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Level Statistics for the Nilsson Single-Particle Levels *
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We perform level statistics of the Nilsson single-particle levels. The effects of the 𝑙2 and 𝑙 · 𝑠 terms are discussed

as well as their interplay with the deformations. The results show that when the 𝑙2 term is added to the harmonic

oscillator potential, chaotic motion occurs. The strength ranges of the 𝑙2 term in which chaotic motion exists

are related to the deformation of the harmonic oscillator potential. The calculations of the localization length

in different bases demonstrate that it is the spherical or axial symmetries that govern the chaotic motion. The

degree of chaoticity increases significantly with the 𝑙 · 𝑠 term included.

PACS: 05. 45.Mt, 21. 10. Pc DOI: 10.1088/0256-307X/27/3/030503

The problem of regular and chaotic motion has
been an interesting topic in both classical and quan-
tum mechanics for a long time.[1,2] For a quantum sys-
tem, signatures of chaos are expected if the dynamical
symmetries are broken or, the number of good quan-
tum numbers is less than that of the degrees of free-
dom. In many-body systems such as nuclei, residue
interactions bring correlations among non-interacting
basis vectors and are likely to induce chaotic motion.
There have been works showing that GOE[3] fluctua-
tions do appear in some kinds of nuclei.[4−6] In single-
particle systems such as billiards, the dynamical sym-
metry is related to the shape of the boundary. In
1984, Bohigas et al.[7] found that level fluctuations
of the quantum Sinai’s billiard are consistent with
the GOE predictions. This is the first demonstration
that single-particle systems can also show signatures
of chaos. However, Sinai’s billiard is a model that
has no counterpart in the realistic world. In 1994,
Heiss et al.[8] found that for single-particle levels of
an axially symmetric potential with quadrupole and
octupole deformations the fluctuations are also con-
sistent with the GOE predictions. The axially sym-
metric quadrupole deformed potential is often used in
nuclear models for deformed nuclei, such as the pro-
jected shell model[9] or the cranking shell model,[11]

and an octupole term should be considered for nuclei
with octupole deformations.[12] Therefore Heiss’s work
suggests that chaotic motion exists at the mean field
level for nuclei. However, the 𝑙2 and 𝑙·𝑠 terms were not
considered in Heiss’s work. Gu et al. in 1997[13] dis-
cussed the fluctuations of single-particle levels of the
mean field based on the two-center shell model, where
the mean field is also axially symmetric, and the ef-
fect of the 𝑙2 and 𝑙 · 𝑠 terms, however, was discussed

qualitatively. It was found that the 𝑙 ·𝑠 term obviously
favors the chaotic motion while the 𝑙2 term only has
slight effect on it.

The Nilsson potential is the most widely used mean
field in the nuclear models for deformed nuclei. It was
used to give the single-particle states in the particle-
rotor model,[11] the cranking shell model[11] and the
projected shell model.[9] It contains a quadrupole de-
formed harmonic oscillator potential and the 𝑙2 and 𝑙·𝑠
terms. Usually the potential is assumed to be axially
symmetric. However, in recent years potentials with
triaxial deformations are considered in the description
of transitional nuclei.[10] As a general case, we discuss
single-particle levels in the triaxialy deformed poten-
tials in this Letter. The level fluctuations of the har-
monic oscillator potential were discussed by Berry et
al. in Ref. [14]. However, how do the fluctuations
change when the 𝑙2 and 𝑙 · 𝑠 terms are taken into ac-
count? Moreover, how do these terms interplay with
the mean field deformation? This Letter is devoted to
discuss these problems. We will study the effects of
the 𝑙2 and 𝑙 · 𝑠 terms on the statistical behavior of the
Nilsson levels, with the 𝛾 deformation taken into ac-
count. First, we give an introduction to the statistical
quantities. Then we present our results and discus-
sions.

We unfold the energy levels[11] to obtain the se-
quence 𝑥(𝑖) with a constant mean level density 1. The
nearest neighbor spacing distribution 𝑃 (𝑠) is defined
as the probability distribution of 𝑠 = 𝑥(𝑖 + 1) − 𝑥(𝑖).
For classically integrable systems, 𝑃 (𝑠) is given as the
Poisson distribution: 𝑃 (𝑠) = exp(−𝑠),[3] while in the
fully chaotic case the Wigner distribution (predicted
by GOE): 𝑃 (𝑠) = 𝜋

2 𝑠 · exp
(︀
− 𝜋

4 𝑠
2
)︀
.[3] For realistic

systems the distribution can be fitted to the Berry–
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Robnik distribution with a parameter 𝑞 ranging from
0 to 1,[11] which reads

𝑃 (𝑠) =

[︂
𝑞2erfc

(︁√𝜋
2
𝑞𝑠
)︁

+
(︁

2𝑞𝑞 +
𝜋

2
𝑞3𝑠

)︁
· exp

(︁
− 𝜋

4
𝑞2𝑠2

)︁]︂
exp(−𝑞𝑠), (1)

where 𝑞 = 1− 𝑞. In the two limited cases of 𝑞 = 0 and
𝑞 = 1, the Poisson and the Wigner distributions are
obtained respectively. Thus 𝑞 measures the degree of
chaoticity of the system.

The information entropy defined in a normalized
eigenstate |𝜓⟩ is[4]

𝐼𝐻(|𝜓⟩) =

𝑑∑︁
𝑖=1

−|𝜔𝜓𝑖 |
2 ln(|𝜔𝜓𝑖 |

2), (2)

where 𝜔𝜓𝑖 is the expansion coefficient of |𝜓 > and 𝑑 is
the dimension of the basis space. For the GOE distri-
bution the average value of 𝐼𝐻 is ⟨𝐼𝐻⟩ = ln(0.48𝑑).[4]

To eliminate the size effect of the dimension the aver-
age localization length is defined[4]

⟨𝐿𝐻⟩ =
exp(⟨𝐼𝐻⟩)

0.48𝑑
, (3)

where the average is taken over all the eigenstates of
the Hamiltonian. The information entropy and the
localization length are defined to measure the delocal-
ization of the state(s) with regard to the basis, and
they are therefore basis dependent.

In the calculations of realistic nuclei the ratio of
the 𝑙2 strength 𝐷 to ℎ̄𝜔0 is around 0.02.[15] For nu-
clei in different mass regions, the values are slightly
different.[16] We take ℎ̄𝜔0 = 1 and change the value of
𝐷 around 0.02 to study the effect of the 𝑙2 term on
the level fluctuations. However, we notice that when
𝐷 = 0 the system comes back to the case of harmonic
oscillator in which the parameter 𝑞 can not measure
the chaoticity,[14] and as 𝐷 increases from 0 the fluc-
tuation pattern should change continuously, thus for
very small values of 𝐷, 𝑞 cannot measure the degree
of chaoticity either. To avoid the case like this we take
𝐷 larger than 0.005. Then the histogram of 𝑃 (𝑠) is
obviously different from the harmonic oscillator case.

For small 𝛽 (for example, 𝛽 = 0.1 with various
𝛾 values), 𝑞 stays 0 for all values of 𝐷 (ranging from
0.005 to 0.03), showing that there is no chaoticity. For
small values of 𝛾 (say 𝛾 = 2∘), 𝑞 also stays 0 for all
values of 𝐷 even if 𝛽 is as large as 0.5. This suggests
that the breaking of the spherical or axial symmetry
is essential for the occurrence of chaotic motion when
the 𝑙2 term is included. Note that the 𝑙2 term is ro-
tationally invariant. If the mean field is spherical or
axially symmetric, the system as a whole possesses the
rotational symmetry, thus no chaotic motion can be

expected.
For larger values of 𝛽 and 𝛾 chaos sets in a cer-

tain range of 𝐷. Figure 1 gives the degree of chaotic-
ity 𝑞 for different 𝐷 and 𝛽, with 𝛾 fixed at 20∘. We
can see from Fig. 1 that 𝑞 increases with 𝐷 when 𝐷
is relatively small and reaches its maximum value at
𝐷 ∼ 0.02. As 𝐷 becomes larger, 𝑞 starts to decrease.
Finally, when 𝐷 reaches a certain value, 𝑞 comes back
to 0, and remains unchanged as 𝐷 increases further.
Similar phenomena can be found for other values of 𝛾.
The value of 𝐷 above which 𝑞 remains 0 is denoted as
𝐷𝑚 in the following. The value of 𝐷𝑚 depends on 𝛽.
For 𝛽 = 0.2, 𝛾 = 20∘, 𝐷𝑚 is 0.0285, while for 𝛽 = 0.5
and the same 𝛾 𝐷𝑚 is 0.0410. Systems with larger 𝛽
have larger 𝐷𝑚. We also calculate the value of 𝐷𝑚

for different values of 𝛾, with 𝛽 fixed at 0.3, 0.4 or 0.5,
respectively. The results are given in Fig. 2. We see
in Fig. 2 that 𝐷𝑚 increases with 𝛾 when 𝛾 is less than
30∘. When 𝛾 is close to 60∘, 𝐷𝑚 starts to decrease.
Thus, combining the relationship of 𝐷𝑚 with 𝛽 and
𝛾, one can conclude that 𝐷𝑚 is larger for potentials
with a larger deviation from the spherical or axially
symmetric shape.
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Fig. 1. The Berry–Robnik parameter for different 𝐷 and
𝛽, with 𝛾 fixed at 20∘.
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Fig. 2. The values of 𝐷𝑚 for different 𝛽 and 𝛾.

We turn to some explanations to the results pre-
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sented in Figs. 1 and 2. We know that the occurrence
of chaotic motion is related to the breaking of dynam-
ical symmetries, and we use the localization length to
measure the degree of the symmetry lost. Figure 3
shows the localization length for different 𝐷 (in |𝑛𝑙𝑚⟩
basis). Compared with Fig. 1, we can find that in the
region of 𝐷 where 𝑞 increases, 𝐿𝐻 also shows an in-
crease. The maximums of 𝐿𝐻 and 𝑞 corresponds to
similar 𝐷 values (∼ 0.02). For larger values of 𝐷,
𝐿𝐻 decreases as 𝑞 does. Since there is an obvious
similarity between the changing patterns of 𝑞 and the
localization length 𝐿𝐻 , 𝑞 has a close relationship with
the localization length, or with the degree of lost of
the spherical or axial symmetry. The deformation of
the potential breaks these symmetries and the rota-
tionally invariant term 𝑙2 tends to restore them. Thus
systems with larger deformations need larger values of
𝐷 to restore the symmetries, and the values of 𝐷𝑚 are
larger.
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Fig. 3. The localization length in the |𝑛𝑙𝑚⟩ basis for dif-
ferent deformations.

0.005 0.010 0.015 0.020 0.025 0.030

0.004

0.006

0.008

0.010

0.012

0.014

0.016

=20o

 =0.2
 =0.3
 =0.4
 =0.5

Fig. 4. The localization length in the |𝑛𝑥𝑛𝑦𝑛𝑧⟩ basis.

From Fig. 3 one can find that the localization
length calculated in the |𝑛𝑙𝑚⟩ basis increases steadily
with 𝛽. However, as seen in Fig. 1, the values of 𝑞 do
not have an obvious dependence on 𝛽. To understand

this it must be revealed that there are other symme-
tries worth considering besides the spherical or axial
ones. With 𝐷 = 0 the system has the three quantum
numbers 𝑛𝑥, 𝑛𝑦, 𝑛𝑧, while with 𝐷 > 0 the eigenstates
become linear combinations of basis with different 𝑛𝑥,
𝑛𝑦, 𝑛𝑧 values. The breaking of the symmetries pos-
sessed by the 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 bases can be measured by
the localization length calculated in this basis. Fig-
ure 4 shows the localization length calculated in the
|𝑛𝑥𝑛𝑦𝑛𝑧⟩ bases for different deformations. We find
that 𝐿𝐻 in this basis decreases as 𝛽 increases. The
value of 𝑞 stands for the degree of chaoticity of the
system, thus should be affected by all kinds of symme-
tries. Since 𝐿𝐻 in the two sets of bases show opposite
trends, it is easy to understand that 𝑞 does not have
an obvious dependence on the deformation.

Combining the results of the localization length in
the two sets of bases, we conclude that the spherical or
axial symmetry (represented by |𝑛𝑙𝑚⟩ basis) governs
the degree of chaoticity of the system, considering the
similarity between the changing patterns of 𝑞 and 𝑙𝐻
in the bases. However, the symmetry possessed by
|𝑛𝑥𝑛𝑦𝑛𝑧⟩ bases also plays a role.

0.01 0.02 0.03 0.04
0.6

0.7

0.8

0.9

=0.1

=0.4

=20o

Fig. 5. The Berry–Robnik parameters for different 𝐷,
with and without the 𝑙 · 𝑠 term.

In the calculations of realistic nuclei the ratio of
the 𝑙 ·𝑠 strength 𝐶 to ℎ̄𝜔0 is around 0.1.[15] The actual
values are also different for different mass regions.[16]

For 𝛽 = 0.4, 𝛾 = 20∘ and 𝐶 = 0.1 we show the pa-
rameter 𝑞 changing with 𝐷 in Fig. 5. We notice in
Fig. 5 that 𝑞 ranges from 0.6 to 0.9 for all values of 𝐷.
Compared with Fig. 1 we find the degree of chaoticity
is enhanced significantly by the 𝑙 · 𝑠 term. The rea-
son for the increasing of chaoticity can be understood
as the breaking of the 𝑆𝑈(3) symmetry possessed by
the deformed harmonic oscillator potential. This coin-
cides with the result of the two-center shell model.[13]

For 𝐷 values larger than 𝐷𝑚, 𝑞 stays 0 if there is
no 𝑙 · 𝑠 term. However, with the 𝑙 · 𝑠 term taken into
account 𝑞 can be positive when 𝐷 > 𝐷𝑚. Moreover,
positive 𝑞 values need only a very small value of the
𝑙 · 𝑠 strength 𝐶. Calculations show that the ‘critical’
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value of 𝐶 (denoted as 𝐶*) above which 𝑞 becomes
positive is of the order of 10−4. The values of 𝑞 for
different 𝐶 are shown in Fig. 6 with a 𝐷 larger than
𝐷𝑚 at the corresponding deformation. In Fig. 6 we
find that when 𝐶 > 𝐶* 𝑞 shows a steady increase
with increasing 𝐶.

0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

=0.3

=20*

=0.034

 (10-4)

Fig. 6. The Berry–Robnik parameters for different 𝐶.

In summary, with the 𝛽 and 𝛾 deformation, chaotic
motion exists for a certain range of the 𝑙2 strength
𝐷. For each deformation there is an upper limit of
𝐷, above which the chaoticity disappears. The value
of the upper limit depends on the deformation. The
chaotic behavior of the system with the 𝑙2 term is dom-
inated by the spherical or axial symmetry represented
by the |𝑛𝑙𝑚⟩ basis. The symmetries represented by
the |𝑛𝑥𝑛𝑦𝑛𝑧⟩ basis also plays some role.

When both of the 𝑙2 and the 𝑙 · 𝑠 terms are in-

cluded, the chaoticity is significantly larger than that
of the case with the 𝑙2 term only. Particularly, when
𝐷 is larger than 𝐷𝑚, chaoticity will show up if the 𝑙 ·𝑠
term is considered. The strength of the 𝑙 · 𝑠 term that
is needed to produce chaotic motion is of the order of
10−4.
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