated with a circle). Those high values of D may even
not be realistic, therefore we would like to conclude that the
inclusion of quark phase may make the kaon condensation
impossible in neutron stars or at least hinder it very strongly.

VI. DISCUSSION AND CONCLUSIONS

In this article the neutron star inner structure was studied.
The lack of strong observational constraints demands for
sophisticated models of the NS composition and interaction
mechanisms. In this study we included only baryons and
quarks in equilibrium with leptons and kaons. Because high
baryon densities are reached in the NS interior, NN̄ and
nucleonic excitations are expected to play a major role.
Their effects can be incorporated in a three-body force. The
baryon EOS in weak coupling equilibrium with electrons was
derived within the BBG theory suitably extended so to include
the three-body force. In the quark sector, we adopted the
semiphenomenological CDDM quark model, which exhibits
a confinement mechanism alternative to the crude MIT bag
model. Furthermore, in contrast with the extension of the MIT
model, where the density dependence is introduced artificially
[52], the CDDM quark model shapes its density dependence
in agreement with chiral requirements [15,16].

Hadrons and quarks in β equilibrium were considered at
zero and finite temperature. Because typical temperatures of
protoneutron stars are as high as 40 MeV and beyond, rigorous
thermodynamic potentials have to be derived. This was
possible with the CDDM quark model because of its simplicity,
whereas some approximations are needed to calculate the
hadron phase in the Brueckner theory. The latter is still a
main drawback of the finite temperature microscopic theory
of strongly interacting Fermi systems.

The transition from the low-density hadron phase to the
high-density quark phase in β equilibrium was studied under
the Glendenning hypothesis of total charge neutrality. The
Gibbs construction enabled to follow the evolution of the
mixed hadron-to-quark phase, varying the temperature T and
the confinement parameter D. The EOS, in terms of pressure,
energy density, and chemical composition, was constructed
as a function of T and D. Moreover, the phase diagram
T -D was also depicted. The transition density from hadron
to mixed phase is strongly dependent on the confinement
parameter and, for a small-enough D, it becomes lower than
the nuclear saturation density. However, at that point nuclear
matter is so strongly neutron rich that it hard to imagine
that it can be observed in terrestrial laboratory experiments.
At high temperature the transition density is comparatively
smaller.

The TOV equations were solved in the above-discussed
model of neutron stars. The transition to quark matter produces
a strong reduction of the maximum mass, from M = 2.3M�
to 1.5M� for the lowest value of the confinement parameter
D, but the corresponding radius is not changed, being in
both cases about 10 km. The other M-R configurations lie
in a range R � 10–13 km, depending on the value of D.
With increasing D, the maximum mass increases from 1.5
to 1.7 solar masses. Other quark models have been adopted
to describe the NS transition to a deconfined phase (see,
for instance, Refs. [23,24,48]). Except for the Nambu-Jona
Lasinio model that exhibits instability of neutron stars [24], the
other models point to a softening of the EOS of nuclear matter.
The MIT model, with a density-dependent bag constant,
predicts a β-stable quark phase quite similar to that of our
model [48], but the comparison on the NS structure turns out
to be difficult, because in that calculation the transition to quark
phase is built on top of hyperonized nuclear matter.

The effect of temperature on the maximum mass is negli-
gible up to T = 20 MeV, but as expected the heated system
can support much less gravitational mass in the same volume
for all M-R configurations. Thus, an evolutionary study of
isolated neutron stars would show a strong compression from
the newborn phase to the long era phase as fast as the star cools
down from 40 MeV to approximately zero.

Beyond the confinement parameter, the transition to quark
phase is interrelated to other properties, in particular the
possible onset of kaon condensation. In our analysis we
concluded that the quark phase could not be compatible with
the kaon condensation in neutron stars, or at least could hinder
it very strongly.

The model developed in this article misses some important
aspects. The first one is the effect of neutrinos. Neutrinos play
the major role in new born neutron stars, when they are still
trapped in the interior. In this case the neutronization process is
still hindered and the EOS is that of symmetric nuclear matter.
Moreover, the onset of kaon condensation is shifted to higher
densities [53] and probably kaons have no more any chance to
compete with quarks.

The second one is the inclusion of hyperons and their com-
petition with other mechanisms such as kaon condensation. In
Refs. [48] the hybrid stars are studied by including hyperons in
the hadron phase, which makes the hadron EOS very soft and
brings the maximum mass to M = 1.25M�. The introduction
of the quark phase rises up again the maximum mass to
1.5M�, a value that is consistent with our prediction without
hyperons. However, the appearance of hyperons depends
heavily on the threshold of kaon production. Therefore the
interplay between hyperons and kaons turns out to be quite
important and deserves additional investigation, as soon as
more reliable empirical inputs will be available, especially on
the hyperon-nucleon and hyperon-hyperon interaction.
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APPENDIX: THERMODYNAMICS WITH CONFINEMENT
BY THE DENSITY DEPENDENCE OF

QUARK MASSES

We begin with the fundamental thermodynamic differen-
tiation relation d(V E) = T d(V S) − PdV + ∑

i µid(V ni),
where S is the entropy density and (anti-)particles are assumed
to be uniformly distributed in a volume V . By using the
free energy density F = E − T S, it becomes d(V F ) =
−V SdT − PdV + ∑

i µid(V ni), or, equivalently, dF =
−SdT + (−P − F + ∑

i µini)dV/V + ∑
i µidni. Because

of the uniformity, the free energy density has nothing to do
with the volume. We thus have

P = −F +
∑

i

µini, (A1)

dF = −SdT +
∑

i

µidni. (A2)

At finite temperature, we should consider both particles and
antiparticles, and particles/antiparticles are not always located
below the Fermi energy. Therefore, the net particle number
densities can be expressed as

ni = ni(T ,µ∗
i , mi) = n+

i − n−
i , (A3)

where the superscript + indicates particles and superscript −
signifies antiparticles:

n±
i = gi

∫ ∞

0

1

1 + e(
√

p2+m2
i ∓µ∗

i )/T

p2dp

2π2
. (A4)

In Eqs. (A4) and (A3), µ∗
i are effective chemical potentials

of respective particles. If quark densities are not density and/or
temperature dependent, µ∗

i are nothing but the actual chemical
potentials. In our present case, however, quark masses depend
on both density and temperature to include the strong interac-
tion between quarks. Therefore, the real chemical potentials
should be derived according to fundamental thermodynamic
laws.

Equation (A3) gives, implicitly, µ∗
i as a function of T , ni ,

and mi , i.e.,

µ∗
i = µ∗

i (T , ni,mi). (A5)

To determine the thermodynamic properties, we need to
give a characteristic function. At zero temperature, we use
the energy density in Eq. (2) due to zero entropy. Now
the temperature T and the densities ni are chosen as the
independent system variables; we should, therefore, choose
the free energy in Eq. (29) as the characteristic function.

Differentiation of Eq. (29) gives

dF =
∑

i

[(
∂Fi

∂T
+ ∂Fi

∂µ∗
i

∂µ∗
i

∂T

)
dT

+ ∂Fi

∂µ∗
i

∂µ∗
i

∂ni

dni

(
∂Fi

∂mi

+ ∂Fi

∂µ∗
i

∂µ∗
i

∂mi

)
dmi

]
. (A6)

Applying dmi = ∂mi

∂T
dT + ∑

j
∂mi

∂nj
dnj , then comparing the

corresponding expression with Eq. (A2) we immediately have

µi = ∂Fi

∂µ∗
i

∂µ∗
i

∂ni

+
∑

j

(
∂Fj

∂mj

+ ∂Fj

∂µ∗
j

∂µ∗
j

∂mj

)
∂mj

∂ni

. (A7)

and

S = −
∑

i

[
∂Fi

∂T
+ ∂Fi

∂µ∗
i

∂µ∗
i

∂T
+

(
∂Fi

∂mi

+ ∂Fi

∂µ∗
i

∂µ∗
i

∂mi

)
∂mi

∂T

]

(A8)

To simplify the expressions, we differentiate Eqs. (A3)
and (A5) to get

dni = ∂ni

∂T
dT + ∂ni

∂µ∗
i

dµ∗
i + ∂ni

∂mi

dmi, (A9)

dµ∗
i = ∂µ∗

i

∂T
dT + ∂µ∗

i

∂ni

dni + ∂µ∗
i

∂mi

dmi, (A10)

which implies

∂µ∗
i

∂T

∂ni

∂µ∗
i

= −∂ni

∂T
,

∂µ∗
i

∂ni

∂ni

∂µ∗
i

= −1,

(A11)
∂µ∗

i

∂mi

∂ni

∂µ∗
i

= − ∂ni

∂mi

.

Defining

�0 ≡
∑

i

�0,i(T ,µ∗
i , mi) =

∑
i

[�+
0,i + �−

0,i] (A12)

with

�±
0,i = −giT

2π2

∫ ∞

0
ln[1 + e−(

√
p2+m2

i ∓µ∗
i )/T ]p2dp, (A13)

then we can write Fi = �0,i + µ∗
i ni . Substituting this into

Eq. (A8) and (A7), then applying Eq. (A11) and ni = −∂�0,i/

∂µ∗
i , we have

µi = µ∗
i +

∑
j

∂�0

∂mj

∂mj

∂ni

. (A14)

and

S = −∂�0

∂T
−

∑
i

∂�0

∂mi

∂mi

∂T
. (A15)

Obviously, the free energy density can be given as

F = �0 −
∑

i

µ∗
i

∂�0

∂µ∗
i

. (A16)

The energy density is obtained by E = F + T S, giving

E = �0 −
∑

i

µ∗
i

∂�0

∂µ∗
i

− T
∂�0

∂T
− T

∑
i

∂�0

∂mi

∂mi

∂T
. (A17)

And the pressure is obtained by substituting Eq. (A14) into
Eq. (A1):

P = −�0 +
∑
i,j

ni

∂�0

∂mj

∂mj

∂ni

. (A18)
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Equations (A15)–(A18) here are in complete accordance with
the Eqs. (58)–(61) in Ref. [19] if one regards the µi there as µ∗

i

and � as �0, which were not explicitly stated. The expression
in Eq. (A14) is special in the present article because we need
the real chemical potential to investigate the mixed phase.

The real thermodynamic potential density of the system is

� = F −
∑

i

µini = �0 −
∑
i,j

ni

∂�

∂mj

∂mj

∂ni

. (A19)

In the above derivation, we choose volume V , the tem-
perature T , and the particle number densities ni as the
independent system variables. In this case, the free energy is

the characteristic function from which we get the complete set
of thermodynamic functions. For this purpose we have defined
the intermediate variables µ∗

i in Eqs. (A4) and (30). Because
the quark matter we are considering is a strongly interacting
system, the relations between the chemical potentials and the
densities are, in principle, not the same as those of a free Fermi
gas. However, with the “effective” chemical potentials µ∗

i , the
densities and the free energy are really of the same form as
those of a noninteracting Fermi gas. This is what the “effective”
means. The actual chemical potentials of each type of
particles are determined from the fundamental thermodynamic
equality (A2) that results in Eq. (A14).
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[40] A. Lejeune, P. Grangé. M. Martzolff, and J. Cugnon, Nucl. Phys.

A453, 189 (1986).
[41] M. Baldo, I. Bombaci, L. S. Ferreira, G. Giansiracusa, and

U. Lombardo, Phys. Lett. B215, 1 (1988).
[42] W. Zuo, Z. H. Li, A. Li, and G. C. Lu, Phys. Rev. C 69, 064001

(2004).
[43] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C

51, 38 (1995).

065807-14



DECONFINEMENT PHASE TRANSITION IN HYBRID . . . PHYSICAL REVIEW C 77, 065807 (2008)

[44] R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989); R. Brockmann
and R. Machleidt, Phys. Rev. C 42, 1965 (1990); R. Machleidt,
Phys. Rev. C 63, 024001 (2001).

[45] M. Baldo and L. S. Ferreira, Phys. Rev. C 59, 682
(1999).

[46] N. K. Glendenning, Compact Stars (Springer-Verlag, New York,
1996).

[47] N. K. Glendenning, Phys. Rev. D 46, 1274 (1992).
[48] C. Maieron, M. Baldo, G. F. Burgio, and H.-J. Schulze, Phys.

Rev. D 70, 043010 (2004); O. E. Nicotra, M. Baldo, G. F. Burgio
and H.-J. Schulze, ibid. 74, 123001 (2006).

[49] W. Zuo, A. Li, Z. H. Li, and U. Lombardo, Phys. Rev. C 70,
055802 (2004).

[50] G. E. Brown, C.-H. Lee, and M. Rho, Phys. Rept. 462, 1 (2008).
[51] G. Q. Li, C. H. Lee, and G. E. Brown, Phys. Rev. Lett. 79, 5214

(1997); F. Weber, Prog. Part. Nucl. Phys. 54, 193–288 (2005);
and quoted therein.

[52] G. F. Burgio, M. Baldo, P. K. Sahu, A. B. Santra, and H.-J.
Schulze, Phys. Lett. B562, 19 (2002); G. F. Burgio, M. Baldo,
P. K. Sahu, and H.-J. Schulze, Phys. Rev. C 66, 025802 (2002).

[53] A. Li, G. F. Burgio, U. Lombardo, and W. Zuo, Phys. Rev. C 74,
055801 (2006).

065807-15


