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Abstract. First-principles calculations have been utilized to investigate the
biaxial strain-dependent electronic properties of fully hydrogenated bilayer
graphene. It has been found that after complete hydrogenation, bilayer graphene
exhibits semiconducting characteristics with a wide direct band gap. The band
gap can be tuned continuously by the biaxial strain. Furthermore, compressive
strain can induce the semiconductor-to-metal transition of this hydrogenated
system. The origin of the strain-tunable band gap is discussed. The present study
suggests the possibility of tuning the band gap of fully hydrogenated bilayer
graphene by using mechanical strain and may provide a promising approach for
the fabrication of electromechanical devices based on bilayer graphene.
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1. Introduction

Graphene, a two-dimensional (2D) honeycomb monolayer with sp2 hybridized carbon atoms,
has attracted a great deal of interest since its experimental discovery in 2004 [1]. Owing to its
novel properties, for example the ultra-high electron mobility, anomalous quantum Hall effect,
ballistic transport at room temperature and truly atomic thickness, graphene has been suggested
to be a suitable candidate material for next-generation nanoelectronics [2–4]. Because of the
tangential π and π∗ bands at the Dirac point, pure graphene is a zero-gap semiconductor. Lack of
a band gap limits the direct utilization of graphene in nanoelectronic and nanophotonic devices.
Therefore, opening or tuning a band gap becomes imperative for the technological application
of graphene.

To date, a variety of strategies have been explored in order to engineer the band gap of
graphene: for example, surface adsorption [5–10], cutting graphene into a nanoribbon [11],
patterning bilayer or even multilayer graphene, utilizing graphene–substrate interaction [12]
and applying an external electric field to bilayer graphene [13, 14]. Hydrogenation of graphene
has been suggested both theoretically and experimentally to be a promising approach to
create a finite band gap [5–8]. For example, fully hydrogenated graphene, in which all carbon
atoms are in sp3 hybridization, is a semiconductor with a wide direct band gap of about
3.5 eV [5–7]. Graphene with half-hydrogenation, however, is a ferromagnetic semiconductor
with a narrow indirect band gap of 0.46 eV [8]. Additionally, mechanical strain has been
used to engineer the band gap of graphene experimentally [15–18]. A tunable band gap at
the Dirac point can be realized by applying uniaxial strain on graphene [15]. The G and
2D band Grüneisen parameters have been yielded by biaxial strain in graphene adhered to a
SiO2/Si substrate [16]. Available theoretical studies have also verified that mechanical strain
can significantly modify the electronic properties of carbon nanotubes [19, 20] as well as ZnO
and Si nanowires [21, 22].

On the other hand, bilayer graphene has attracted a great deal of attention recently
[13, 14, 18, 23–26]. In bilayer graphene, low-energy excitation is one of the characteristics
of massive chiral fermions, unlike Dirac fermions in graphene [2]. Most importantly, evidence
has been presented that bilayer graphene can provide a strain-tunable band gap and, as such,
may suggest a maneuverable approach for the fabrication of electromechanical devices based
on bilayer graphene [18, 26].

The aforementioned studies have motivated our study of the effects on bilayer
graphene subjected to hydrogenation and mechanical strain. In this paper, we present the
corresponding results based on density functional theory (DFT) calculations. Similar to
monolayer graphene with full hydrogenation [5–7], fully hydrogenated bilayer graphene (HBG)
exhibits semiconducting characteristics. Of particular interest are the strain effects on electronic
properties of HBG. We find that the band gap of HBG can be tuned continuously by the strain.
Furthermore, compressive strain can lead to the transition of HBG from the semiconducting to
the metallic state.

2. Computational method

First-principles calculations based on the spin-polarized DFT within the projector aug-
mented wave method [27, 28], as implemented in the Vienna ab initio simulation package
(VASP) [29, 30], have been employed to investigate the structural and electronic properties
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Figure 1. Side and top views of (a) B-type and (b) H-type HBGs. Carbon atoms
in the first and second layers are in gold and green, respectively. Hydrogen atoms
are in light gray. (c) Energy barriers (unit: meV per carbon atom) between the
B- and H-type HBGs. Insets give the homologous configurations in the feasible
phase transition path.

of HBG tuned by in-plane biaxial strain. The functional of Perdew and Wang 91 (PW 91)
with generalized gradient approximation is used to describe the exchange correlation inter-
actions [31]. The cut-off of plane-wave energy is set to 450 eV, and the convergence for total
energy is controlled to be smaller than 10−6 eV. An 11 × 11 × 1 k-point mesh with Gamma
centered grid is adopted to describe the Brillouin-zone integrations. All the HBGs are located in
the x–y plane and modeled in a hexagonal supercell with periodic boundary conditions. Along
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Table 1. Properties of HBGs: lattice constant a (Å), average C–C bond lengths
within layers dC–C (Å) and between layers D (Å), average C–H bond length
dC–H (Å), binding energy per carbon atom Eb (eV) and band gap Eg (eV).

HBG a dC–C D dC–H Eb Eg

B-type 2.533 1.541 1.561 1.109 −10.971 2.985
H-type 2.526 1.539 1.587 1.107 −10.956 2.825

the z-axis, a vacuum region of at least 10 Å is applied to eliminate the interaction between
layers. The geometric relaxations are performed by computing the Hellmann–Feynman (H–F)
forces using conjugate gradient algorithm [32]. All atoms in the supercell are allowed to
move freely until the H–F force on each atom is smaller than 0.001 eV Å−1. The accuracy
of the present approach has been tested by calculating the properties of monolayer graphene.
Its semi-metallic feature and C–C bond length of 1.424 Å are in good agreement with the
experimental and theoretical results [8, 33, 34].

3. Results and discussion

Because the electronic properties of bilayer graphene are strongly dependent on its geometrical
structure [23], two types of HBGs are considered in this study: (i) Bernal stacking (termed
B-type), in which one half of the carbon atoms in one layer lie directly above the carbon atoms
of the adjacent layer, while the other half that are hydrogenated lie over the centers of hexagonal
rings of the adjacent layer (see figure 1(a)); (ii) hexagonal stacking (termed H-type), where
all carbon atoms of one layer lie above the carbon atoms of the other layer. In this case, the
hydrogenated carbon atoms are located at the same sublattice in both layers (see figure 1(b)).

After the structural relaxation of HBGs, chemical bonding between layers (A–B′ sites)
stabilizes both B- and H-type configurations, resulting in sp3 hybridization of all carbon atoms,
as shown in figures 1(a) and (b). Their optimized structural parameters and binding energies
are summarized in table 1. Obviously, the average C–C (within layers) and C–H bond lengths
of B-type are both approximately equal to those of H-type. The interlayer C–C bond length
D of B-type, however, is distinctly smaller than that of H-type, indicating that the interlayer
chemical bonds of B-type are stronger than those of H-type. Thereby, B-type HBG is more
stable than the H-type one, as indicated by the binding energy in table 1. During biaxial loading,
the configurations of both B- and H-type HBGs have similar distortions. Their interlayer C–C
and C–H bond lengths have no significant variation. The average C–C bond length within layers
increases with increasing positive strain, whereas it decreases with increasing negative strain.
Figure 1(c) shows the energy barriers between B- and H-type HBGs calculated by using the
nudged elastic band (NEB) method [35–38]. The energy barriers from B- to H-type and from
H- to B-type are estimated to be 502 and 487 meV per carbon atom, respectively. Owing to
the negligible difference in binding energy (15 meV per carbon atom between B- and H-type
HBGs) and large energy barriers, both B- and H-type configurations can be regarded as stable
states.

Figure 2 illustrates the electronic band structures and band gaps of HBGs as a function
of biaxial strain. It can be seen that the HBGs are nonmagnetic semiconductors with direct
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Figure 2. Electronic band structures of (a) B-type and (b) H-type HBGs with
different biaxial strains. The zero point of energy in all the band structures is
chosen to be the VBM energy of the unstrained bilayer. The dashed line marks
the highest occupied level. (c) The band gaps of the HBGs as a function of the
biaxial strain.
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band gaps of 2.985 and 2.825 eV for the unstrained B- and H-type configurations (see table 1),
respectively. More importantly, their band structures under the unstrained state are almost the
same (see figures 2(a) and (b)), indicating that their structural differences do not influence
the band structures significantly. However, the band structures of the HBGs are strongly
dependent on the biaxial strain. By applying a tensile biaxial strain, their band gaps are increased
by about 100 meV per 1% stretch, whereas under a compressive strain, they are decreased
monotonically from about 2.985 to 0 eV (see figure 2(c)). The critical strain of the transition
from semiconducting to metallic state is −13% for both B- and H-type HBGs. To validate the
present computing parameters such as the kinetic energy cut-off and k-point mesh, we have also
adopted a large energy cutoff of 600 eV and a 21 × 21 × 1 k-point mesh to calculate the binding
energy and band structure of strained (−13%) B-type HBG and obtained the same results as
those described above.

Why do the HBGs exhibit fantastic electronic properties with biaxial strain? In order to
explore the origin of the strain-tunable band gap, we display the partial density of state (PDOS)
of B-type HBG under different strains in figure 3. It can be observed from this figure that the
valence band maximum (VBM) of the B-type HBG is occupied by px and py orbitals of all
carbon atoms, while the conduction band minimum (CBM) is mainly contributed by pz orbital
of hydrogenated carbon atoms and the s electron of hydrogen atoms. Thereby, the band gap
is determined by the energy difference between E∗

pz−s and E px−py , where E∗

pz−s is the anti-
bonding energy between pz orbital of hydrogenated carbon atoms and s orbital of hydrogen
atoms, and E(px−py) is the bonding energy between px and py orbitals of all carbon atoms. From
a comparison of figures 3(a)–(c), it is found that the biaxial strain has no remarkable influence
on the anti-bonding state between pz and s orbitals distributed at CBM. This is because the C–H
bond is flexible because of the movability of hydrogen atom with adsorbed carbon atom at the
free surfaces. However, the bonding state between px and py orbitals located at VBM and lower
energy range varies dramatically with the biaxial strain and is strengthened with the tensile
strain and weakened with the compressive strain. This directly leads to a shift in the energy of
VBM to a higher level under the compressive strain (see figure 3(a)) and to a lower one under
the tensile strain (see figure 3(c)). Therefore, the band gap of the B-type HBG decreases with
the compressive strain and increases with the tensile strain. Finally, a semiconductor-to-metal
transition occurs at a strain of about −13%. For the H-type HBG, the tunable band gap and
semiconductor-to-metal transition induced by the biaxial strain can also be elucidated in the
same formalism.

Generally, mechanical strain modifies the band gaps of semiconductors irregularly,
depending on the type of material [21, 22, 39, 40]. For example, the band gap of a Ge
layer grown on the Si substrate increases with compressive strain but decreases with tensile
strain [39]. For strained anatase TiO2 bulk, whether the band gap decreases or increases depends
on the style of the applied strain [40]. In addition, our previous study shows that the band gap
of a ZnO nanowire varies nonmonotonically with uniaxial strain [21]. Nevertheless, the present
work reveals that the band gaps of HBGs can be tuned monotonically by biaxial strain.

4. Conclusion

In summary, we have performed DFT calculations to investigate the electronic properties
of fully hydrogenated bilayer graphene, and found that hydrogenated bilayers with different
configurations exhibit semiconducting characteristics. These particular semiconducting features
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Figure 3. PDOS of B-type HBGs with biaxial strain of (a) −5%, (b) 0% and
(c) 5%. The zero point of energy in all the PDOS is chosen to be the VBM
energy of unstrained HBG. The dashed line marks the highest occupied level.
Owing to the symmetry, the PDOS are shown only for A and B position carbon
atoms. CA and CB denote the carbon atoms located at A (B′) and B (A′) positions
in figure 1, respectively.
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result from sp3 chemical bonding and allow us to tune continuously the band gap with biaxial
strain. Compressive strain can induce the transformation of HBGs from the semiconducting
to the metallic state. Such a tunable band gap and semiconductor-to-metal transition mainly
contribute to the bonding state between px and py orbitals of carbon atoms and the antibonding
state between pz orbital of hydrogenated carbon atoms and s orbital of hydrogen atoms. The
present work suggests that fully hydrogenated bilayer graphene could be fabricated into novel
materials with finely tunable band gaps by using mechanical strain.
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