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Simple approach to the creation of a strange nonchaotic attractor in any chaotic system
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A simple approach to the creation of a strange nonchaotic attractor in any chaotic system is described. The
main idea is to control the parameter of the system in such a manner that the system dynamics is expanding at
some times, but converging at others. With this approach, a strange nonchaotic attractor can be found in a large
region in the parameter space near the boundaries between chaotic and regular phases or within the chaotic
region far from the regular one. The maximum nontrivial Lyapunov exponent of the system can pass through
zero nonsmoothly and cannot be fitted by a linear function.@S1063-651X~99!13805-4#
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I. INTRODUCTION

Recently there has been much interest in the study
strange nonchaotic attractors~SNAs! that are commonly
found in quasiperiodically forced systems@1–10#. The ge-
ometry of an SNA exhibits a fractal structure, but its typic
trajectories do not show sensitive dependence on initial c
ditions. SNAs have been observed in a number of phys
systems@11–13# and one of their potential applications is fo
secure communications@14,15#.

One of the major research topics on SNAs is the study
dynamical routes for the creation of the SNA. A mechani
is investigated by Heagy and Hammel@16#. In quasiperiodi-
cally driven maps, when a period-doubled torus collides w
its unstable parent torus, it becomes extremely wrinkled
develops into a fractal set at the collision, while the cor
sponding Lyapunov exponent remains negative. Feudelet al.
@17# find that the collision between a stable torus and
unstable one at a dense set of points can lead to an S
Kaneko and Nishikawa@18,19# describe the fractalization o
a torus, namely, the increasing wrinkling of tori that leads
the appearance of an SNA without any interaction with
nearby unstable periodic orbit. Yalcinkaya and Lai@20,21#
show that, for systems with an invariant subspace in wh
there is a torus, the loss of the transverse stability of the to
can lead to the birth of an SNA. A physical phenomen
accompanying this route to SNAs is the on-off intermitten
Prasadet al.@22,23# investigate an intermittency route t
SNAs that arises in the neighborhood of a saddle-node b
cation, whereby a strange attractor is replaced by a peri
torus attractor. These reports@16–23# describe the dynamica
mechanisms for the creation of SNAs that typically occur
a narrow vicinity along the transition boundary of the chao
and quasiperiodic phases@23#. It is shown that an SNA can
also appear in a narrow area within the periodic reg
@5,17#. There is another quite different approach to the c
ation of the SNA. In particular, by controlling the system
parameter, one can drive the system repeatedly to visit
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gions of chaotic dynamics in the phase space of the auto
mous system. Kapitaniak@24# describes a control techniqu
to generate the strange nonchaotic trajectory by mak
small changes in the parameters of a three-dimensional
tem. The method is applicable to systems whose perio
attractor has a strange repeller that exhibits transient ch
In Ref. @25#, the implications of fluctuations of finite-time
Lyapunov exponents are discussed for nonchaotic syste
For a nonchaotic system driven by a low-frequency quas
eriodical force, the resultant attractor is strange but nonc
otic if its finite-time Lyapunov exponents largely fluctuate
be positive repeatedly.

SNAs can be quantitatively characterized by a variety
methods, including the estimation of Lyapunov expone
and fractal dimension@1,2,26#, the spectral properties@2,27#,
the phase-sensitivity exponent@17,28#, and the examination
of time series@29#. One of the important observations is th
typical trajectories of an SNA are characterized by fini
time Lyapunov exponents that can be positive for sufficien
long time intervals, although the time-independent Lyapun
exponent is asymptotically negative@17,22,23,25,28#. In
general, the phase space of a dynamical system can b
vided into three typical regions where a trajectory either
periences pure expansion, pure contraction, or remains
changed. In particular, the pure expanding~contracting!
region is the region where an infinitesimal vector in the ta
gent space expands~contracts! under the dynamics. If the
trajectory of a nonchaotic system runs into the expand
region during a time intervalt, the corresponding dynamic
is expanding and the time-t Lyapunov exponent is positive
Meanwhile, the quasiperiodic force~i.e., the two incommen-
surate sine functions in continuous equations or an irratio
frequency sine function in a discrete map! always provides
different values to the system at different times. These val
are enlarged individually during different expanding time i
tervals. As a result, a strange attractor can be created.
thermore, if the time intervals with pure expanding dynam
are long enough, the system will possess an intermitte
bursting behavior, as discussed in Refs.@20–25#. As a con-
sequence, the SNA can be found in any quasiperiodic
driven system if its dynamics are repeatedly expanding
sufficiently long time intervals. Thus, to create an SNA in
nonchaotic system, the major problem is how to construc

:
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PRE 59 5339SIMPLE APPROACH TO THE CREATION OFA . . .
expanding region in its phase space.
Inspired by the works@24,25#, a simple controlling ap-

proach to the creation of SNAs with any chaotic system
presented here. The main idea is described in Sec. II.
can control the parameter of a system in such a manner
expanding dynamics occur at some times while contrac
dynamics appear at others. Simulation results of a quasip
odically forced logistic map are discussed in Sec. III. T
phase diagram and the transition properties from stra
nonchaotic to chaotic attractors are studied in detail. T
robustness of SNAs of this type against noise is shown
Sec. IV. Discussions are presented in Sec. V.

II. CONTROL METHOD

Consider a systemx(t11)5F„x(t),b… with a control pa-
rameter b. Suppose that the attractor is chaotic whenb
5b1 and periodic whenb5b2 . To construct an SNA, the
first step is to add a small-amplitude quasiperiodical wa
A sin(2pv1t) to the system. As both the regular and the ch
otic attractors are robust against small perturbations@32#, the
chaotic or nonchaotic property of the system can still
maintained whenA!1. In particular, now we have a chaot
attractorx(t11)5F„x(t),b1…1A sin(2pv1t) with the maxi-
mum positive Lyapunov exponentl1 and a torusx(t11)
5F„x(t),b2…1A sin(2pv1t) with the maximum negative
Lyapunov exponentl2 . The second step is to control th
parameterb to switch periodically betweenb1 andb2 with
time intervalsT1 and T2 , respectively. Then, the system
x(t11)5F„x(t),b(t)…1A sin(2pv1t) becomes the chaoti
systemx(t11)5F„x(t),b1…1A sin(2pv1t) or the periodic
system x(t11)5F„x(t),b2…1A sin(2pv1t) periodically
with frequencyv051/(T11T2). In eachT2 time interval
contracting dynamics occur and the corresponding fin
time Lyapunov exponent is negative. In eachT1 time interval
chaotically expanding dynamics occur and the finite-ti
Lyapunov exponent is positive.

Note that sin(2pv1t1)Þsin(2pv1t2) for any t1Þt2 , since
v1 is irrational. As a result, expanding dynamics for diffe
ent values ofA sin(2pv1t) in different T1 time intervals can
generate different diverging orbits, and thus the geome
structure of the attractor is strange. The Lyapunov expon
is the average of the exponents of the expanding and
tracting dynamics. One can adjust the lengths of the t
intervals T1 and T2 and let the contracting dynamics b
stronger than the expanding ones. The trajectories with
ferent initial conditions are then converged together asym
totically and the maximum nontrivial Lyapunov exponent
the system is negative. The resulting attractor is an SN
From this point, we deal only with the maximal nontrivi
exponents, and refer to these as the Lyapunov exponen

Unlike the method proposed by Kapitaniak@24#, the peri-
odic attractor in our approach does not require strange re
lers in order to exhibit transient chaos. Also, in contrast w
the on-off or type-I intermittency described in Refs.@20–23#,
intermittency can be observed periodically with frequen
v0 . In our approach, by employing a suitable square fu
tion, an expanding region is constructed in the phase sp
while the system remains nonchaotic. By applying a qua
eriodic wave, a noiselike signal is provided to lead the t
jectory run into different diverging orbits, resulting in
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strange structure. The present approach provides a sim
picture to show how an attractor can be strange but nonc
otic. As one can always find a parameter to control, SN
can be constructed in any chaotic system with this approa

In the following, we suppose that the time intervalsT1
andT2 are long enough. Then the finite-time maximum no
trivial Lyapunov exponents during these time intervals c
be approximated byl1 andl2 , respectively. The maximum
nontrivial Lyapunov exponent of the system, i.e.,L, can then
be approximated by

L5
T1l11T2l2

T11T2
. ~1!

In general, the Lyapunov exponent of the system will depe
not only on the valuesl1 and l2 , but also on the mutua
orientation of Lyapunov vectors associated with the maxim
nontrivial Lyapunov exponents during the transient proce
However, the last will have an influence only on the pree
ponential factors; apparently, in a typical case, this may
neglected if the periodsT1 and T2 are long enough. This
equation indicates that whether the attractor is chaotic or
is determined by the competition between the expanding
T1l1 and the contracting rateT2l2 . When the contracting
dynamics dominates, the attractor is an SNA.

Equation~1! shows that, if we fixT1 and letT2 be the
control parameter, a nonlinear dependence, as governe
Eq. ~1!, is obtained at the transition of the system fro
strange nonchaotic to chaotic attractors. If we fixv0 and let
T2 be the control parameter, then

L5l11v0~l22l1!T2 . ~2!

The Lyapunov exponent passes through zero linearly w
the negative slopek5v0(l22l1). Lai showed that during
the transition from strange nonchaotic to chaotic attractor
quasiperiodically driven systems, the Lyapunov exponent
ten passes through zero linearly@30#. With the present
method, if another control parameter is chosen, e.g.,b1 or
b2 , the function l~b! of the systemx(t11)5F„x(t),b…
1A sin(2pv1t) must be considered forL. The bifurcation
and crisis phenomena in nonlinear systems indicate that
Lyapunov exponent generally has a complex dependenc
the control parameter. As a result, the Lyapunov expon
can be nonsmooth at the transition point, which is difficult
fit by a linear function.

III. SIMULATION RESULTS

To show the feasibility of our approach, we consider
quasiperiodically forced logistic map defined as follows:

x~ t11!5ax~ t !@12x~ t !#1A sin~2pv1t !1B, ~3!

with a53.6,A50.001, andv15(A521)/2. The attractor is
chaotic with nontrivial Lyapunov exponentl150.172
(60.001) whenB5B150, while it is a torus with nontrivial
Lyapunov exponentl2520.114 whenB5B2520.02. To
construct an SNA with the above two attractors, letB be the
control parameter, denoted asB(t):
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5340 PRE 59J. W. SHUAI AND K. W. WONG
x~ t11!5ax~ t !@12x~ t !#1A sin~2pv1t !1B~ t !,
~4!

B~ t !5 HB1 if u,T1 ,
B2 otherwise,

with u5t mod(T11T2). If T1 andT2 are large enough, the
Lyapunov exponent can be approached by Eq.~1!. @Driven
by two periodic forces, system~4! is a three-dimensiona
map. The two additional Lyapunov exponents are zero,
sociated with the periodic forces.# Simulation results show
that, compared with the exact values of the Lyapunov ex
nent, the results given by Eq.~1! have an error smaller tha
6% whenT1 ,T2'500 and an error smaller than 2% whe
T1 ,T2'1000.

According to Eq.~1!, the phases of the SNA and the ch
otic attractor are separated by the transition lineT2
51.51T1 . The phase diagram of the system~4! is calculated
in the T1-T2 plane and shown in Fig. 1. As expected,
transition line is obtained with the slopek51.510
(60.001). According to Eq.~2!, if we fix T11T251000 and
make T2 adjustable, the Lyapunov exponent should p
through zero linearly withk522.8631024 whenT2 is ap-
proximately 600. Simulation results given in Fig. 2~a! show
that the transition occurs atT25606 with k522.89
31024. If we fix T15500 and varyT2 , a nonlinear depen
dence of the Lyapunov exponent at the zero-crossing re
should occur whenT2 is approximately 755. Figure 2~b!
shows that the transition appears atT25769.

As expected, an SNA is obtained withL520.005 when
T15450 and T25750, while a chaotic attractor withL
50.006 is obtained whenT15500 andT25700. Their geo-
metric structures in thex-u plane are given in Fig. 3. It is
shown that the trajectory is converging during theT2 time
intervals, while a strange structure is created during theT1
time intervals. The geometric properties of the SNA sho
in Fig. 3~a! are similar to those of the chaotic attractor pr
sented in Fig. 3~b!, in both the regular and the strange par
Their dynamical difference arises only from the differe
time intervals of the contracting and expanding dynamics

In general, if all of its Lyapunov exponents are zero, t
attractor is a torus. It is shown that the attractor in sk

FIG. 1. Phase diagram of the system~4! in theT1-T2 plane with
B150 andB2520.02. The slope of the transition line is fitted
be 1.510.
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translation systems can be strange, while all of the Lyapu
exponents are zero@31#. For such an attractor, the rate of th
expanding dynamics that corresponds to the creation
strange structure equals the contracting rate so that all
Lyapunov exponents are zero. Theoretically, the attracto
the transition point between the chaotic attractor and
SNA is strange, while all the Lyapunov exponents are z
for a quasiperiodically driven logistic map. It is a little dif

FIG. 2. Near the transition from chaos to the SNA, t
Lyapunov exponent versus the control parameterT2 for ~a! T1

1T251000 and~b! T15500.

FIG. 3. ~a! Strange nonchaotic trajectory in thex-u plane with
T15450 andT25750. ~b! Chaotic trajectory in thex-u plane with
T15500 andT25700.
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PRE 59 5341SIMPLE APPROACH TO THE CREATION OFA . . .
ficult to obtain such an attractor numerically with the me
ods used in Refs.@16–23#, due to fluctuation of the
Lyapunov exponents in numerical simulations, as poin
out in Refs.@16,23#. However, the transition line in Fig. 1
suggests that it is easily generated with the present met

Now we discuss the properties of Eq.~4! with other con-
trol parameters. For example, considerB1 . The Lyapunov
exponent is expressed as

L~B1!5L01bl1~B1!, ~5!

with L05T2l2 /(T11T2) and b5T1 /(T11T2). The fact
thatl1 is still positive whenL(B1) just passes through zer
from the chaotic phase indicates that the chaotic and reg
phases are always separated by the SNA phase. Equatio~5!
shows that, near those pointsB with l(B)52T2l2 /T1 , the
attractor always has a transition between strange nonch
and chaotic attractors. A similar conclusion is drawn asB2
varies. In Figs. 4~a! and 4~b!, plots ofL(B1) versusB1 with
B2520.02 andL(B2) versusB2 with B150 are presented
with T15T251000, respectively. For comparison, a plot
l(B) versusB for Eq. ~3! is also given in the figure. One ca
see thatL(B1) andL(B2) are quite similar tol(B). For the
example corresponding to Fig. 4~a!, as l2520.114, the
SNA phase occurs only in a narrow vicinity between chao
and quasiperiodic attractors with 0.086 521,B1
,0.086 526, although it cannot be shown in the figure.
Fig. 4~b!, we fix l150.172 so that the structure of the attra
tor is always strange. Therefore the attractors are alw
strange and nonchaotic onceL(B2),0.

FIG. 4. ~a! A plot of L(B1) versusB1 with B2520.02 for
system~4!. ~b! A plot of L(B2) versusB2 with B150. Here,T1

5T251000. For comparison, a plot ofl(B) versusB for the sys-
tem ~3! is also given in the figure.
-

d
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For a set of largeT1 andT2 , the phase diagram of Eq.~4!
in the B1-B2 plane can be easily obtained froml(B) using
Eq. ~1!. For those systems withT15T2 , the phase diagram is
given in Fig. 5, in which the shaded region corresponds
the SNA. BecauseT15T2 , we have

L~B1 ,B2!5 1
2 @l~B1!1l~B2!#5L~B2 ,B1!, ~6!

so the phase diagram is symmetric along the lineT15T2 .
From Fig. 5, one can see that the SNA not only occurs in
vicinity of the chaotic and regular phases, but also within
chaotic region far from the regular boundary.

Equation~5! shows that the shape of the curveL(B1) is
quite similar to that ofl(B). Furthermore, one can adjust th
values ofT1 andT2 so as to locate the zero point ofL at any
desired point in its parameter space. At some points, suc
the point of bifurcation, the curvel(B) versusB is not
smooth enough to be fitted by any simple smooth functi
Thus, with properly selectedT1 and T2 , the Lyapunov ex-
ponentL passing through zero viaB can experience a sud
den change. Figure 6 shows that the Lyapunov exponen

FIG. 5. Phase diagram of the system~4! in theB1-B2 plane with
T15T2 . The shaded region corresponds to the SNA. Here QP
notes the torus.

FIG. 6. Near the transition of the system~4! from chaos to the
SNA, the Lyapunov exponent versus the control parameterB2 in
the region 0.0864,B2,0.0867. For comparison,l(B) versusB for
the system~3! is also given out.
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5342 PRE 59J. W. SHUAI AND K. W. WONG
Eq. ~3! have a nonsmooth change when the control par
eter B passes through 0.086 58... . Now letT151000, T2
51030,B150, and varyB2 . The system of Eq.~4! then has
a transition from the SNA to the chaotic attractor whenB2
50.086 58. At the zero-crossing point, the Lyapunov exp
nent changes nonsmoothly. In particular, when the transi
is about to occur, the Lyapunov exponent encounters a r
change in the chaotic region but a slow change in the S
region. For example, an SNA withL520.002 is obtained
whenB250.086 61. However, whenB250.086 55, which is
at the same small distance at another side of the trans
point in the parameter space, a chaotic attractor is obta
with L50.05. Figure 7 shows these two attractors in thex-u
plane. In contrast to that given in Fig. 3, the dynamical d
ference between these two attractors comes from the di
ent contracting dynamics in the sameT2 time intervals.

IV. EFFECT OF NOISE

An important consideration in the study of SNAs is the
robustness. This is of particular relevance with respect to
experimental observation of the SNA@11–13#. It is shown
that, upon the addition of noise, the global structure of d
ferent types of SNAs remains approximately the same@23#.
However, in some systems, if a small noise disturbs the q
siperiodic force, the SNA is destroyed and a chaotic or p
odic attractor is observed@1,2#.

As not only the regular but also the chaotic attractors
robust against small noise@32#, noisy chaos and noisy tor
are always obtained with the addition of small noise. Thu
noisy SNA occurs if the systemx(t11)5F„x(t),b(t)…
1A sin(2pv1t) is disturbed with noise. In our numerica

FIG. 7. ~a! Strange nonchaotic trajectory in thex-u plane with
B250.086 61. ~b! Chaotic trajectory in thex-u plane with B2

50.086 55. The other parameters areT151000, T251030, and
B150.
-
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e
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simulation of Eq.~4!, no matter howa, x(t), A, B(t), v0 , or
v1 are disturbed by small noise, SNAs can still be observ

As discussed in Ref.@25#, one of the important roles tha
the quasiperiodic wave plays is to provide different values
different times so as to cause the trajectory to run into d
ferent diverging orbits and create a strange structure. In f
instead of the small-amplitude quasiperiodical wa
A sin(2pv1t), one can apply a small noise with maximu
amplitudeA. In this case, the square function still drives t
trajectory periodically into the expanding region, while th
noise leads the trajectory into different orbits in differe
periods with expanding dynamics. A noisy SNA is thus ge
erated. Figure 8~a! gives a noisy strange nonchaotic traje
tory in the x-u plane with T15200, T25800, and A
50.001. Its Lyapunov exponent is20.003 ~60.001!. For
comparison, a noisy chaotic trajectory withL50.004 is
shown in Fig. 8~b! with T15230 andT25770.

V. DISCUSSION

In this paper, a simple control method to create an S
with any chaotic system is described. The main idea is
control the parameter of the system so that the system
sometimes in a chaotic manner and sometimes in a peri
manner. We show that~i! the method provides a simple pic
ture how an attractor may be strange while nonchaotic,~ii !
the SNA can occur near the boundaries between chaotic
quasiperiodic motion or within the chaotic region far from
boundary, and~iii ! by the proposed method the SNA may b
realized in many nonlinear systems in large regions of
rameter space. The maximum nontrivial Lyapunov expon
of the system can pass through zero nonsmoothly. The

FIG. 8. ~a! Noisy strange nonchaotic trajectory in thex-u plane
with T15200 andT25800. ~b! Noisy chaotic trajectory withT1

5230 andT25770. Here, the maximum amplitudeA of the noise is
equal to 0.001.
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PRE 59 5343SIMPLE APPROACH TO THE CREATION OFA . . .
sultant SNA is robust against noise.
With the method discussed in Refs.@16–23#, simulation

results show that SNAs typically appear in a narrow para
eter region. Thus SNAs are observed in several physical
tems@11–13#. The proposed approach suggests an easy
to construct SNAs with chaotic physical systems: If a no
chaotic physical system driven by quasiperiodic force ex
riences expanding dynamics from time to time with lo
enough time intervals, the resultant attractor is an SNA
particular, instead of applying a square function, a natu
way to control the parameter of the system is to use a l
et

n

.

ko

F

s.
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n
l
-

frequency sine force. A suitable low-frequency sine for
can also ensure that the system oscillates to the expan
dynamics repeatedly with sufficiently long time interva
while the asymptotic dynamics is contracting.
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