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Phase synchronization in discrete chaotic systems
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A simple and instantaneous phase definition is proposed for the study of discrete maps by taking the change
of chaotic signal at each iteration time as a vector. With such a definition, an exact phase can be calculated at
any iteration time for any scalar signal or two-dimensional vector of interest. As examples, the phase synchro-
nization behavior is discussed for a two-dimensional globally coupled map lattice and a one-way coupled map
lattice.

PACS number~s!: 05.45.2a, 47.54.1r
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Recently, the concept of phase, as well as phase sync
nization ~PS!, has been generalized to the study of chao
systems@1,2#. In particular, PS has been studied in nonline
neural @3,4#, cardiac@5#, and ecological systems@6,7#. It is
also observed in oscillations between respiratory and car
rhythms @5# or between brain activity and the signals fro
the flexor muscle@3#. The subthreshold chaotic oscillation o
electrically coupled inferior olivary neuronsin vitro has also
been examined from the view of PS@4#. The results of these
studies suggest that PS plays an important role in the be
ior of chaotic systems.

The PS of autonomous continuous-time systems is usu
defined as the appearance of a certain relation between
phases of the interacting systems while the amplitudes
main chaotic and are, in general, noncorrelated. As m
systems under study are discrete-time systems, it is impo
if the concept of phase can be extended to discrete-time m
so that their PS behavior can be investigated. In Ref.@8#, PS
has been discussed for discrete maps by checking if the
tem scalar signals simultaneously show local maxima
minima. With this process, the phase is only defined at
local extremes of scalar signals and does not apply to m
dimensional vectors.

In this paper, a simple and instantaneous phase defin
is proposed for the study of discrete maps. With such a d
nition, an exact phase can be calculated at any iteration
for any scalar signal or two-dimensional vector of intere
As a result, PS can be discussed in a more flexible and q
titative manner.

We first consider a discrete mapxY (t11)5FY „xY (t)… where
xY (t)5@x1(t),x2(t),...,xN(t)# is the state vector andN is the
dimension of the map. The phase of a two-dimensional v
tor in thes12s2 plane is defined as

f~ t11!5arctanS s2~ t11!2s2~ t !

s1~ t11!2s1~ t ! D , ~1!

c~ t !5f~ t !12pm~ t !; ~2!

i is the lattice site,t is the iteration time, andC(t) is the
phase value. The signalss1,2 can be any linear combinatio
of the elements inxY (t), i.e.,s1,25( i 51

N ai
1,2xi with ai

1,2PR. If
we want to discuss the phase of a scalar signal, e.g.,s2(t),
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we can simply lets1(t)5t. The definition of the phase vari
ablef(t) in Eq. ~1! indicates that the chaotic signal at tim
t is taken as the center of that at timet11. In order to make
the phase continue to increase in a specific direction,
integerm(t) is chosen as

m~ t11!5H m~ t !11 if f~ t11!,f~ t !

m~ t ! otherwise
, t51,2,3,...

~3!

with m(1)50.
The mechanism caused by this definition is shown in Fi

1~a! and~b!. In Fig. 1~a!, s(t) is a vector on thes12s2 plane
while r is a measure of the length of this vector. The phas
independent ofr. This is further illustrated in Fig. 1~b! in
which the starting points of all the vectors are at the orig
Thus our phase definition only concerns the angle betw
the current vector and thes1 axis and does not depend on th
length of the vector. With this process, the PS of discr
maps is defined as the appearance of a certain relation
tween the phases of the coupled maps while the distan
between them remain chaotic.

In the rest of this paper, the PS phenomenon in two ty
cal systems is investigated. In the first example, we rec
sider the PS states of the global coupled map lattices stu
in Ref. @8#, where the signal of interest is a scalar. Simulati
results show that our definition of phase is consistent w
that in Ref.@8#. In the second example, we examine the PS
two one-way coupled map lattices, where the signal of int
est is a two-dimensional vector.

Example 1.We first consider an ensemble ofN coupled
one-dimensional map lattices, each formed byL logistic
maps @8#. In this system, the statexk

i of the kth map (k
51,...,L) in the i th lattice (i 51,...,N) evolves through itera-
tions according to the following formula:

xk
i ~ t11!5~122«122«2! f k

i
„xk

i ~ t !…1«1f k
i
„xk21

i ~ t !…

1«1f k
i
„xk11

i ~ t !…1«2f k
i
„Mi 21~ t !…

1«2f k
i
„Mi 11~ t !…. ~4!
2559 ©2000 The American Physical Society
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In Eq. ~4!, «1 and«2 are the coupling parameters,f k
i is the

logistic map defined byf k
i (x)5mk

i x(12x) with 0,mk
i <4

@8#, and Mi(t)5(1/L) (
k51

L

xk
i (t) is the mean field of thei th

lattice at timet.
If «15«250, Eq. ~4! describes the dynamics ofN3L

independent logistic maps. However, if«1Þ0 and «250,
this system can be considered as a collection ofN indepen-
dent one-dimensional lattices of logistic maps. The maps
coupled within each lattice by means of a diffusive ter
Furthermore, if«2Þ0, each lattice is coupled to its neare
two lattices with the mean field. For all of the elemen
within a lattice, the values of such couplings are the sa
e.g.,G i(t)5«2@ f k

i
„Mi 21(t)…1 f k

i
„Mi 11(t)…#.

Due to the coupling ofG i , the collective PS can occu
between the mean fieldsMi(t) and M j (t) ( iÞ j ) while all
the mapsxk

i (t) and xk
j (t) (k51,...,L) are uncorrelated to

each other@8#. It has also been observed that there are t
PS clusters of lattices. In each PS cluster, the mean field
lattices simultaneously show local maxima or minima. W
our phase definition, this phenomenon can be clearly
served. Furthermore, the phase states can be calculate
stantaneously at any discrete time. This characteristic of
phase definition allows for a more detailed analysis of
system.

All the results presented here correspond to the condi
that m54, N5L5100. The phase statec i(t) of the scalar
mean field Mi(t) is calculated using Eqs.~1!–~3! with

FIG. 1. The mechanism caused by the proposed phase de
tion. ~a! c(t), c(t11), c(t12), andc(t13) are the phase state
of the pointss(t), s(t11), s(t12), ands(t13) on thes12s2

plane whiler is the distance between two points.~b! All the phase
states are considered at a specific direction~counterclockwise! with
respect to the origin.
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s1(t)5t representing the iterating time ands2(t)5Mi(t).
The average frequency is defined asV i5c i(t)/t with t→`
@1#. In computer simulations,t55000 is large enough to ob
tain a precise value ofV. Thereforet is always set to 5000 in
the calculation ofV unless otherwise specified. First we l
«150 and«2 is allowed to increase from 0 to 0.22 in a fixe
step size. A plot ofV i versus«2 is given in Fig. 2~a!. If two
or more signals have the same value ofV, they are consid-
ered to be in PS state. The iterations start from random in
conditions. The initial 1000 iterations are omitted and t
phases ofM in the subsequent 5000 iterations are calculat
If more than 40 signals ofM have the same value ofV, the
points are shown in black. Otherwise, they are plotted
gray. The phase begins in an unsynchronized state. Whe«2
is in the neighborhood of 0.02, there is a narrow regionw in
which all the mean fieldsM show two clusters. It indicates
that there are two clusters of PS states. This phenome
will be discussed in detail in the following paragraph.
further increase in«2 causes all the mean fields to be desy
chronized. When«2.0.04, most of the fieldsM begin to
converge to a cluster of synchronization, except some latt

ni-

FIG. 2. Phase phenomenon among the global signals.~a! «2

versus the average frequenciesV, with «150. Regionw corre-
sponds to the two clusters of the PS phenomenon. The step si
D«250.531023. ~b! An enlargement of regionw with D«250.5
31024. ~c! «1 versusV with «250.021 andD«150.531024.
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indicated by the gray points. When«2 exceeds 0.13, the
average frequencies of most signals approach zero. From
figure, we find that the PS in discrete maps is different fr
that in autonomous systems: in discrete map, alternating
tervals of PS or non-PS phenomenon can be observed a
coupled strength is increased. However, in the autonom
system, there exists a critical threshold of the coupl
strength to switch incrementally from non-PS to PS to f
synchronization@10#.

The regionw in Fig. 2~a! is a region of weak synchroni
zation @8#. An enlargement of this region can be found
Fig. 2~b!. With the increase of«2 , the system evolves from
the unsynchronized state to two clusters of PS states and
back to the unsynchronized state. Our results are consis
with those reported in Ref.@8# but provide a clearer overview
of the characteristics of PS.

We further investigate the two clusters of PS states
raising the value of«1 . Let «250.021 and«1 is increased
from 0 to 0.022. The simulation results are shown in F
2~c!. In this figure, it is clearly shown that the two-cluster P
phenomenon is destroyed by the increase of«1 . This implies
that an increase in coupled strength can destroy the PS
nomenon among mean fields.

Example 2.The one-way coupled map lattices have be
investigated extensively@9#. The PS behavior between tw
two-dimensional vectors is discussed here. The map latt
are described by

xi~ t11!5~12«1! f 1„xi~ t !…

1«1f 1„xi 11~ t !…1c„x1~ t !2y1~ t !…, ~5!

yi~ t11!5~12«2! f 2„xi~ t !…

1«2f 2„xi 11~ t !…1c„y1~ t !2x1~ t !…, ~6!

wherei P(1,2,...,N) andc represents the strength of couplin
between the two nonidentical systems. The parameters«1
and «2 represent the strength of coupling among lattices
the two systems, respectively. Here we chooseN510,
f 1(x)5a1x(12x), and f 2(x)5a2x(12x) with a153.7,
a253.8, and«15«250.6.

In this example, the phasecx(t) is defined for the two-
dimensional vectors on thex12x2 plane, i.e., withs15x1
and s25x2 in Eq. ~1!; while cy(t) is on they12y2 plane.
Note that similar results are obtained with different choic
of s1 and s2 . The initial condition of the two one-way
coupled map lattices is randomly set. After the first 10 0
iterations are omitted, the phase differenceu(t)5cx(t)
2cy(t) is calculated and plotted in the outer part of F
3~a!. When c50.01, the system is in an unsynchroniz
state. But whenc50.06, the two coupled map lattice
achieve PS. However, this synchronization cannot be m
tained if c continues to increase. For example, whenc
50.08, the PS is destroyed and the phase difference
creases to negative direction. In the inner part of Fig. 3~a!,
the trajectory of Eq.~5! on thex12x2 plane withc50 is
plotted. Although the PS behavior is generalized fro
coupled chaotic oscillators to coupled maps, there is a dif
ence between these two kinds of systems. In order to de
the phase, the trajectory of each coupled chaotic oscillato
normally required to have only a single rotation center@1,2#.
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However, as the trajectory of the discrete map is alwa
formed by a large number of discrete dots without any ro
tion, there is no such restriction.

In order to investigate the characteristics of PS, a plot
the trajectories on ther x2r y plane is shown in Fig. 3~b!
with c50.06. Herer x,y are the distances between two itera
ing points, as shown in Fig. 1~a!. If the two coupled map
lattices are in full synchronization, there will be a straig
line corresponding tor x5r y in the plot. However, this is no
found and so the two systems are in PS state only.

The Lyapunov exponents are calculated and plotted
this example because they can reflect how the PS mani
itself in a chaotic system@1#. Figure 4~a! shows the two
largest Lyapunov exponentsl1 and l2 of the two coupled
map lattices of Eqs.~5! and~6! against the couplingc. Figure

FIG. 3. Plots of simulation results with two one-way coupl
map lattices.~a! The inner plot shows one of the attractors on t
x12x2 plane while the outer plot is phase differenceu(t) versus
time t at different values of coupled strength.~b! The trajectories on
the r x2r y plane withc50.06.

FIG. 4. Plots of simulation results with two coupled map la
tices.~a! The two largest Lyapunov exponentsl1 andl2 of the two
coupled map lattices, and~b! the average frequency differenceD V
vs the couplingc.
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4~b! is a plot of the average frequency difference of the t
phases versus the couplingc. Here the average frequenc
difference is defined asDV5V12V25(c12c2)/t with t
→`. Similar to the calculation ofV, t55000 is large
enough to obtain a precise value. WhenDV→0, it indicates
the occurrence of PS between the two vectors. From
relations between Figs. 4~a! and~b!, it can be found that PS
always corresponds to two largest Lyapunov exponents
ymptotically approaching zero. For example, whenc50.06,
the system is in PS and the calculation shows thatl155.3
31024 and l2524.9631023. On the other hand, non-P
is indicated by the case when both of the two larg
Lyapunov exponents are positive and large. Therefore the
phenomenon in discrete maps is based on weak cha
states. In strong chaotic states such as hyperchaotic s
the two interacting systems cannot achieve PS.

In conclusion, a definition of phase is given for any sca
signal or two-dimensional vector of the discrete map at a
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discrete time. With such a definition, we show that PS c
emerge in the collective behavior of an ensemble of cha
coupled map lattices due to the mean field interaction. O
or two-cluster PS phenomenon is observed clearly with w
coupled strength. The results are consistent with those
pected from an existing phase definition based on the st
tics extracted from the time series generated by the sys
iterations@8#. Furthermore, the investigation on the PS ph
nomenon of two interacting one-way coupled systems sh
that PS is observed intermittently. From the analysis
Lyapunov exponents, we have found that the PS phen
enon not only corresponds to weak coupled strength of
two interacting systems, but also relates to the weak cha
states of the systems.
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