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Three-body forces and neutron star structure
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We calculate the nucleonic equation of state within the Brueckner-Bethe-Goldstone formalism using the
Argonneuw; g two-body interaction and a three-body interaction. We adopt two different three-body forces: the
phenomenological Urbana IX model and a microscopic meson-exchange force including nucleon virtual exci-
tations and nucleon-antinucleon excitations. We compare their respective predictions regarding the structure of
neutron stars, in particular the mass-radius relation.
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The theoretical description of neutron stars requires the E 3 k2 1

knowledge of the nuclear matter equation of si@OS at A~ 5om e > (kk'|Gle(k) +e(k');n][kK),.

very high densities, reaching about ten times the saturation kK <kg

density of nuclear mattem,~0.17 fni3. The results are (4)

therefore very sensitive to the theoretical modeling of high

density nuclear matter. The basic input quantity in the Bethe-Goldstone equaion
In this Brief Report we investigate this sensitivity within is .the nucleon-nucleofNN) interaction in free ?paca/ In

the microscopic Brueckner-Bethe-Goldstone description of!iS Work we adopt the new Argonngs potential[2] as a

nuclear matterf1]. The basic ingredient is the Brueckner MOd€l for the free two-nucleon interaction.
reaction matrixG, which is the solution of the Bethe- It is well known that the standard BHF formalism involv-

Goldstone equation ing (_)ljly two-boqy forcgs does not reproduce cqrre_ctly th.e
’ empirical saturation point of nuclear matter, despite its rapid
convergence when including three-hole line contributions
|KaKi) Q(KaKy| [3]. This drawback is usually overcome by including three-
Glw;n], (1)  body forces(TBF). Two major lines of this approach have
been pursued in the past, one involving a semiphenomeno-
logical determination of the TBF4-6], the other a com-
whereV is the bare nucleon-nucledN) interaction,nis  pletely microscopic model based on meson exchange with
the nucleon number density, and the starting energy. intermediate excitation of nucleon resonangés9]. Since
The single-particle energg(k) (assumingi=1), the phenomenological TBF are also widely used in varia-
tional [10,17] and quantum Monte Carl§l2-14 calcula-
) tions of nuclear matter, it is clearly of interest to compare the
e(k) = e(k:n) = k_+ u(k:n), 2) two ap_proaches. This is the purpose of t_he present paper,
which is actually focused on astrophysical applications,
namely, the prediction of neutron star structure based on a
nucleonic BHF equation of state employing the various TBF.
We begin with a short overview of the theoretical formal-
ism concerning the phenomenological Urbana IX TBF
[4-6,13. For the description of the microscopic approach,
the reader is referred to Reff/—9], where TBF are dis-
cussed in great detail. We remind that the Urbana IX TBF
model contains a two-pion exchange potenti’f;}lT supple-

U(k;n)=Re >, (kK'|G[e(k) +e(K'):n]kK )., (3) mented by a phenomenological repulsive ter‘ffg,
k/SkF Vijk Vljk + Vljk' (5)

Clwin]=V+ kazkbvw e(k,) —e(k,) tie

and the Pauli operatd® constrain the propagation of inter-
mediate baryon pairs above the Fermi momentum. The
Brueckner-Hartree-Fock (BHF) approximation for the
single-particle potential(k;n) using thecontinuous choice
prescription is

o . o where
where the subscripa indicates antisymmetrization of the

matrix elements. Because of the occurrenc&@;n) in Eq. V2T =

(2), Egs. (1)«3) constitute a coupled system of equations Vi _Aczyc Xij, X, - 73, 73

that needs to be solved self-consistently for different Fermi L

g(;rir:grr:tak\).yln the BHF approximation the energy per nucleon 20 Xddlm - 7 7wl 6)
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Vill?k = U2 T2M, ) TA(m, ). (7) ' symmetric matter
o 0.8 — Kke=1.4fm”
The two-pion exchange operat¥y; is given by N tﬁg.g
0.6 —)
Xij =Y(m_rj) o - oy + T(m,r)S;, (8) I ke=2.6

where o and 7 are the Pauli spin and isospin operators, and @04y

Sj=3(o; Tjj) (o} Tjj) - oi0; is the tensor operatolY and T
are the Yukawa and tensor functions, respectively, associated
to the one-pion exchange:

02}

e _or? [
- _ 1.‘..|...|..|....|..|....
() X (1-e™), ©) i neutron matter
0.8 F. 5 — ke=1.2fm™
3 3 e—X s R k.=1.6
T(x) = (1 +—+ —2) —(1-e°)2, (10 06l ki=2-8
X X X Py k.=3.2
I =3
For the use in BHF calculations, this TBF is reduced to an 04}
effective, density dependent, two-body force by averaging ]
over the third nucleon in the medium, taking account of the 027
nucleon-nucleon correlations by means of the BHF defect i
function g, 01
— _ 3 2 2 _0_2>.‘..|...|..|....|..|....
V(ry) =n | &2 Vi1 -gr) 41 -glrp)?. (1) 0 05 1 15 2 25 3
Tlo Tk r [fm]

This procedure yields an effective two-nucleon potential of a

. FIG. 1. BHF defect functions in symmetric nuclear matter and
simple structure,

neutron matter at different densities.
— 27T 2\ 72T R
VD =7 ailoi - oV + §EVE(D]+ VAR, (12) neutron matter with one momentum beink: and the other
containing central and tensor two-pion exchange componentsveraged over the Fermi sphere. One notes that the depen-
as well as a central repulsive contribution. dence on densityas well as that on the two momentis
The two parameteré and U are usually determined by actually rather weak, allowing eventually to keep the defect
either, in the variational approach, fitting the triton binding function fixed for calculations at different densities. In this
energy together with the saturation density of nuclear mattecase the averaged TBF potential, Ed1), would depend
(yielding however too little attractionB/A=-12 MeV, in  purely linear on density.
the latter cas§l1Q)), or, in the BHF calculations, reproducing In Fig. 2 we show the different componer\lé”, V%’T, and
the empirical saturation density together with the bindingVR [Eq. (12)] of the averaged TBF potential in symmetric
energy of nuclear matter. The resulting parameter values amatter at normal density. Comparing to the microscopic TBF
A=-0.0293 MeV and U=0.0048 MeV (as well as c of Ref. [8], one can roughly identif}/°™ with the combined
=2.1 fr?) in the variational Urbana 1X model, whereas for effect of 7 andp meson exchangesf. Fig. 10 in Ref.[8]),
the optimal BHF+TBF calculationgyielding a saturation whereasvR simulates the interaction due to the variansw
point at ke~1.36 fnl, B/A=~-15.5 MeV, and an incom- exchanges$Fig. 11 of the same referencdVith the choice of
pressibility K~=210 MeV) we requireA=-0.0333 MeV and parametersA andU given above, the different phenomeno-
U=0.00038 MeV. These values &f and U have been ob- logical potentials are of similar shape and magnitude as the
tained by using the Argonne,g two-body force both in the corresponding microscopic results.
BHF and in the variational many-body theories. However, The resulting binding energy per nucleon for symmetric
the required repulsive component is much weaker in thewclear matter and purely neutron matter is shown in Fig. 3.
BHF approach, consistent with the observation that in thén this figure we compare results obtained within the BHF
variational calculations usually heavier nuclei as well asapproach without TBRdotted curvg with the microscopic
nuclear matter are underbound. Indeed, less repulsive TBIFBF (solid curve, and with the phenomenological ones con-
became available recentljl4] in order to address this structed with the choice of parameters given above. In the
problem. latter case, we compare for completeness calculations using
We now turn to the discussion of our numerical results. Inthe G matrix (dot-dashed curyeand theK matrix (dashed
Fig. 1 we display for symmetric mattéupper pangland  curve), i.e., neglecting the imaginary part of timatrix in
pure neutron mattgtower panej the BHF defect functiomy Eq. (1). We notice that up to a density of<0.4 fmi 2 the
as a function of the interparticle distancet several densi- results using microscopic and phenomenological TBF are in
ties. To be more precise, we actually plot the defect functiorfair agreement, whereas at higher density the microscopic
averaged over théS, and 3SD, partial wavegonly 'S, for ~ TBF turn out to be more repulsive. For convenience, we
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6 i 3 TABLE |. Parameters of the EOS fit, E¢13), for symmetric
n=0.17fm nuclear matte¢SNM) and pure neutron mattéPNM) using differ-

% A = -0.0333 MeV ent TBF.
4r U= 0.00038 MeV
V$n o B Y

27 SNM, micro ~178.2 435.2 2.00
SNM, phen¢G) —290.7 397.7 1.38
SNM, pheneK) —265.5 406.0 1.47
PNM, micro 91.5 471.9 3.00
PNM, pheneG) 83.3 237.2 2.34
PNM, phenok) 77.1 257.4 2.27

tions to other phases are considered in this paper. Following
standard procedured5], we compute the proton fraction
and the equation of state for charge neutral ghdtable
. matter, using the various TBF discussed above.
-8 0 0‘5 1 1'5 2 2'5 3 In Fig. 4 we display the symmetry energy and the proton
r [fm] frac_tlon as functions of the nucleon de_nsnyfor dlﬁerent
choices of the TBF. We observe results in agreement with the
FIG. 2. Averaged BHF TBF potentials, E(L2), calculated for ~ characteristics of the EOS shown in Fig. 3. In fact, the stiff-
symmetric matter at normal density. est equation of state, i.e., the one calculated with the micro-
scopic TBF, yields larger symmetry energies compared to the
Qnes obtained with the phenomenological TBF. As a conse-

provide empirical parametrizations of our numerical result

of the functional form guence, the proton fraction is correspondingly larger.
B 250 ——
K(n) =an+ Bn’. (13 L —— micro 3BF T
20F pheno 3BF (K) A
The parameters, 3, y are listed in Table | for the different | pheno 3BF (G)
EOS. e 2BF
In order to study the effects of different TBF on neutron —~ 190 O variational 7
star structure, we have to calculate the composition and théa s S
equation of state of cold, catalyzed matter. We require thal 100 |-
the neutron star contains charge neutral matter consisting ¢ §
neutrons, protons, and leptons ghequilibrium. No transi- L i
50 |-
400 . . . r r i
—— micro 3BF
-------- pheno 3BF (K) g 0
| —— pheno 3BF (G) ] -
0F 2BF /,;f/ I
O variational D i
— 02|
S 20 [
2
< x [
o X
100 X
0.1 |
0 [
N N . . 1 . . . N Y
0.0 0.5 1.0 0.00 0 v w0
n (fm®) ) ' . )
n(fm™)
FIG. 3. Binding energy per nucleon of symmetric nuclear matter
(lower curves using a given linestyland pure neutron matt¢up- FIG. 4. Symmetry energyupper pangl and proton fraction
per curvey employing different TBF. See text for details. (lower pane) of B-stable matter using different TBF.
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body potential and the Urbana IX modghe repulsive term

VR reduced by 37%, howeveas three-nucleon interaction. It
can be seen that this calculation predicts smaller symmetry
energies, close to the BHF values without TBF, as well as
maximum masses in the same range as those of the BHF
+TBF models. The discrepancies are due to the different
many-body approaches.

However, in the end it should be emphasized that our
results overestimate the effect of the differences between the
nucleonic TBF. In reality, in particular the early appearance

Y N T S SN SR R S of hyperong16] (as well as eventually quark mattgl7]) at

8 9 10 " 12 13 14 15 186 densities of abouh= (2, ..., 3n, renders the effect of the
R (km) nucleonic TBF much less important, because the nucleonic
partial densities inside the star remain more limitgéd.Ref.

FIG. 5. Mass-radius relations of neutron stars evaluated Wiﬂ'[16] a reduction of the maximum centralicleonicdensity
different equations of state. The numbers near the curves denote thg about 40% was reported, for example
central densityns/ng of the maximum mass configuration. In conclusion, it seems justified to use the phenomeno-
logical Urbana IX TBF in situations where the nucleonic

. Bos is probed up to densities= (3, ..., 9n,. However, as
solve the well-known Tolman-Oppenheimer-Volkov: equa-jyioq pefore, in order to reproduce the correct saturation

tions [15], with the newly constructed EOS for the charge ,int of nuclear matter, as well as to be compatible with the
neutral andB-stable case as input. The results are shown "fnicroscopic TBF, the repulsive componevR in the BHF

Fig. 5. We notice that the EOS calculated with the micro-annroach has to be chosen an order of magnitude smaller
scopic TBF produces the largest gravitational masses, Witfhan in the variational calculations.

the maximum mass of the order of 2.3JViwhereas the
phenomenological TBF yields a maximum mass of about 1.9 We would like to acknowledge valuable discussions with
Mo. In the latter case, neutron stars are characterized byl. Baldo.

Mg go T T T T T ] smaller radii and larger central densities, i.e., the Urbana
° o —mr:CFO 33{3;F Q] TBF produce more compact stellar objects. .
20l e N j gh::g 3BF iG)) ] ~For completeness, we also compare our results shown in
I . 82 S oBF 1 Figs. 3—_5 _Wlth the ones obtalned by Aknelal. [10] within
oF ~. O O variational the variational method, using the same Argonng two-

12 |-

MM,

0.8 -

04 |

In order to calculate the mass-radius relation, one has t
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