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Abstract
A first principles calculation is used to simulate the variation of the lattice constant, structure,
induced charge-density difference, total energy, and band gap of the hexagonal and cubic
MgZnO semiconductor alloys with different MgO mole fractions. The calculated results show
that the lattice constant and the ratio c/a of the hexagonal MgxZn1−xO diminish as the MgO
mole fraction is increased, which results in the structure gradually deviating from the wurtzite
structure. The angle between the nearest neighbor Zn–O bonds is larger than that between the
nearest neighbor Mg–O bonds. The total energy of the hexagonal alloys is lower than, equal to,
and larger than that of the cubic one in the lower MgO mole fraction, the MgO mole fraction
with 0.69, and the higher MgO mole fraction, respectively. The phase transition is likely to
occur as the MgO mole fraction is increased. The crystal structure will become unstable as
temperature is raised to a critical value for the different MgO mole fractions no matter what
kind the structure is. The band gaps of the hexagonal and cubic MgxZn1−xO alloys are the
direct type and widen as the MgO mole fraction is increased, which demonstrates that both the
structures of the MgxZn1−xO alloys are suitable for fabricating the short wavelength devices.

1. Introduction

Due to the wide band gap of 3.37 eV and large exciton binding
energy of 60 meV at room temperature, ZnO is considered as
a candidate material for the preparation of short wavelength
optoelectronic devices, such as from blue to ultraviolet light
emitting diodes (LEDs) and laser diodes (LDs). It is expected
that the alloying ZnO with MgO can tune the band gap
from 3.37 eV to 7.8 eV (MgO band gap), which is essential
for band gap engineering as well as heterostructure device
design [1]. Since the ionic radius of Mg2+ (0.57 Å) is
close to that of Zn2+ (0.6 Å), the replacement of Zn by Mg
should not cause a significant change in lattice constants.
According to the phase diagram of the ZnO–MgO ternary
system, the thermodynamic solubility limit of MgO in ZnO
is less than 4 mol% [2]. Recently, it has been reported that
MgZnO films can be grown with MgO compositions up to
33 mol% by using nonequilibrium growth [3–5]. Up to now
most studies have focused on the growth and the optical and
electrical properties of MgxZn1−xO layer or MgxZn1−xO/ZnO
superlattices. However, less attention was paid to the crystal
structure.

Generally, a large crystal structure difference between
the wurtzite-hexagonal ZnO (a = 3.25 Å and c = 5.21
Å) and the rock-salt-cubic MgO (a = 4.21 Å) can cause
unstable phase mixing [3, 6]. It is important to understand
the structural characteristics of MgxZn1−xO varying with MgO
mole fraction. Based on density functional theory (DFT) and
some calculative methods of the band gap, ab initio simulations
have been proved to be useful for the accurate prediction of
the crystal characteristics, such as lattice constants [7, 8],
phase structure stability [9, 10] and so on. In this work, a
first principles calculation is used to investigate the structure
stability and some physical parameters of MgZnO alloys with
different MgO mole fractions.

2. Model and calculation

The supercells of hexagonal and cubic MgxZn1−xO alloys
with homogenous distribution are constructed, as shown in
figure 1. The hexagonal and cubic MgxZn1−xO alloys in the
whole composition range are accomplished by increasing the
number of the Mg atoms to understand the influence of the
different MgO mole fractions on the structure characteristics.
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Figure 1. The structural models of the hexagonal (a) and cubic (b)
MgxZn1−xOMgxZn1−xO alloys.

Moreover, the basic characteristics of hexagonal and cubic
structures with homogenous distribution of Mg at the same
MgO mole fraction are compared in order to know the structure
stability.

The Vienna ab initio simulation package (VASP) is used
to calculate in this paper. VASP is a complex package for
performing ab initio quantum-mechanical molecular dynamic
(MD) simulations by using pseudopotentials and a plane
wave basis set. Ionic potentials are represented by ultrasoft
pseudopotentials with the Perdew–Wang 1991 (PW1991)
generalized gradient approximation (GGA) correction
[11, 12]. The wavefunctions are expressed as a supposition of
plane waves with a cut-off energy of 395.99 eV. The approach
implemented in VASP is based on an exact evaluation of
the instantaneous electronic ground states at each MD-step
using efficient matrix diagonalization schemes and an efficient
Pulay/Broyden charge density mixing. These techniques
avoid all problems possibly occurring in the original Car–
Parrinello method [13–15]. The geometry optimizations are
preformed by relaxing all the degrees of freedom using the
conjugate gradient algorithm. The relaxation convergence is
1 × 10−3 eV and 1 × 10−4 eV for ions and electrons,

Table 1. The calculated lattice constants of the hexagonal and cubic
MgxZn1−xO alloys.

Lattice constant (Å)

Hexagonal Cubic
MgxZn1−xO alloys MgxZn1−xO alloys

Mg mole fraction a axis c axis a axis c axis

0.0000 3.2682 5.3340 4.3300 4.3300
0.0625 3.2656 5.2941 4.3244 4.3208
0.1250 3.2630 5.2783 4.3188 4.3144
0.1875 3.2589 5.2764 4.3131 4.3118
0.2500 3.2569 5.2610 4.3075 4.3078
0.3125 3.2553 5.2498 4.3019 4.3027
0.3750 3.2527 5.2446 4.2963 4.2965
0.4375 3.2501 5.2338 4.2906 4.3186
0.5000 3.2475 5.2182 4.2850 4.2879
0.5625 3.2449 5.2093 4.2794 4.2842
0.6250 3.2424 5.2009 4.2738 4.2753
0.6875 3.2398 5.1774 4.2681 4.2691
0.7500 3.2371 5.1623 4.2625 4.2642
0.8125 3.2325 5.1466 4.2569 4.2661
0.8750 3.2320 5.1293 4.2513 4.2565
0.9375 3.2294 5.0969 4.2456 4.2488
1.000 3.2268 5.0449 4.2400 4.2400

respectively. A 4 × 4 × 4 gamma centred Monkhost–Pack
mesh [16] is used to sample the Brillouin zone. Equations of
motion at 1136 K and 1500 K have been integrated numerically
by using a time step of 4 fs. The MD run has been done in the
NVT ensemble.

3. Results and discussion

By comparing the calculated data of the supercells of
MgxZn1−xO with 64 and 32 atoms, the changes of their basic
parameters, such as the lattice constant, band gap and so on,
have not been observed within computing error (less than 1%).
Thus, the supercell with 32 atoms is used in the following
calculation.

The lattice constants of the hexagonal and cubic
MgxZn1−xO alloys with homogenous distribution of Mg are
calculated in the whole composition range. The calculated
lattice constants of the hexagonal and cubic MgxZn1−xO alloys
with different MgO mole fractions are listed in table 1. It is
seen that the lattice constants in the a and c axes of the two
structures diminish as the MgO mole fraction is increased.
This variation trend agrees with the experiment results of the
hexagonal and cubic MgxZn1−xO alloys [3, 17]. Generally,
the variation of the lattice constant is attributable to the bond
flex of anion and cation, radius difference of substitutional ion,
and change of the crystal structure. Since the ionic radius of
Mg2+ (0.57 Å) is smaller than that of Zn2+ (0.6 Å), the lattice
constant decreases as the MgO mole fraction is increased. At
the same time, it is interesting to note that when the MgO
mole fraction is increased, the lattice constant will increase,
because Mg–O bond is longer than Zn–O bond. On the other
hand, the increase of the MgO mole fraction may cause the
structure adjustment, which results in the decrease of the lattice
constant.
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Figure 2. The charge-density differences on a cross section of the
hexagonal MgZnO alloy.

Because the stable phase of ZnO is the hexagonal structure
while that of the MgO is the cubic one, the structure phase
should change from hexagonal to cubic when the MgO mole
fraction exceeds some value. It is found that the c/a ratio
of the hexagonal MgxZn1−xO diminishes as the MgO mole
fraction is increased. Simultaneously, by comparing the
atom positions before and after relaxation, it can be seen
that the atoms surrounding substitutional Mg atom relax
outward. The relaxation magnitude increases with the increase
of the MgO mole fraction and reaches up to 1.5–2.0% and
1.2–1.6% along the a and c axes, respectively. As a result of the
relaxation anisotropy, the angle between the bonds changes up
to 9◦ and causes MgxZn1−xO deviating from wurtzite structure
gradually. The above discussion shows that there is a tendency,
i.e., the configuration of the MgxZn1−xO alloys deviates from
the hexagonal as the MgO mole fraction is increased.

The induced charge-density differences are calculated
to understand the structure deviation. Figure 2 shows a
cross section of the induced charge-density differences for the
hexagonal MgxZn1−xO alloys, where the regions of increased
and decreased charge densities are represented by the solid and
dashed lines, respectively. It is found that there is a spike of
the distribution of the induced charge-density differences along
the Mg–O bond while it is invisible along the Zn–O bond. It is
reasonable that when the Mg and Zn atoms respectively bond
to the O atom, the Mg atom will lose electrons more easily
than the Zn atom because the Pauling electronegativities, 1.31,
of Mg is smaller than that, 1.65, of the Zn. At the same time,
it can be seen that the angle between the nearest neighbor
Zn–O bonds is larger than that between the nearest neighbor
Mg–O bonds. It can be attributed to the stronger interaction
between the second nearest neighbor Mg–O bonds due to the
stronger polarity of the Mg–O bonds. In the light of the above

Figure 3. The total energies of the hexagonal (square) and cubic
(circular) MgxZn1−xO alloys.

discussion, one can come to a conclusion: the crystal structure
will deviate from wurtzite gradually as the quantity of the
Mg–O bond is increased.

Furthermore, the total energy of the system reduces as
the MgO mole fraction is increased. Figure 3 shows the total
energy of the hexagonal and cubic MgxZn1−xO alloys with the
different values of x varying from 0.000 to 1.000. Since the
decreasing rate of the total energy of the hexagonal structure
is smaller than that of the cubic one, the total energy of the
hexagonal alloys is lower than, equal to, and larger than that
of the cubic one in the lower MgO mole fraction, the MgO
mole fraction with 0.69, and the higher MgO mole fraction,
respectively. This indicates that the hexagonal structure is
more stable when the MgO mole fraction is smaller than 0.69,
while the cubic structure is more stable when the MgO mole
fraction is larger than 0.69. Generally, the change of the
crystal structure usually relates to the phase transition or phase
separation as the MgO mole fraction is increased. In order
to know the structural variation of the hexagonal and cubic
MgxZn1−xO alloys, one should further calculate the molar
mixing free energies of the hexagonal and cubic MgxZn1−xO
alloys, which can be approximately expressed as

�F(x) = FMgxZn1−xO − [xFMgO + (1 − x)FZnO], (1)

where FMgxZn1−xO, FMgO and FZnO represent the free energy
of the alloys, MgO and ZnO, respectively. The mixing
free energy is determined by the total energy at 0 K. Since
the sign and magnitude of the mixing free energy of the
MgxZn1−xO system can be used to infer the structure stability,
the composition dependences of �F(x) of the hexagonal and
cubic MgxZn1−xO alloys are shown in figure 4. The curves
of �F(x) exhibit that there is only a minimum in the whole
composition range for both the hexagonal and the cubic
structure. As we know, the phase separation is possibly to
occur if the curves of �F(x) have minima at ZnO and MgO.
In our case, the possibility of the phase transition will be
higher than that of the phase separation as the MgO mole
fraction is increased. It is believed that when the MgO mole
fraction is increased, the structure of the MgxZn1−xO alloy
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Table 2. The total energies of the hexagonal and cubic MgxZn1−xO alloys in the different temperatures.

Total energy (eV)

Hexagonal structure Cubic structure

Temperature (K) x = 0.6250 x = 0.7500 x = 0.6250 x = 0.7500

0 −174.2802 −179.9414 −173.6715 −180.2395
1136 −169.1579 −172.1241 −169.5800 −172.8904
1500 −167.4517 −171.6798 −167.6941 −171.6020
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Figure 4. The molar mixing free energies of the hexagonal (a) and
cubic (b) MgxZn1−xO alloys.

will change, and consequently, the phase transition from the
wurtzite to cubic structure may occur. It has been reported
[3, 18] that by varying the MgO composition, the band gap
can be tuned from 3.3 eV to 7.8 eV for the hexagonal and cubic
MgxZn1−xO alloys, extending the cutoff wavelength from
UV-A (320–400 nm) to UV-B (280–320 nm) and UV-C (200–
280 nm) regions. Thus, choosing a reasonable MgO mole
fraction, one can obtain the right structure of the MgxZn1−xO
alloys, which have many applications such as solar UV
radiation, ultra-high temperature flame detection and airborne
missile warning systems.

Generally, the phase stability is also closely related to the
temperature as well as alloy composition. The phase stability

of the hexagonal and cubic structures is compared with the
calculated total energies of the different MgO mole fractions
of 0.6250 and 0.7500 at different temperatures. Because the
energy fluctuation of this small simulated cell will be inevitably
high, the energies from ab initio MD are averaged over
250 time steps for high temperature to reduce the calculation
error less than 1%. As listed in table 2, the total energy
for the same structure with the same composition raises as the
temperature is increased due to the enhancement of the thermal
motion of atoms. The total energy of the cubic structure turns
out to be smaller than that of the hexagonal one with the MgO
mole fraction of 0.6250 at the temperature of 1136 K, even
though it is larger at the temperature of 0 K. For the higher
MgO mole fraction of 0.7500, the turning point of the total
energy occurs at the higher temperature of 1500 K. According
to the fundamental relation of thermodynamics, one has

�G = �U − T �S + P�V, (2)

where G, U, T, S, P and V are the Gibbs free energy,
total energy, temperature, entropy, pressure and volume,
respectively. Since the simulated crystals are assumed in
vacuum (P = 0), equation (2) can be simplified as

�G = �U − T �S. (3)

The contribution of entropy comes into play an important role
at high temperatures. As we know, the entropy as well as the
total energy will increase as the temperature rises. As a result,
the Gibbs free energy of both the structures will become large.
It means that the crystal structure maybe become unstable
as temperature rises to a critical value no matter what kind
of the structure is. Although the critical values of the total
energies at different high temperatures have been calculated,
the critical values of entropies of the two phase structures
with different MgO mole fractions are impossible to calculate
with VASP (only the electronic entropy is included in S and the
configurational and vibrational contributions are not accounted
for). According to the experimental observation, the structural
transition of MgxZn1−xO from hexagonal to cubic phase occurs
in the temperature range of 750 ◦C to room temperature for
MgO mole fraction x = 0.5 [19], while the calculated total
energy of the hexagonal structure is lower than that of the cubic
one, which indicates that the entropy of the cubic structure
may be larger than that of the hexagonal one at the same high
temperature.

It is interesting to note that the band gap of the hexagonal
alloys is wider than that of the cubic one with the lower MgO
mole fraction and changeovers to the narrower one at the
MgO mole fraction of 0.69 at 0 K. This is likely to imply
that the electronic structures of MgxZn1−xO have a critical
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(a)

(b)

Figure 5. The band structures of the hexagonal (a) and cubic (b)
MgZnO alloys.

point. To understand the composition dependence of the
electronic structure, the band structures of the hexagonal and
cubic MgxZn1−xO are calculated at 0 K. The composition
dependences of band gaps of the hexagonal and cubic
MgxZn1−xO alloys enlarge as the MgO mole fraction is
increased. It agrees with the experimental results [20, 21],
which show that the band gaps of the hexagonal and cubic
MgxZn1−xO alloys increase about 1.01 eV and 2.40 eV when x
is varied form 0 to 0.4 and from 0.6 to 1, respectively. However,
the calculated band gaps in both the structures are smaller
than the experimental values due to the underestimation of the
band gap with the local-density approximation (LDA) [22],
the raise of the valence band with GGA [20] and the strong
locality of the d states of Zn. Furthermore, the top of the
valence band and the bottom of the conduction band appear at
the same k-point of � for both the structures no matter what the
mole fraction of MgO is, as show in figure 5, which indicates
that both structures of MgxZn1−xO are the direct band-gap
semiconductors. Since the direct band-gap semiconductors
have more advantages for high emission possibility, the
characteristics of direct band gap for both structures allow
people to select different types of structures with the different
MgO mole fractions to fabricate optoelectronic devices.

It is well known that the more flexural the top of the
valence band and the bottom of the conduction band are, the
less the effective masses of holes and electrons, and the higher
the mobilities of holes and electrons. The calculated band
structures illustrate that the curvatures of the top of the valence
band and the bottom of the conduction band gradually become
small as the MgO mole fraction is increased. It means that the
mobility in the alloys will fall when the MgO mole fraction is
increased. For this reason, the change of the mobility must be
taken into account when the higher MgO mole fraction is used
to modulate the band gap.

4. Conclusions

VASP has been used to investigate the various performances
of the hexagonal and cubic MgZnO semiconductor alloys with
different MgO mole fractions. The calculated results show that
an increase of the MgO mole fraction will reduce the lattice
constant and the ratio c/a of the hexagonal MgxZn1−xO, and
consequently, result in the structure of MgxZn1−xO deviating
from wurtzite structure gradually. The structure deviation can
be attributed to the stronger interaction between the second
nearest neighbor Mg–O bonds due to the stronger polarity of
the Mg–O bonds. When the MgO mole fraction is increased,
the total energies of both the structures of the MgxZn1−xO
alloys reduce. The reduction rate of the total energy of the
cubic alloy is larger than that of the hexagonal one and the total
energies of both the structures are the same for the MgO mole
fraction of 0.69. This indicates that the hexagonal structure
is more stable for a small MgO mole fraction while the cubic
one is more stable for a large MgO mole fraction. The molar
mixing free energies of the hexagonal and cubic MgxZn1−xO
alloys are calculated to investigate the possibility of the phase
transition or phase separation. The results imply that the
phase transition is likely to occur as the MgO mole fraction
is increased. The phase transitions between the hexagonal
and cubic structures can be evaluated by calculating the total
energies of the different MgO mole fractions at different
temperatures. The crystal structure will become unstable as
temperature rises to a critical value for the different MgO mole
fractions no matter what kind the structure is. The growth
temperature should be lower than the critical point and the
MgO mole fraction should be away from 0.69 in order to grow
MgxZn1−xO alloys free from phase mixing.
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