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We calculate the nucleonic equation of state within the Brueckner-Bethe-Goldstone formalism using the
Argonney18 two-body interaction and a three-body interaction. We adopt two different three-body forces: the
phenomenological Urbana IX model and a microscopic meson-exchange force including nucleon virtual exci-
tations and nucleon-antinucleon excitations. We compare their respective predictions regarding the structure of
neutron stars, in particular the mass-radius relation.
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The theoretical description of neutron stars requires the
knowledge of the nuclear matter equation of state(EOS) at
very high densities, reaching about ten times the saturation
density of nuclear matter,n0<0.17 fm−3. The results are
therefore very sensitive to the theoretical modeling of high
density nuclear matter.

In this Brief Report we investigate this sensitivity within
the microscopic Brueckner-Bethe-Goldstone description of
nuclear matter[1]. The basic ingredient is the Brueckner
reaction matrix G, which is the solution of the Bethe-
Goldstone equation,

Gfv;ng = V + o
kakb

V
ukakblQkkakbu

v − eskad − eskbd + ie
Gfv;ng, s1d

whereV is the bare nucleon-nucleonsNNd interaction,n is
the nucleon number density, andv the starting energy.
The single-particle energyeskd sassuming"=1d,

eskd = esk;nd =
k2

2m
+ Usk;nd, s2d

and the Pauli operatorQ constrain the propagation of inter-
mediate baryon pairs above the Fermi momentum. The
Brueckner-Hartree-FocksBHFd approximation for the
single-particle potentialUsk;nd using thecontinuous choice
prescription is

Usk;nd = Re o
k8økF

kkk8uGfeskd + esk8d;ngukk8la, s3d

where the subscripta indicates antisymmetrization of the
matrix elements. Because of the occurrence ofUsk;nd in Eq.
s2d, Eqs. s1d–s3d constitute a coupled system of equations
that needs to be solved self-consistently for different Fermi
momenta. In the BHF approximation the energy per nucleon
is given by

E
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2n
Re o
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kkk8uGfeskd + esk8d;ngukk8la.

s4d

The basic input quantity in the Bethe-Goldstone equations1d
is the nucleon-nucleonsNNd interaction in free space,V. In
this work we adopt the new Argonney18 potentialf2g as a
model for the free two-nucleon interaction.

It is well known that the standard BHF formalism involv-
ing only two-body forces does not reproduce correctly the
empirical saturation point of nuclear matter, despite its rapid
convergence when including three-hole line contributions
[3]. This drawback is usually overcome by including three-
body forces(TBF). Two major lines of this approach have
been pursued in the past, one involving a semiphenomeno-
logical determination of the TBF[4–6], the other a com-
pletely microscopic model based on meson exchange with
intermediate excitation of nucleon resonances[7–9]. Since
the phenomenological TBF are also widely used in varia-
tional [10,11] and quantum Monte Carlo[12–14] calcula-
tions of nuclear matter, it is clearly of interest to compare the
two approaches. This is the purpose of the present paper,
which is actually focused on astrophysical applications,
namely, the prediction of neutron star structure based on a
nucleonic BHF equation of state employing the various TBF.

We begin with a short overview of the theoretical formal-
ism concerning the phenomenological Urbana IX TBF
[4–6,12]. For the description of the microscopic approach,
the reader is referred to Refs.[7–9], where TBF are dis-
cussed in great detail. We remind that the Urbana IX TBF
model contains a two-pion exchange potentialVijk

2p supple-
mented by a phenomenological repulsive termVijk

R ,

Vijk = Vijk
2p + Vijk

R , s5d

where

Vijk
2p = Ao

cyc
FhXij , Xjkjhti · t j, t j · tkj

+
1

4
fXij , Xjkgfti · t j, t j · tkgG , s6d
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Vijk
R = Uo

cyc
T2smpr ijdT2smpr jkd. s7d

The two-pion exchange operatorXij is given by

Xij = Ysmpr ijdsi · s j + Tsmpr ijdSij , s8d

wheres andt are the Pauli spin and isospin operators, and
Sij =3ssi ·r̂ i jdss j ·r̂ i jd−sis j is the tensor operator.Y and T
are the Yukawa and tensor functions, respectively, associated
to the one-pion exchange:

Ysxd =
e−x

x
s1 − e−cr2d, s9d

Tsxd = S1 +
3

x
+

3

x2De−x

x
s1 − e−cr2d2. s10d

For the use in BHF calculations, this TBF is reduced to an
effective, density dependent, two-body force by averaging
over the third nucleon in the medium, taking account of the
nucleon-nucleon correlations by means of the BHF defect
function g,

Vsr i jd = nE d3rk o
sk,tk

Vijkf1 − gsr ikdg2f1 − gsr jkdg2. s11d

This procedure yields an effective two-nucleon potential of a
simple structure,

Vsr d = ti · t jfsi · s jVC
2psrd + Sijsr̂dVT

2psrdg + VRsrd, s12d

containing central and tensor two-pion exchange components
as well as a central repulsive contribution.

The two parametersA and U are usually determined by
either, in the variational approach, fitting the triton binding
energy together with the saturation density of nuclear matter
(yielding however too little attraction,B/A<−12 MeV, in
the latter case[10]), or, in the BHF calculations, reproducing
the empirical saturation density together with the binding
energy of nuclear matter. The resulting parameter values are
A=−0.0293 MeV and U=0.0048 MeV (as well as c
=2.1 fm−2) in the variational Urbana IX model, whereas for
the optimal BHF+TBF calculations(yielding a saturation
point at kF<1.36 fm−1, B/A<−15.5 MeV, and an incom-
pressibilityK<210 MeV) we requireA=−0.0333 MeV and
U=0.00038 MeV. These values ofA and U have been ob-
tained by using the Argonney18 two-body force both in the
BHF and in the variational many-body theories. However,
the required repulsive component is much weaker in the
BHF approach, consistent with the observation that in the
variational calculations usually heavier nuclei as well as
nuclear matter are underbound. Indeed, less repulsive TBF
became available recently[14] in order to address this
problem.

We now turn to the discussion of our numerical results. In
Fig. 1 we display for symmetric matter(upper panel) and
pure neutron matter(lower panel) the BHF defect functiong
as a function of the interparticle distancer at several densi-
ties. To be more precise, we actually plot the defect function
averaged over the1S0 and 3SD1 partial waves(only 1S0 for

neutron matter), with one momentum beingkF and the other
averaged over the Fermi sphere. One notes that the depen-
dence on density(as well as that on the two momenta) is
actually rather weak, allowing eventually to keep the defect
function fixed for calculations at different densities. In this
case the averaged TBF potential, Eq.(11), would depend
purely linear on density.

In Fig. 2 we show the different componentsVC
2p, VT

2p, and
VR [Eq. (12)] of the averaged TBF potential in symmetric
matter at normal density. Comparing to the microscopic TBF
of Ref. [8], one can roughly identifyV2p with the combined
effect of p andr meson exchanges(cf. Fig. 10 in Ref.[8]),
whereasVR simulates the interaction due to the variouss, v
exchanges(Fig. 11 of the same reference). With the choice of
parametersA andU given above, the different phenomeno-
logical potentials are of similar shape and magnitude as the
corresponding microscopic results.

The resulting binding energy per nucleon for symmetric
nuclear matter and purely neutron matter is shown in Fig. 3.
In this figure we compare results obtained within the BHF
approach without TBF(dotted curve), with the microscopic
TBF (solid curve), and with the phenomenological ones con-
structed with the choice of parameters given above. In the
latter case, we compare for completeness calculations using
the G matrix (dot-dashed curve) and theK matrix (dashed
curve), i.e., neglecting the imaginary part of theG matrix in
Eq. (1). We notice that up to a density ofn<0.4 fm−3 the
results using microscopic and phenomenological TBF are in
fair agreement, whereas at higher density the microscopic
TBF turn out to be more repulsive. For convenience, we

FIG. 1. BHF defect functions in symmetric nuclear matter and
neutron matter at different densities.
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provide empirical parametrizations of our numerical results
of the functional form

B

A
snd = an + bng. s13d

The parametersa, b, g are listed in Table I for the different
EOS.

In order to study the effects of different TBF on neutron
star structure, we have to calculate the composition and the
equation of state of cold, catalyzed matter. We require that
the neutron star contains charge neutral matter consisting of
neutrons, protons, and leptons inb equilibrium. No transi-

tions to other phases are considered in this paper. Following
standard procedures[15], we compute the proton fraction
and the equation of state for charge neutral andb-stable
matter, using the various TBF discussed above.

In Fig. 4 we display the symmetry energy and the proton
fraction as functions of the nucleon densityn for different
choices of the TBF. We observe results in agreement with the
characteristics of the EOS shown in Fig. 3. In fact, the stiff-
est equation of state, i.e., the one calculated with the micro-
scopic TBF, yields larger symmetry energies compared to the
ones obtained with the phenomenological TBF. As a conse-
quence, the proton fraction is correspondingly larger.

FIG. 2. Averaged BHF TBF potentials, Eq.(12), calculated for
symmetric matter at normal density.

FIG. 3. Binding energy per nucleon of symmetric nuclear matter
(lower curves using a given linestyle) and pure neutron matter(up-
per curves), employing different TBF. See text for details.

TABLE I. Parameters of the EOS fit, Eq.(13), for symmetric
nuclear matter(SNM) and pure neutron matter(PNM) using differ-
ent TBF.

a b g

SNM, micro 2178.2 435.2 2.00

SNM, pheno(G) 2290.7 397.7 1.38

SNM, pheno(K) 2265.5 406.0 1.47

PNM, micro 91.5 471.9 3.00

PNM, pheno(G) 83.3 237.2 2.34

PNM, pheno(K) 77.1 257.4 2.27

FIG. 4. Symmetry energy(upper panel) and proton fraction
(lower panel) of b-stable matter using different TBF.
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In order to calculate the mass-radius relation, one has to
solve the well-known Tolman-Oppenheimer-Volkov equa-
tions [15], with the newly constructed EOS for the charge
neutral andb-stable case as input. The results are shown in
Fig. 5. We notice that the EOS calculated with the micro-
scopic TBF produces the largest gravitational masses, with
the maximum mass of the order of 2.3 M(, whereas the
phenomenological TBF yields a maximum mass of about 1.9
M(. In the latter case, neutron stars are characterized by

smaller radii and larger central densities, i.e., the Urbana
TBF produce more compact stellar objects.

For completeness, we also compare our results shown in
Figs. 3–5 with the ones obtained by Akmalet al. [10] within
the variational method, using the same Argonney18 two-
body potential and the Urbana IX model(the repulsive term
VR reduced by 37%, however) as three-nucleon interaction. It
can be seen that this calculation predicts smaller symmetry
energies, close to the BHF values without TBF, as well as
maximum masses in the same range as those of the BHF
+TBF models. The discrepancies are due to the different
many-body approaches.

However, in the end it should be emphasized that our
results overestimate the effect of the differences between the
nucleonic TBF. In reality, in particular the early appearance
of hyperons[16] (as well as eventually quark matter[17]) at
densities of aboutn<s2, . . . , 3dn0 renders the effect of the
nucleonic TBF much less important, because the nucleonic
partial densities inside the star remain more limited.(In Ref.
[16] a reduction of the maximum centralnucleonicdensity
by about 40% was reported, for example).

In conclusion, it seems justified to use the phenomeno-
logical Urbana IX TBF in situations where the nucleonic
EOS is probed up to densitiesn<s3, . . . , 4dn0. However, as
noted before, in order to reproduce the correct saturation
point of nuclear matter, as well as to be compatible with the
microscopic TBF, the repulsive componentVR in the BHF
approach has to be chosen an order of magnitude smaller
than in the variational calculations.

We would like to acknowledge valuable discussions with
M. Baldo.
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FIG. 5. Mass-radius relations of neutron stars evaluated with
different equations of state. The numbers near the curves denote the
central densitync/n0 of the maximum mass configuration.
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