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Simple approach to the creation of a strange nonchaotic attractor in any chaotic system
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A simple approach to the creation of a strange nonchaotic attractor in any chaotic system is described. The
main idea is to control the parameter of the system in such a manner that the system dynamics is expanding at
some times, but converging at others. With this approach, a strange nonchaotic attractor can be found in a large
region in the parameter space near the boundaries between chaotic and regular phases or within the chaotic
region far from the regular one. The maximum nontrivial Lyapunov exponent of the system can pass through
zero nonsmoothly and cannot be fitted by a linear functi61.063-651X99)13805-4

PACS numbd(s): 05.45-a

[. INTRODUCTION gions of chaotic dynamics in the phase space of the autono-
mous system. Kapitanigl24] describes a control technique
Recently there has been much interest in the study ofo generate the strange nonchaotic trajectory by making
strange nonchaotic attracto(SNAs) that are commonly small changes in the parameters of a three-dimensional sys-
found in quasiperiodically forced systemis—10. The ge- tem. The method is applicable to systems whose periodic
ometry of an SNA exhibits a fractal structure, but its typical attractor has a strange repeller that exhibits transient chaos.
trajectories do not show sensitive dependence on initial cornin Ref. [25], the implications of fluctuations of finite-time
ditions. SNAs have been observed in a number of physicalyapunov exponents are discussed for nonchaotic systems.
systemg11-13 and one of their potential applications is for For a nonchaotic system driven by a low-frequency quasip-
secure communicatiorjd44,15. eriodical force, the resultant attractor is strange but noncha-
One of the major research topics on SNAs is the study obtic if its finite-time Lyapunov exponents largely fluctuate to
dynamical routes for the creation of the SNA. A mechanismbe positive repeatedly.
is investigated by Heagy and Hamnj&b]. In quasiperiodi- SNAs can be quantitatively characterized by a variety of
cally driven maps, when a period-doubled torus collides withmethods, including the estimation of Lyapunov exponents
its unstable parent torus, it becomes extremely wrinkled andnd fractal dimensiofil,2,26, the spectral propertid®,27,
develops into a fractal set at the collision, while the corre-the phase-sensitivity exponefrit7,28, and the examination
sponding Lyapunov exponent remains negative. Feedal.  of time seried29]. One of the important observations is that
[17] find that the collision between a stable torus and artypical trajectories of an SNA are characterized by finite-
unstable one at a dense set of points can lead to an SNAime Lyapunov exponents that can be positive for sufficiently
Kaneko and Nishikawf18,19 describe the fractalization of long time intervals, although the time-independent Lyapunov
a torus, namely, the increasing wrinkling of tori that leads toexponent is asymptotically negativied7,22,23,25,2B In
the appearance of an SNA without any interaction with ageneral, the phase space of a dynamical system can be di-
nearby unstable periodic orbit. Yalcinkaya and [20,21]  vided into three typical regions where a trajectory either ex-
show that, for systems with an invariant subspace in whiclperiences pure expansion, pure contraction, or remains un-
there is a torus, the loss of the transverse stability of the torushanged. In particular, the pure expandifgpntracting
can lead to the birth of an SNA. A physical phenomenonregion is the region where an infinitesimal vector in the tan-
accompanying this route to SNAs is the on-off intermittency.gent space expandgontract$ under the dynamics. If the
Prasadet al[22,23 investigate an intermittency route to trajectory of a nonchaotic system runs into the expanding
SNAs that arises in the neighborhood of a saddle-node bifurregion during a time intervat, the corresponding dynamics
cation, whereby a strange attractor is replaced by a periodis expanding and the timeLyapunov exponent is positive.
torus attractor. These repofts6—23 describe the dynamical Meanwhile, the quasiperiodic for¢ee., the two incommen-
mechanisms for the creation of SNAs that typically occur insurate sine functions in continuous equations or an irrational-
a narrow vicinity along the transition boundary of the chaoticfrequency sine function in a discrete maglways provides
and quasiperiodic phas€83]. It is shown that an SNA can different values to the system at different times. These values
also appear in a narrow area within the periodic regionare enlarged individually during different expanding time in-
[5,17]. There is another quite different approach to the cretervals. As a result, a strange attractor can be created. Fur-
ation of the SNA. In particular, by controlling the system’s thermore, if the time intervals with pure expanding dynamics
parameter, one can drive the system repeatedly to visit reare long enough, the system will possess an intermittently
bursting behavior, as discussed in R¢0—25. As a con-
sequence, the SNA can be found in any quasiperiodically
* Author to whom correspondence should be addressed. FAXdriven system if its dynamics are repeatedly expanding for
216-368-4872. Electronic address: jxs131@po.cwru.edu sufficiently long time intervals. Thus, to create an SNA in a
"Electronic address: eekww@cityu.edu.hk nonchaotic system, the major problem is how to construct an
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expanding region in its phase space. strange structure. The present approach provides a simple
Inspired by the workg24,25, a simple controlling ap- picture to show how an attractor can be strange but noncha-
proach to the creation of SNAs with any chaotic system isotic. As one can always find a parameter to control, SNAs
presented here. The main idea is described in Sec. Il. Onean be constructed in any chaotic system with this approach.
can control the parameter of a system in such a manner that In the following, we suppose that the time intervdlg
expanding dynamics occur at some times while contractingndT, are long enough. Then the finite-time maximum non-
dynamics appear at others. Simulation results of a quasiperirivial Lyapunov exponents during these time intervals can
odically forced logistic map are discussed in Sec. lll. Thebe approximated by, andX\,, respectively. The maximum
phase diagram and the transition properties from strangeontrivial Lyapunov exponent of the system, i, ,can then
nonchaotic to chaotic attractors are studied in detail. Théye approximated by
robustness of SNAs of this type against noise is shown in
Sec. IV. Discussions are presented in Sec. V. TN+ ToN,

A= T, 1

Il. CONTROL METHOD

In general, the Lyapunov exponent of the system will depend

not only on the valuea.; and \,, but also on the mutual

orientation of Lyapunov vectors associated with the maximal

nontrivial Lyapunov exponents during the transient process.
owever, the last will have an influence only on the preex-

Consider a system(t+1)=F(x(t),8) with a control pa-
rameter 8. Suppose that the attractor is chaotic whén
= B, and periodic wherB=3,. To construct an SNA, the
first step is to add a small-amplitude quasiperiodical wav

Asin(2mwyf) to the system. As both the regular and the chayonential factors: apparently, in a typical case, this may be
otic attractors are robust against small perturbat{82% the neglected if the periodd; and T, are long enough. This

chaotic or nonchaotic property of the system can still b€, ation indicates that whether the attractor is chaotic or not
maintained whe\<1. In particular, now we have a chaotic

3 | ) is determined by the competition between the expanding rate
attractorx(t+ 1)=F(x(t), 1) + A sin(2me,t) with the maxi- 1) and the contracting rat&,\,. When the contracting
mum positive Lyapunov exponeny; and a torusx(t+1)  gynamics dominates, the attractor is an SNA.

=F(x(1),B2) T Asin(2royt) with the maximum negative ~ gqyation(1) shows that, if we fixT, and letT, be the
Lyapunov exponenk,. The second step is to control the ¢oniro| parameter, a nonlinear dependence, as governed by
parameters to switch periodically betweep, and 8, with g4 (1) "is obtained at the transition of the system from
time intervalsT, and T,, _respectlvely. Then, the system strange nonchaotic to chaotic attractors. If wedix and let
x(t+1)=F(x(t),B(t))+Asin(2rwt) becomes the chaotic T, be the control parameter, then

systemx(t+ 1)=F(x(t),81)+Asin(2rwt) or the periodic

system x(t+1)=F(x(t),B,)+Asin(2rwit) periodically A=Xrt on(Ao— AT >

with frequency wo=1/(T;+T,). In eachT, time interval 1+ 0o(ha= )T @

qontractmg dynamics oceur anq the correspon_dmg fm'te‘rhe Lyapunov exponent passes through zero linearly with
time Lyapunov exponent is negative. In edghtime interval

. ; - ... the negative slop&=wy(\,—\;). Lai showed that during
chaotically expanding dynamics occur and the finite-time - ) : .

. I the transition from strange nonchaotic to chaotic attractors in
Lyapunov exponent is positive.

) ; : quasiperiodically driven systems, the Lyapunov exponent of-
Note that sin(Zreyty) #sin(2mesty) for any ty #tp, since ., passes through zero linead@0]. With the present
w1 is irrational. As a result, expanding dynamics for differ-

ent values ofA sin(2rw;t) in different T, time intervals can methtcr)]cé, ;ngt?é?]e)\r(g)o n;][o:hp;arsar;lteet r?q;zf +C 2())ian (Xf)gg)r
generate different diverging orbits, and thus the geometriégzp’\ sin(2mwt) must be considgred foh. The bifurca{tion
structure of the attractor is strange. The Lyapunov exponen}L i lh . i : - hat th

is the average of the exponents of the expanding and co and crisis phenomena in nonlinear systems indicate that the

tracting dynamics. One can adjust the lengths of the tim(? yapunov exponent generally has a complex dependence on

intervals T, and T, and let the contracting dynamics be he control parameter. As a rgsult, the Lyapun_ov exponent
1 2 : g dyn - ...can be nonsmooth at the transition point, which is difficult to

stronger than the expanding ones. The trajectories with d|ff. . :

o . it by a linear function.
ferent initial conditions are then converged together asymp-
totically and the maximum nontrivial Lyapunov exponent of
the system is negative. The resulting attractor is an SNA. Ill. SIMULATION RESULTS
From this point, we deal only with the maximal nontrivial
exponents, and refer to these as the Lyapunov exponent.

Unlike the method proposed by Kapitanig2d], the peri-

odic attractor in our approach does not require strange repel-
lers in order to exhibit transient chaos. Also, in contrast with
the on-off or type-I intermittency described in R€f30-23,
intermittency can be observed periodically with frequencywith a=3.6,A=0.001, andw,=(/5—1)/2. The attractor is
wg. In our approach, by employing a suitable square funcchaotic with nontrivial Lyapunov exponenk;=0.172
tion, an expanding region is constructed in the phase spade-0.001) wherB=B,=0, while it is a torus with nontrivial
while the system remains nonchaotic. By applying a quasipkyapunov exponenk,= —0.114 whenB=B,=—0.02. To
eriodic wave, a noiselike signal is provided to lead the tra-construct an SNA with the above two attractors,Bde the
jectory run into different diverging orbits, resulting in a control parameter, denoted B¢t):

To show the feasibility of our approach, we consider a
quasiperiodically forced logistic map defined as follows:

x(t+1)=ax(t)[1-x(t)]+Asin(27wt) +B, (3)
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FIG. 1. Phase diagram of the systéin theT,-T, plane with 0.00
B,=0 andB,=—0.02. The slope of the transition line is fitted to
be 1.510. 005l
x(t+1)=ax(t)[1—x(t)]+Asin 27w t)+B(t), o10l® , , ,
Y05 400 600 800
. (4) T
B(t) = B, if 60<T,, 2
| B, otherwise, FIG. 2. Near the transition from chaos to the SNA, the

. Lyapunov exponent versus the control paramétgrfor (a) T;
with #=t mod(T,+T,). If T, andT, are large enough, the +T,=1000 and(b) T,=500.

Lyapunov exponent can be approached by @g. [Driven

by two periodic forces, systertd) is a three-dimensional translation systems can be strange, while all of the Lyapunov
map. The two additional Lyapunov exponents are zero, asexponents are zef@1]. For such an attractor, the rate of the
sociated with the periodic forcdsSimulation results show expanding dynamics that corresponds to the creation of
that, compared with the exact values of the Lyapunov expostrange structure equals the contracting rate so that all the
nent, the results given by E@l) have an error smaller than Lyapunov exponents are zero. Theoretically, the attractor at
6% whenT,,T,~500 and an error smaller than 2% whenthe transition point between the chaotic attractor and the
T,,T,~1000. SNA is strange, while all the Lyapunov exponents are zero

According to Eq.(1), the phases of the SNA and the cha- for a quasiperiodically driven logistic map. It is a little dif-
otic attractor are separated by the transition lifg
=1.51T, . The phase diagram of the systé is calculated 10
in the T,-T, plane and shown in Fig. 1. As expected, a
transition line is obtained with the slop&k=1.510
(+0.001). According to Eq.2), if we fix T, +T,=1000 and
make T, adjustable, the Lyapunov exponent should pass
through zero linearly wittk=—2.86x 10”4 whenT, is ap-
proximately 600. Simulation results given in FigaRshow
that the transition occurs aff,=606 with k=-2.89
X 10 4. If we fix T;=500 and varyT,, a nonlinear depen-
dence of the Lyapunov exponent at the zero-crossing region 02 - - ' ‘ !
should occur wheril, is approximately 755. Figure(B)
shows that the transition appearsTat= 769.

As expected, an SNA is obtained with= —0.005 when
T,=450 andT,=750, while a chaotic attractor witt\
=0.006 is obtained whef; =500 andT,=700. Their geo-
metric structures in the- 6 plane are given in Fig. 3. It is
shown that the trajectory is converging during fhe time
intervals, while a strange structure is created duringTthe
time intervals. The geometric properties of the SNA shown
in Fig. 3@ are similar to those of the chaotic attractor pre- 024 ST — a5 ——T0 200
sented in Fig. @), in both the regular and the strange parts. 0
Their dynamical difference arises only from the different
time intervals of the contracting and expanding dynamics.  FIG. 3. (a) Strange nonchaotic trajectory in tied plane with

In general, if all of its Lyapunov exponents are zero, theT, =450 andT,=750.(b) Chaotic trajectory in the- 6 plane with
attractor is a torus. It is shown that the attractor in skewr,=500 andT,=700.

(2)
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FIG. 4. (&) A plot of A(B,) versusB; with B,=—0.02 for
system(4). (b) A plot of A(B,) versusB, with B;=0. Here,T;
=T,=1000. For comparison, a plot af(B) versusB for the sys-
tem (3) is also given in the figure.

ficult to obtain such an attractor numerically with the meth-
ods used in Refs[16-23, due to fluctuation of the
Lyapunov exponents in numerical simulations, as pointe
out in Refs.[16,23. However, the transition line in Fig. 1
suggests that it is easily generated with the present metho
Now we discuss the properties of Ed) with other con-
trol parameters. For example, consid®r. The Lyapunov
exponent is expressed as
A(By)=Ao+ BN1(By), )
with Ag=ToN,/(T1+T,) and B=T,/(T,+T,). The fact
that\ ; is still positive whenA (B;) just passes through zero

from the chaotic phase indicates that the chaotic and regular

phases are always separated by the SNA phase. Equ&tion
shows that, near those poirBswith \(B)=—T,\,/T4, the

attractor always has a transition between strange nonchaotic

and chaotic attractors. A similar conclusion is drawnBas
varies. In Figs. &) and 4b), plots of A(B;) versusB; with

B, 0.02 andA (B,) versusB, with B;=0 are presented
with T,=T,=1000, respectively. For comparison, a plot of
A\ (B) versusB for Eq. (3) is also given in the figure. One can
see thatA (B,) andA (B,) are quite similar to\.(B). For the
example corresponding to Fig.(al, as A\,=—0.114, the
SNA phase occurs only in a narrow vicinity between chaotic
and quasiperiodic  attractors  with  0.086 528,
<0.086 526, although it cannot be shown in the figure. In
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FIG. 5. Phase diagram of the systéin theB,-B, plane with
T,=T,. The shaded region corresponds to the SNA. Here QP de-
notes the torus.

For a set of largd, andT,, the phase diagram of EG)
in the B;-B, plane can be easily obtained fran{B) using
Eq. (1). For those systems wiffi, =T, the phase diagram is
given in Fig. 5, in which the shaded region corresponds to
the SNA. Becausé&,=T,, we have

A(B1,B)=3[N(B1)+\(By)]=A(B,,By), (6)

so the phase diagram is symmetric along the MiRe=-T,.
From Fig. 5, one can see that the SNA not only occurs in the
vicinity of the chaotic and regular phases, but also within the
chaotic region far from the regular boundary.

Equation(5) shows that the shape of the cunkéB,) is
quite similar to that oi (B). Furthermore, one can adjust the

Yalues ofT, andT, so as to locate the zero point Afat any

esired point in its parameter space. At some points, such as
he point of bifurcation, the curva(B) versusB is not
smooth enough to be fitted by any simple smooth function.
Thus, with properly selected; andT,, the Lyapunov ex-
ponentA passing through zero viB can experience a sud-
den change. Figure 6 shows that the Lyapunov exponents of

0.3
—AB)

MB)

e
s

g
=

Lyapunov Exponents

””*?}(B)

)
2
=

-0.2
0.0

564 0.0865 0.0866 367

BorB,

FIG. 6. Near the transition of the systed) from chaos to the

Fig. 4(b), we fix \;=0.172 so that the structure of the attrac- SNA, the Lyapunov exponent versus the control paramBtein
tor is always strange. Therefore the attractors are alwayshe region 0.0864 B,<0.0867. For comparison,(B) versusB for

strange and nonchaotic ondgB,) <0.

the systen(3) is also given out.
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FIG. 7. (a) Strange nonchaotic trajectory in thed plane with FIG. 8. (a) Noisy strange nonchaotic trajectory in tked plane

B,=0.08661.(b) Chaotic trajectory in thex-# plane with B, with T,=200 andT,=2800. (b) Noisy chaotic trajectory withT,
=0.08655. The other parameters ae=1000, T,=1030, and =230 andT,=770. Here, the maximum amplitudeof the noise is
B,=0. equal to 0.001.

Eqg. (3) have a nonsmooth change when the control paramsimulation of Eq.(4), no matter hova, x(t), A, B(t), wg, or
eter B passes through 0.08658.... Now [E{=1000, T,  w; are disturbed by small noise, SNAs can still be observed.
=1030,B,=0, and varyB,. The system of Eq4) then has As discussed in Ref25], one of the important roles that
a transition from the SNA to the chaotic attractor whgn  the quasiperiodic wave plays is to provide different values at
=0.086 58. At the zero-crossing point, the Lyapunov expo-different times so as to cause the trajectory to run into dif-
nent changes nonsmoothly. In particular, when the transitiofierent diverging orbits and create a strange structure. In fact,
is about to occur, the Lyapunov exponent encounters a rapithstead of the small-amplitude quasiperiodical wave
change in the chaotic region but a slow change in the SNAA sin(2rw4t), one can apply a small noise with maximum
region. For example, an SNA with = —0.002 is obtained amplitudeA. In this case, the square function still drives the
whenB,=0.086 61. However, wheB,=0.086 55, which is  trajectory periodically into the expanding region, while the
at the same small distance at another side of the transitionoise leads the trajectory into different orbits in different
point in the parameter space, a chaotic attractor is obtainggeriods with expanding dynamics. A noisy SNA is thus gen-
with A =0.05. Figure 7 shows these two attractors inth@  erated. Figure @) gives a noisy strange nonchaotic trajec-
plane. In contrast to that given in Fig. 3, the dynamical dif-tory in the x-6 plane with T;=200, T,=800, and A
ference between these two attractors comes from the differ=0.001. Its Lyapunov exponent is0.003 (+0.00). For
ent contracting dynamics in the sarig time intervals. comparison, a noisy chaotic trajectory with=0.004 is
shown in Fig. 8b) with T,;=230 andT,=770.
IV. EFFECT OF NOISE

. . L . . V. DISCUSSION
An important consideration in the study of SNAs is their

robustness. This is of particular relevance with respect to the In this paper, a simple control method to create an SNA
experimental observation of the SNA1-13. It is shown with any chaotic system is described. The main idea is to
that, upon the addition of noise, the global structure of dif-control the parameter of the system so that the system acts
ferent types of SNAs remains approximately the sa&8i. sometimes in a chaotic manner and sometimes in a periodic
However, in some systems, if a small noise disturbs the quananner. We show thdt) the method provides a simple pic-
siperiodic force, the SNA is destroyed and a chaotic or perifure how an attractor may be strange while nonchadiit,
odic attractor is observed,2]. the SNA can occur near the boundaries between chaotic and
As not only the regular but also the chaotic attractors areuasiperiodic motion or within the chaotic region far from a
robust against small noig82], noisy chaos and noisy tori boundary, andiii ) by the proposed method the SNA may be
are always obtained with the addition of small noise. Thus, aealized in many nonlinear systems in large regions of pa-
noisy SNA occurs if the systenx(t+1)=F(x(t),B(t)) rameter space. The maximum nontrivial Lyapunov exponent
+Asin(2rwqt) is disturbed with noise. In our numerical of the system can pass through zero nonsmoothly. The re-
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sultant SNA is robust against noise. frequency sine force. A suitable low-frequency sine force
With the method discussed in Refd.6—23, simulation can also ensure that the system oscillates to the expanding

results show that SNAs typically appear in a narrow paramdynamics repeatedly with sufficiently long time intervals

eter region. Thus SNAs are observed in several physical sysvhile the asymptotic dynamics is contracting.

tems[11-13. The proposed approach suggests an easy way

to construct _SNAS with chgotlc phyS|ca_I systems: If a non- ACKNOWLEDGMENTS
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