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Weak boundary anchoring, twisted nematic effect, and homeotropic to twisted-planar transition
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Expansion analysis shows that in second order, the weak boundary coupling of nematic liquid crystals
should be depicted by two anchoring coefficients and an orthonormal vector triplet. Using this binomial
anchoring energy, we have derived the analytical expression of the threshold and saturation properties of the
twisted nematic effect and the homeotropic to twisted-planar transition. Our results prove clearly that these two
quite different transitions are reverse effects of each other.
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[. INTRODUCTION describe the planar and tilted anchor{ag-10]. A simple and
commonly used modification is to introduce directly a
Surface anchoring plays an essential role in the scienceégy-dependent term. For tilted anchoring, it is assumed that
and technology of liquid crystals. In the past several decades, ) .
many surface treatment techniques have been invented to gs=W; SIN(6p— 0e) + W, Sin(ho— ¢be), (2

build appropriate anchoring properties, such as rubbin%v - .
o ! : . here the coefficient§V, , are the polar and azimuthal an-
deposition of surfactants, oblique evaporation of SiO, etc.Choring strengths resplézctively. Tﬁe problem with this ex-

[1,2], and many methods have been developed to measure = _.© = . S L
the anchoring energy relating to the liquid crystal-solid inter-Pression 1S that it has tW.O energy-m|r_1|m|zed directions,
face. Researchers have also made noteworthy attempts Qge,%) and (B, pet ). T_h|s problem dlsappears for _ho-
construct proper mathematical descriptions of anchorini”ogeneous planar anc_hor_lng ‘?‘!‘d homeotropic anchoring. In
phenomena. So far many good results have been obtain Gese two cases, E() is simplified to
[3]. _However, the §ituati0n is not.yet satisfactory: Many con- gs=W, co€ 0+ W, sir? ¢, 3
tradictory expressions of anchoring energy are in use today.

The analysis of field-induced structural transitions, suchand
as the twisted nemati@N) effect, is a significant subject in
liquid crystal science. In general, structural transitions are gs= W, Sir? 6+ W, sir? ¢y, (4)

attributed to the competition among the elastic energy of . . .
liquid crystal, the interaction of liquid crystal with the ap- respectively. The polar diagrams of these three expressions

plied electric or magnetic field, and the surface anchoring"© shown |n. Figs. (Zi))—Z(d): The common feAature of these
energy. A proper expression of the anchoring energy is ofXpressions is the singularity along the normab the sub-
critical importance for precise understanding of the structuraptrate as seen in the figures. In other words, the anchoring
transitions. energy is not properly defined in the surface normal. In its
A monostable anchoring surface is schematically repre©rigin, this is due to the unphysical dependence of Ejs-
sented in Fig. 1. The easy aasis in the (0., b.) direction. (4) on ¢q: The singularity is a result of the artificial separa-

. - . = tion of the anchoring energy into @-dependent part and a
As the surface directon, deviates frome, the surface en- g 4 @-dep P

ergy g increases. As a function of spatial directions, theg{)o-dependent paitLL).

f ; is d d h ; i A meaningful improvement was made by Beieaal.
orm of gy(fl, o) IS dependent on the nature of speci IC[10]. They proposed an expression of surface energy consist-
substrates. In practical investigation, many simple expres;

. ; ng of two square terms of inner products,
sions have been employed in analyses of structural transi-

tions of liquid _cr_ystals and anchoring tr_ansition_s of substrate g =W/ (Rg-Ny)2+Wh(Ng-Ny)2, (5)
surfaces. Rapini and Papoul@P) [4] originally introduced so o 2oz

the trigonometric expression of the anchoring endigig. Whereﬁlz(gxf)lﬁxfl andﬁzzgx ﬁl- (ﬁlyﬁz,g) are the
2@, three principal axes of anchoring. Comparatively, this ex-

gs=WSir? 6,. (1)

This expression achieved much success in describing the ho-
meotropic surface. However, a problem happens as it is ap-
plied to the planar and tilted anchoring surface, since the

polar and azimuthal anchoring cannot be distinguished.

Many types of generalizations of E() have been made to

>y

FIG. 1. Schematic of surface anchoring. In this figufe=0,
*Email address: iwamoto@pe.titech.ac.jp and® (not labeled is the angle between plane®¢ and eOn,.
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FIG. 2. Cut-away view of the polar diagrams of anchoring energy functions discussed in this paper. In each figure, the surface of the
substrate is represented by th®@y plane; the length of the radius vector from the ori@irio any point at the curved surface represents the
interfacial energys in that direction(in arbitrary unit3. (a) The RP expression E¢l), with W= 1. This polar diagram is axisymmetri)
Equation(2) with 6,=27/5, ¢.=0, W;=3, andW,=1. This diagram is not centrosymmetric. There are two easy directions: One is
denoted bye, and the other is its mirror-symmetric vector with respect to iz plane. The singularity along the axis is clear.(c)
Equation(3) with W;=3 andW,=1; (d) Eq. (4) with W;=2 andW,=2.5. These two diagrams are centrosymmetric; yet, they are still
singular along the axis. () Equation(11) with W,=3 andW,=1; (f) Eq. (12) with W;=1 andW,=3. In these two centrosymmetric
diagrams, the singularity existing i), (c), and(d) does not appear. These two diagrafes.and(f), are congruent, with the difference of
only a rotation. For the common tilted anchoring expressed by(H}, the corresponding polar diagram is the same as diagiaexcept
for a Euler rotation ¢, 0. ,1,).
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pression is preferable to E@2) since the problem of the proper expression of the anchoring energy because it is not
presence of two degenerate easy directions is resolved. Howentrosymmetric, as represented in Fi¢)2
ever, Eq.(5) is still incomplete, and in certain cases it gives  Consider the expansion of interfacial energy of a

wrong predictions. We give two examples. First, in the ho-monostable anchoring surfacg, has two minima ine and

meotropic anchoring case;=z; according to their defini-  — ¢ directions. As a function of surface orientation, the in-
tions, we getn;=n,=0. Consequently, Eq5) degenerates terfacial energy, has been expanded into spherical harmon-
to gs=0, and cannot depict the homeotropic surface. As dcs by Pieranski and d@me, in the analysis of an anchoring

result, even RP’s initial expression E@) is not included in  transition[15], where the surface normal was employed
Eg. (5). Second, recent finite-element simulatidr2] found  naturally as the polar axis of the spherical coordinate. Dif-
that the asymmetrically modulated surface, with in-plan erent from Ref[15], in this paper, the easy axiswill be
easy axis along the grooving direction, may have principa mployed as th.e pc;lar axis of thé spherical harmonics. Al-

{ahxes 01} anch_tI:_Jrr]l_ng_ ok_)hqubely mtersectlr:jg V.V'th thi nr(])rmal tothough this mathematical technique does not lead to essential
e surface. This Is in obvious contradiction W'f E € ar9U-yitference, it does simplify the treatment and the form of the
ment of Beicaet al,, since Eq.(5) predicts that ife=X, the  resylt. We have

anchoring triplet must bef()?,i).

In our recent wor13], we have proposed an expression
of the anchoring energy through spherical harmonic expan- 9s(®,®)= > Z ImYim(®, ),  gi-m=0im,
sion. Up to the second rank, an orthonormal vector triplet is 12024 m=-l @
naturally introduced, which consists of the three principal

axes of anchoring. The subtle difference of this anchoring,nere ® and ® are the polar and azimuthal angles with
triplet from that introduced in Ref10] not only resolves the respect toe (Fig. 1). The starting direction of the azimuthal
problems of Eq(5), but also reveals more physical contents.angleq) is to be. détermined later

Using this harmonic anchoring energy, we have also ana- In Eq.(7), the (m=00) term is -the isotropic part and can
lyzed the TN effect and the voltage-controlled-twist effect N

: : - e discarded. Sinc&,(0,d)=(3cog®—1)/2, the (m
[14], and obtained satisfactory results. In this paper, we sho@ 20) term contributes an energy term which corresponds to

the versatility of this surface energy expression in more de- 4 - )
tail. The polar diagrams of the anchoring energy functionsthe single-constant energy highlighted by Sugimetral. [9]

discussed in this article are shown in Fig. 2. We also give
detailed derivation of the threshold and saturation properties
of a twisted nematic liquid-crystdlrNLC) slab, and the ho-
meotropic to twisted-planaiHTP) transition. The latter, in-
vented recently, is of practical importance due to its superior- 92
optical properties in liquid-crystal displays. Our analyses
show that these two structural transitions, though apparently
very different, are intimately related in that their threshold
and saturation properties are expressed by essentially identi-
cal but exchanged formulas, i.e., the formulas for the threshThis is in contradiction with the fact that the easy axis
old property of the TN effect correspond to those of the¢ (@=0) is a stationary direction. So we conclude that
saturation property of the HTP effect, and vice versa. This igy, =0. This significant simplification is indeed originated

convincing evidence for the conclusion that these two dis?rom the employment of as the polar axis of the spherical
tinct transitions are actually reverse effects of each other. harmonics. As for thel=2+2) couple, we have

cof @ =(ny-€)2. )

Now consider the Im=2+1) couple. Writing G,
1Y01(®,®)+c.c., whereY,,;=sin® cos®e®, we have

dGy
J0

=g,e'®+c.c#0.
®0=0

Il. EXPANSION OF SURFACE ENERGY U22Y 2 O, D) +C.c= 4] gyl SiIF O cos’ D —2|g,,sir? ®E9

It should be emphasized that the equivalenceﬁatnd

— 1 leads to centrosymmetry of the surface eneygy where, without loss of generality, the starting azimuthal di-

rection® =0 has been chosen especially to offset the argu-

. . ment ofg,,. Merging the second term on the right-hand side

9s(Ng)=gs(—Ng), Or gs( by, o) =0gs(7— g, 7+ ¢bg). of Eq. (9) with Eq. (8), and redefining the coefficients, we
(6)  get the second-order anchoring energy

Consequentlygs can be regarded as a function defined on gs(®,q>)=W§sin2 © cos’ (I)+W,75in2 sin? &
the whole solid angle, though the liquid crystal exists only on _ - =, )
one side of the interface. As a direct result of the centrosym- =We(n- )+ W, (n- )%, (10

metry, any odd-order terms disappear spontaneously in a se- ) - - ) -
ries expansion ofjs. where the unit vectorg and 5, together with the easy axis

It is instructive to examine the expressions given in Sec. Rré the stationary directions of the second-order anchoring
from the viewpoint of symmetry. Indeed, ER) is not a energy. The orthonormal vector triple€,,€) is of Euler
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angles (.,60.,%.) with respect to the elementary triplet 24
A A A . . B !
(x,y,2) (Fig. 1. W, (W,) is the energy difference between =1 -
£ () ande directions. N,
Equation(10) offers a simple and clear description of the
anisotropic interfacial energy. Formally it is analogous to Eq. ¥ = §f:—>
(5). It is worthy to emphasize the difference between them: d42 AN
Equation(5) depicts only the special case with,=0, yet 8o
our present expression applies to arbitrary monostable tilted 2= 0,0 O ;
anchoring cases, including the,# 0 case. 0
Now we discuss some special cases. Consider the homo- iy o
geneous planar anchoring. Assumiég X, we know thaté g
and » are two unit vectors in thg Oz plane. According to FIG. 3. Schematic of the twisted nematic slab fabricated be-

the symmetry of the surface, two cases should be discussegeen the two planez=0 and|.
separately.(a) Anchoring surface withouty«»—y mirror

symmetry. Therefore, in genergh#0, and& and 7 inter- Iil. FIELD-CONTROLLED TWISTED NEMATIC
sect obliquely with the axis. This is just the planar anchor- TRANSITION
ing case studied by Browat al. through numerical simula- A. Torque balance equations

tion [12]. Their results revealed that a substrate surface In thi . | h | - f
treated by asymmetric grooving may have two stationary di- n this section, we analyze the structural transition of a

. ) : . TNLC slab sandwiched between two identical substrates
rections(not the easy ax)sntersecting with the surface nor-

. . . with homogeneous planar anchoring, locate¢-a0 andl,
mal obliquely, whereas they are still perpendicular to each . . .
other ancc]j pe);pendicular to %e easy e(pi pgrooving direc. respectively(Fig. 3). The upper substrate is rotated at angle

tion). These features are in good agreement with the predic;[%tev;’gvr:/;fzmcs to;:‘gulg\sl‘;zt:;;ggi ?22223”58 energy of
tions of our present analysigb) Anchoring surface with PP P

y«< —Yy mirror symmetry. In this case).=0, Eq.(10) be- 92=Wp o€ fy+ W, Sir? 6, Sir? ¢,
comes (13

9= W, co€ 6+ W, Sir? ¢ SirP( ¢, — ¢y,

gs:Wp(nO'Z)2+Wa(n0'Y)2 | h q he b d | ¢
, . respectively, wherd&y, and ¢, are the boundary values o
=W, €0’ o+ W, Sirt 6, Sir ¢, (1) the orientation angleg and ¢. An electric field is applied
perpendicular to the plates. The Gibbs free energy of the
where W, and W, are the polar and azimuthal anchoring liquid-crystal cell is the sum of the bulk energy and the sur-
strengths, respectively. The polar diagram of this expressiofice energy. In the problem that we are concerned with, the
is shown in Fig. 2e). We find that the singularity along the directorn is only dependent om. In the continuum theory,
surface normal seen in Fig(@ does not appear in Fig(€). the free energy per unit area of the TNLC slab is expressed

In the homeotropic anchoring cases z, Eq. (10) is sim- ~ as[16]
plified to [Fig. 2(f)]

I 1. .
o o f=Jgedz—§f D-Edz+gl+g., (14)
gs=Wi(1g-3)°+Wa(ng-¥)? ° °

=W, Sir? 6, oS ¢o+ W, Sir? 6y sir? ¢o.  (12)  where the two boundary couplings are manifested as additive
terms. This simplifies the variational calculation. The first
integral in Eq.(14) is the elastic energy of nematic liquid

If the surface is isotropic in the plan@/;=W,, RP’s initial crystals, with

expression is obtained. On the other hand, R@&fand[14]
offered examples of homeotropic substrate whose in-plane

isotropy was broken by rubbing or photolithographic groov-  g,==[k;y(V-n)2+Koy(n-V X n+ 27/ py)?
ing. Their surface energy is expressed by B@) properly. 2
Comparing to Fig. @), the polar diagram of Eq12), as

- ~\12
shown in Fig. 2f), is not singular along the axis. Tked nX(VXN) 1]
In the tilted anchoring case, if,=0, Eq.(10) returns to 1 k§
Eq. (5). In general, a nontrivialy, means that none of the = —[f(6) 62+ h(6) pP?]+k, sir? 0N+ ——,
. . . . 2 2k22
three stationary directions of the surface energy is located on
the substrate surface. So far we have never noticed any re- (15

ports of observations of this kind of effect. Asymmetrical
grooving or oblique evaporation of SiO on a solid surface inwherek,;, ki, andkss are the splay, twist, and bend elastic
intersected directions may realize it. constants of the liquid crystal, respectivepy denotes the
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pitch of the materialk,= —27k,,/pg is the chiral elastic [ M
modulus,6M=d6/dz, $M=d¢/dz, and §=L N~ 6)de, (24)
0
() =k Sir? 0+ kzzcos 6, s ,
(16) 2t :j ! ks sir? 9)NY2 5
h(68) = SIr? §( Ky, SIN? 6+ ka3 COS 6). 2 ~ %= |, N OCmkesimONT6)E, (25
The second integral in Eq14) is the dielectric energy f(0o)N~Y3(6,) = — (W, —W,sir? ¢)sin 265,  (26)
1(. . V2| [l dz VZe whereN(6) is defined by
BRI (L .
2)o 2| Joe, +e,c08 0 2l

e,D2(cog Oy —cos 0)
(€, +€,C0% Oy) (€, +€,C0 0)

(17 N(6)=f(0)

where e,= €~ €, is the dielectric anisotropy of the liquid-

crystal material. The quantitye/l=o=D, is indeed the (C1—kpSir? 6y)?  (Cy—k,sir? 6)2]

surface densityr of the electric charge on the substrates, or + h(0y) - h(8)

the z componenD, of the dielectric displacement, which is

constant across the liquid-crystal cell. (27)
The torque balance equations can be constructed through )

minimization of the free-energy E¢14). A brief variational ~ FOr & given voltagé/, the values oft, ¢o, andfy can be

calculation 8f=0 and subsequent integration generate twcf€termined by Eqs23)—(26).
bulk equations and two boundary conditions for the lower-

substrate surface B. Fréedericksz transition
. 5 5 The threshold and saturation properties of a TN cell can
t(0) 0(1)2+(C1—k2 Sir 0)° D2 _c be obtained through observing the behaviordgf. At the
h(0) €, +e,c08 0 2 threshold voltagd/, 6y, begins to deviate fromr/2; at the

(18) saturation voltageVs, 6, approaches 0 and the liquid-
crystal director becomes homeotropic.
M= (C,—k,sir? 6)/h(6), (19 To derive the threshold property of the’ Edericksz tran-
sition, we supposd,= 0y, = 7/2 for V<V and 6y — /2
f(0) 01| o+ (W, — W, Sir? ¢p)sin 26,=0, (20)  whenV—V¢. In this extreme case, Eq&23)—(26) can be

solved analytically. It is convenient to introduce the dimen-

h(0o) p™P|,— o+ ks Sir? 6y— W, Sir? 6, sin 2¢o=0, sionless parameters,

(21
N= kg /(2IW,),

whereC, andC, are constants of integration. For reasons of

symmetry, the boundary conditions for the upper substrate y=Wa/W,, (28)
are essentially the same as those for the lower one. Also
owing to symmetry, we have, at the midplane Ue=Vg/V¢,
6M)|,_1,=0, where V.= mkq,/€, is the threshold voltage of an un-
twisted nematic slab¢;=0) with rigid boundary coupling
0(112)= 6y, (220  (Wy—»,W,—x). After a lengthy derivatior(see the Ap-
pendix for more details we get three equations defining the
d(112)= /2, threshold property of the TN effect,
where 6, is dependent on the applied voltage e 2@l wyky ¢
Equationg18)—(22) are the basic relations for solving the b= 2¢0 E © 2NKky, Sin 2¢o, (29)
director distribution and the threshold and saturation proper-
ties of the TNLC slab. Comparatively, the two bulk equa- 1— ysir? ¢>g:)\Xtar( wXI2), (30
tions are the same as those derived previously, while the
boundary conditions are more complicated than the corre- _ 2 12
sponding equations obtained in Reffi$4—-7,9,17, for in the Up=| X%+ (kag~ 2k A ¢ | alkoh . (3D
present equations the two orientation anglgsand ¢, and kyy7r? Pokyy
the two anchoring coefficient8y, andW,, are all entangled - .
together. where ¢ is the threshold value opg, andA ¢ = ¢—2¢,
The integration of Eqs(18)—(22) generates the total twist of the liquid crystal director at the threshofd.
is a subsidiary variablai can be solved aX and qS(F, has
C1=W,SIir? 6, sin 2¢y, (23 been obtained from Eq$29) and (30). Incidentally, in Eq.
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(29 d)E is indeed dependent only on the azimuthal anchoring
strengthW,. Thus W, can be determined if the threshold
angle ¢, is measured18].

It is instructive to compare the present paper with previ-
ous studies. Beckeat al. [6] studied a substrate with strong
azimuthal and weak polar couplings. In E¢29)—(31), tak-
ing the limit y—o, we get¢§=0, and

AX tan 7X/2) =1, (32)
Kas— 2Kpp) 62 AlKopchy |
U X2+( 33— 2Kz i N 221 33
kllﬂ'z p0k1177

This recovers the result reported by Beckéml. [6]. When
po—, EQs.(32) and(33) reduce to the corresponding for-
mula given by Yand17],

a

E u

Kane 2k 27172
)\{uz_( 3= 2k dE|

F
If we further take the equal-elastic-constant approximation
the result by Nehringet al. [5] is found,

F

12
, (ke 2k 67|
k11’7T k11772

=1. (34)

(N ) (2 + w2ud)Y2tar (2 + w2u2)Y2]=1. (35)
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r ksgkp=lS o T
L5 koo/ky =06

[ Up=0 T
1 d=n/2
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—
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al.
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1 1

2

A 3

4 5

FIG. 4.\ andy dependencies of the threshold property of a 90°

Now consider a TN cell consisting of strong anchoring sub-=0-6, andl/po=0.

strates and an achiral liquid-crystal material. In the limit
—0, Eq.(34) becomes

Kaa— 2Ko») 2
1+(33 22) ¢;

2
kllﬂ-

1/2

So we have returned to the result given by Le§li€] and
Schadt and Helfric20].

On the other hand, under the conditigr=1, Egs.(29)
and (30) become, respectively,

2 E 2’7T| . ’7Tk11 ) 2 E 3
b= 20 p_o_ 2)\k225m $o (37
cog ¢ =X tan wX/2). (38)

Together with Eq(31), they precisely recover the result ob-
tained by Sugimurat al. under the assumption of equal po-
lar and azimuthal anchoring coefficieri8.

Figure 4 shows tha andy dependencies of the threshold
voltageug and the surface twist angkﬁg of a TN cell, with
$=90°, andl/py=0. The material parameters used in cal-
culation are kzz/ki;=1.5K,,/k1;=0.6. Five groups of
curves are drawn, withy=«, 1, 0.1, 0.01, and 0O, respec-
tively. The first two values ofy is to recover the results
reported in Refs[6] and[9], respectively. The next two val-
ues ofy is to simulate the more realistic cases in which the
azimuthal anchoring is one or two orders weaker than the
polar coupling.y=0 is an extreme case, corresponding to
the degenerate planar anchoring. It is clear from Figy 4
that the threshold voltage is mainly dependentnand

031709-6

twisted nematic slalia) The reduced threshold voltage ; (b) the
surface twist anglabg at the threshold. As special cases, the results
reported in Refs[6] and[9] are plotted, withy=~ and 1, respec-
tively. The material parameters used &keg;/ky1=1.5, Kyo/Kqq

almost independent frory. Comparatively, they depen-
dency of the surface twist angh&‘g is far more remarkable.
As shown in Fig. 4b), with the decrease of from = to 0,

the ¢f—\ curve varies continuously frompi=0 to ¢}
=45°. This implies that near the threshold the optical prop-
erties of the TNLC slab is strongly dependent on the azi-
muthal anchoring of the substrates.

C. Saturation properties

The saturation property of a TNLC slab can be analyti-

1
SiP T= ;cosﬁ( wY/2)

X|1

tangg=tanT

o
.

2
k11

ku(1

1_

Ki2(1—y)

Y2+(

1—

-)

Kia
Kaa\Y

tanH 7Y/2)

2lk,,
PoKas

cally solved through treating Eq&23)—(26) in the limit 6y,
—0 whenV—Vg. Through a lengthy calculation, we get
three equationgsee the Appendix for more details

ks Y
ki

tanh(7Y/2)

, (39

tani wY/Z)}

-1
tani wY/Z)} , (40

(41

"
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2_ T T T T T T T ] k
s Koy =15 ooonet y=0 (@] tangS=tanT| 1— —— tank(7Y/2)|. (45)
L4 koo/k; =0.6 v =8.(1)1 1 Ka\ Y
r _ ’yf . 1
i Vpo=0 . v=l This is in agreement with the result reported in R6f.
[ b=n/2 Y= . .
21k 4 =oo: Becker et al We have calculated numerically theandy dependencies
y=1: Sugimura et al. ] of the reduced voltagas and the surface twist anglgg at
0.5- OO ] the saturation, using the same values of parameters as those
N T T - in Fig. 4. The result is represented in Fig. 5. It is clear that
L \, ] ¢§ is again strongly dependent op whereas the depen-
1 2,3 4 5 dency ofus on y is not so notable, except the unrealistic case

with y=o. From Figs. 4b) and 3b), it can be concluded
that the total twist angle of the liquid-crystal slab, and thus
the optical properties of the TN cell, are closely relevant to
the azimuthal anchoring.

Figures 4a) and Ha) show that for certain values aof,
theug(N) andug(\) curves intersect. For weaker anchoring
conditions withA larger than its value at the intersection
point, the saturation voltage is lower than the threshold volt-

i ;" /' y =o0: Becker et al., 1 age, and the liquid-crystal cell is bistalj. Detailed analy-
00 : 7 : 7y ) sis reveals that there exists a critical valyg for the TN
A effect with1/py=0,
FIG. 5.\ andy dependencies of the saturation property of a 90° —
twisted nematic slal{a) The reduced saturation voltage; (b) the o= 2\kaglkyit1 (46)
surface twist angleﬁg at saturation. The curves with=« and 1 ¢ \/3k§gk§2—3+ \/k33/k11+ 1

recover the results reported in Ref6] and[9], respectively. The
material parameters used degy/ky;=1.5, kpo/k3;=0.6, andl/py  When 0<y=<1y., ug(\) andug(\) curves do not intersect,
=0. and the liquid-crystal cell is monostable; whery
>v., Ug(N) and ug(\) curves intersect, and the liquid-

whereT= ¢/2— mlkz,/(Poksg), Y is a subsidiary variable, crystal cell is monostable or bistable depending on the value
us=Vs/V, the reduced saturation voltage, asg the sur-  of \. For the typical values of parameters illustrated in Fig.
face twist angle at the saturation. On¥ehas been found 5(a), we havey,~0.57. Thus fory=1 andwx, theug(\) and
from Eq.(39), the saturation voltages and the surface twist ug(\) curves intersect, in accordance with the results ob-
angle ¢ can be calculated using E¢g0) and (41). tained in Refs[6] and[9]. However, for a usual TN celly

To understand this complex result, we compare it withshould be in the order of magnitude of 0.1 or 0.01, which is
previous studies. In the limiyy—oe, Eq. (40) simply gives far smaller thany,, thus usual TN cells have no bistable

#53=0, and Eq.(39) is reduced to behavior.
k
I T= ’ ;\lY sinh(wY/2)cosi{ wY/2) IV. HOMEOTROPIC TO TWISTED-PLANAR TRANSITION
3 It is not surprising that the results on the TNLC slab with
Kaa\ Y homogeneous planar substrates, expressed by(ZEs(31)
X| 1= e anhaYi2)|. (42 and(39)-(41), can be applied to the liquid-crystal cell with

homeotropic substrates, since Efj0) depicts the two types

This equation, together with E¢41), is consistent with the Of anchoring surfaces in a common form. Referef&ere-
result reported in Ref[6]. For equal-elastic-constant ap- Ported the HTP device consisting of a chiral liquid-crystal

proximation andp,— =, Eqs.(41) and (42) are reduced to  Slab with negative dielectric anisotropy. Its two homeotropic
substrates have been rubbed slightly, along different direc-

1 tions with a cross anglé,, to introduce in-plane anisotropy.
SinF T= Nu.Sinh(mug/2)cosi mug/2) When no voltage is applied between the substrates, the liquid
s crystal aligns in uniform homeotropic conformation, if the
X[1—Augtanh 7mug/2)], (43 chiral modulus of the liquid-crystal material is not so strong

[21]. When a voltage is applied across the cell, the electric
which is the same as the result obtained by Neheingl.[5].  field couples to the negative dielectric anisotropy of the lig-
On the other hand, with the condition=1, Eqgs.(39) and  uid crystal, and a structural transition is induced at a thresh-
(40) give old voltageV, at which the liquid crystal begins to tilt and
K twist. Further increase of the voltage \:Q finally leads to
si? T=cosR(7Y/2)| 1— —2\Y tanh(wY/2)|, (44)  the saturation configuration which is a twisted planar struc-
kg1 ture. Experimental observation demonstrated the outstanding
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optical property of the HTP cell. 1 v 1+7y o
Although in the last section we have always focused on SiP T= TCOSZ(—) 1+ Ttar( —)
the TNLC slab, the results obtained are not limited to that Y 2 Y 2
effect. If W,>0 andW,>0 in Eq. (13), and the dielectric -
anisotropy of the liquid-crystal material is positive,0), % X\?tar( Tr_) _ 1} (49)
then the liquid-crystal director transforms from twisted pla- 2 '

nar alignment to homeotropic alignment with the increase of

the voltage. This is the conventional TN effect. On the other .

hand, if W,<0 andW,>0 in Eq. (13), and the dielectric ~ tan¢g=tanT

anisotropy of the liquid-crystal material is negatiwe,€0),

then as the voltage across the cell increases, the liquid-crystal

director transforms from homeotropic alignment to the

twisted planar alignment. This is the HTP effect. Up=
Intuitively, the HTP effect is just the reversal of the TN

effect. However, this speculation is not evident in the nu-

. . - . In these equations, the hyperbolic functions in E@2)—
merical analysis of the HTP transition reported in Ré&f, . ) . . .
where Eq.(4) was employed to depict the boundary cou- (41) have changed into trigonometric functions. The minus

pling. As shown in Fig. &), the polar diagram of Eq4) is sign on the rig_ht-ha_md sid_e of E6D impl_ies thatug can be
singular along the normal to the substrate surface. This i§€r0 Or even imaginary, i.e., the transition may occur spon-
especially fatal to the understanding of the HTP transitionf@neously in zero voltage, iy is short enough. This will be
since it proceeds from the homeotropic alignment. Thereforediscussed later. o

it is beneficial to employ Eq(12) to characterize the bound-  Similarly, the modification of Eqs(29)—-(31) generates
ary coupling. By doing so, we have found that the analyticalthe equations of the saturation property of the HTP transi-
results about the TN effect can also be applied to the HTHON,
transition, if only the following replacements are performed,

1+ 2y r(WA
~—=@an —
Y 2
(50)

. 2|k22) 2}1/2
YZ—( . 51
PoKaz &

d—2d5— 2 _ Lksssin 2435, (52
Wpeo =Wy, W W =Wo—W,. (47 Po  2\ky,
It should be emphasized that with these replacements the A omg Ki1a o mX
equations defining the threshold property of the TN effect 1+ ysiff gg= k—:)\Xtanr( 7) (53
generate the relations for the saturation property of the HTP
transition, while the equations giving the saturation property Ki\ Y9 . (Kag—2Ko) A2 4lkypA 12
of the TN effect lead to the description of the threshold prop-  us= (k_> X2— 5 i~
erty of the HTP transition. This is convincing evidence that 33 St PoKna7 54

they are reverse effects of each other.

To demonstrate the results of this replacement, we define - ~g. . -
the dimensionless parameters whereA ¢= ¢— 2 ¢y; is the total twist of the liquid crystal at

the saturation.
As a special case, taking,= andy=0 in Egs.(51)—

szk33/(2|W1), (54)1 we get
Y=W,y /W, , AU tan(wug/2)=1, (55
(48) o k]_]_ 1/2 T k33 1/2’\ _
AUg k_33 tan > k_]_]_ ug|=1. (56
UF:VF/Vm

This is in good accordance with RP’s original result on the
o homeotropic liquid-crystal ce[l4].
us=Vs/V¢, The realization of HTP transition relies on the uniform
homeotropic alignment of liquid crystal when no voltage is

~ U2 applied. This imposes a restriction on the thickness of the
where V= m(Kss/|€5)™ is the threshold voltage of a ho- o/ iq’crvctal cell, for the chirality-induced twist is not ad-

meotropically aligned slab of an achiral liquid crystal with vantageous to the stability of this initial alignment. Taking

rigid boundary couplin =0,W;—x>). In this section . - ) ; .
g y pling W 1) 0 andy=0 (noting the fact thatV,,<W; in the experi-

the notations with a caret denote the quantities of the HTPIF = :
ment[8]), we can derive from Eqg51) and(49)

effect.

Using Egs.(47) and(48), we can determine the threshold LK
property of the HTP transition from modifying Eq&39)— ,-(Tr 22) _ Po L (57)
(41) (see the Appendix for more details Pokaz/ 7Kz

031709-8
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where L is the critical thickness of the cell: if<L, the L5 — T ]
uniform homeotropic alignment is stable. In the rigid anchor- . Kk /3= 1 (@) |
ing limit, W;—o, L reaches its maximal value ! Koofkis=0.5 .. ... v=0 ]
e 1/pp=0.25 == v =0.01 ;
L ks =l b=n/2 v=0.1"]
— = (59 I T e - y=05
Po 2Kz 0.5} Y -
Noting the fact that usualli;3~ 2k,,, this relation implies I e N
that the critical cell thickness is approximate to the pitch of ) 4 1 5 8 10
the liquid crystalL ~ pg. This is in good agreement with the
result about the rigid-anchoring homeotropic cell reported 257 — T

previously[21]. Equation(57) also indicates thdt decreases
for weaker boundary coupling/;. Neverthelessl=py/4 is

safe for the building of the homeotropic alignment, as has % P
been done in Re{8]. N y=0
The present result on the HTP effect expressed by Egs. -5 T y=8.?1 1
’y:

(51)—(54) is not consistent with the numerical result reported
in Ref. [8]. For example, as reported there, the azimuthal

angle ¢, is always approximate to zero, and the total twist 10—
angle ¢, — 2{1;5 is a constantp, (= /2 therg. For compari-
son, noting thaW,;<W;, or y<1 in the experiment, we can  FIG. 6. A and y dependencies of the threshold and saturation

derive from Eq.(50) that, at least at the threshold, properties of the homeotropic to twisted-planar transiti@h.The
reduced thresholdig) and saturationys) voltages;(b) the surface
. & 7lkay twist angle a)g at threshold. The parameters_ used &re/kss
o=T= 2 ook (59 =1, ky/k35=0.5, 1/py=0.25, ande,= w/2. Owing to the values
0K33

of these parameters, the surface twist anhﬁeat saturation is al-
ways zero and not plotted; the saturation voltﬁgés independent
Taking ¢;=7/2, | =po/4, and ky,/ks3=0.5, we haved  from 5.
=1/8, and the total twist anglée,— 2&)5 = /4 is just half of
the value reported in Reff8]. This notable difference should
be meaningful to the understanding of the optical properties |n this paper, we have studied the surface anchoring of
of the HTP cell. In its origing,=0 reported in Ref[8] is a  liquid crystals. Through spherical harmonic expansion of the
consequence of the expression of the anchoring energy Egurface energy, a two-term expression of the anchoring en-
(4). As shown in Fig. 2d), there is a finite difference of the ergy is derived, which is highly symmetric, as is embodied
anchoring energy between thefy=0,60=0) and @, by the anchoring tripletd, 7, €), and shown in Figs.(®) and
=0,¢o=m/2) directions, though they are physically identi- 2(f).
cal. This determines thap, must be zero at least near the  Using the present expression of the anchoring energy, we
threshold, for the bulk elastic energy of infinitesimal distor-have made a rigorous analysis of weak boundary coupling
tion must be dominated by the finite difference of the surfaceeffects for structural transitions of nematic liquid crystals.
energy. This indicates that the singular expression By. The threshold and saturation properties of TN effect are de-
cannot lead to proper understanding of the HTP transition. rived in detail. The formulas obtained for TN effect have

In Fig. 6, we plot the anchoring dependencies of thebeen applied to the HTP transition based on the fact that the
threshold and saturation properties of the HTP effect calcupresent anchoring energy depicts the homogeneous planar
lated based on Eq$51)—(54). The material parameters used and the homeotropic anchoring surfaces uniformly. Our
areky;/kzs=1 andk,,/ks3=0.5. The ratiol/p,=0.25 is to ~ analysis shows that the TN and the HTP transitions are ac-
follow the initial idea in Ref[8]. The threshold and satura- tually reverse effects of each other. These results improve
tion voltages of the HTP cell are hardly dependentjoor ~ ©Ur understanding of these structural transitions.

the azimuthal anchoring, whereas the surface twist an§le

at the threshold is affected by the azimuthal anchoring in a
much greater extent. For smal (<0.1), ¢} is approxi- 1. Derivation of Egs. (29)-(31)
mate to /8, in agreement with the evaluation performed  For convenience, we introduce a variakle
above. Due to the values of parameters, the surface twist

V. CONCLUSIONS

APPENDIX

angle ¢; at the saturation is always zero, independent of cosf=cosby sine, (Cosfy=Cosby sinap). (Al)
EJoth)\ and v; the saturation voltagas is independent from Substituting this equation into Eq&24)—(26), then taking
Y- the limit 6, — 7/2, we get, respectively,
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X T
5 T35 %, (A2)
¢I = v Cl_k2 I
> " %0=|5 "% Ky | X’ (A3)
k11X
W, — W, sir? ¢S=7T21|1 cotay, (A4)

whereC;=W, sin 2¢g, as reduced from Ed23), and

2 2
—|Ea F [(2Kpp— Kg3)(Cy— ky)2
- 22 33 1 2

772k11 Wzkllkgz

12
+2k2k22(cl_k2)]] . (A5)

The threshold voltagd/r and the surface twist angl¢g
should be determined by Eqa\2)—(A5).

Using the parameters defined by E&8), the ratio of Eq.
(A3) to Eq.(A2) gives EQq.(29), the elimination ofag from
Egs.(A2) and (A4) gives Eq.(30), and Eq.(A5) reduces to
Eq. (3.

2. Derivation of Egs. (39)—(40)
Introduce a variablgs,

sin HM
cosB’

sinf=

sin 0M> . (A6)

(sin Gozm

Substituting this equation into Eq§24)—(26), then taking
the limit §,—0, we get

singB, 1 I‘(WY)
s A
. [ asinBo
T—¢o=sin"!| =, A8
s5-sn | 17 o

wk
W, — W, sir? ¢§=T335in,80\/Y2+ g%cod By, (A9)
respectively, where

IW, sin 2¢5
7Tk33C0§ﬂ0

PHYSICAL REVIEW E 65 031709

The relation betweery and the reduced saturation voltage
us=\Vs/V, is expressed by Ed41).

Eliminating B, from Eqgs.(A7) and(A9), we can express
¢5 via Y as

1+ 7°A\2Y2— pAY[tanh 7Y/2) + coth( 7Y/2)]

v{(2—vy)— n\Y[tanH wY/2)+coth wY/2)]} ’
(A11)

sir? ¢p5=

where n=Kks3/ky;, and the dimensionless parameters de-
fined in Eq.(28) are used.

Using Eq. (A11) to simplify Eq. (A8), after a lengthy
calculation, we can eliminat@, and ¢5, and obtain Eq.
(39). Finally, using Eq{(39) we can rewrite Eq(A11) to Eq.
(40).

3. Derivation of Egs. (51)—(54)

From Eqgs.(47) and (48), we can get the following re-
placement relations:

Y — ’;/, AN — E—ll)’; (A12)

33
Since in the TN effect and the HTP effect, the twisted planar,
twisted tilt, and homeotropic configurations appear in reverse
order, it is natural that the threshold and the saturation volt-
ages of the two effects are exchanged,

k33 1/2A
us<—>i(—) Ue,  (A13)

k33> 1/2’\
k11

u,:e»i(— Us,
kll

where the imaginary unitcomes from the opposite signs of

€, in the definitions ofV, andV,. The variablesX and Y
employed in Sec. Il have to be treated carefully. It should be
noted that there is a factaror y~* on the right-hand side of
Egs.(30) and(39). Due to the negative signs in EGA12), X
and Y determined by these relations should become imagi-

nary. For convenience, we introduce variabkeand Y, and
request them to satisfy the following replacement relations:

X—iX, YeiY. (A14)
The substitution of Eqs(A12)—(Al14) into Egs.(39—(41)
generates Eqs49—(51). The same substitution into Egs.
(29—(31) generates Eqs52)—(54).

[1] A. A. Sonin, The Surface Physics of Liquid CrystdlSordon
and Breach, London, 1995

[2] J. Cognard, Mol. Cryst. Lig. Cryst. Suppl. Sér.1 (1982.

[3] B. Jaome, Rep. Prog. Phy&4, 391 (1991).

[4] A. Rapini and M. Papoular, J. Phy®arig, Collog. 30, C4.54
(1969.

[5] J. Nehring, A. R. Kmetz, and T. J. Scheffer, J. Appl. Phy.
850(1976.

[6] M. E. Becker, J. Nehring, and T. J. Scheffer, J. Appl. Piys.
4539(1985.

[7] R. Hirning, W. Funk, J.-R. Trebin, M. Schmidt, and H.
Schmiedel, J. Appl. Phy§0, 4211(1992.

031709-10



WEAK BOUNDARY ANCHORING, TWISTED NEMATIC . .. PHYSICAL REVIEW E 65 031709

[8] S.-W. Suh, S. T. Shin, and S.-D. Lee, Appl. Phys. Lé8, Lig. Cryst. 27, 233(2000.
2819 (1996; Mol. Cryst. Lig. Cryst. Sci. Technol., Sect. A [13] W. Zhao, C.-X. Wu, and M. lwamoto, Phys. Rev6E, R1481
302 163(1997). (2000.

[9] A. Sugimura and Z. Ou-Yang, Phys. Rev5E 784(1999; A.  [14] G. P. Bryan-Brown, C. V. Brown, I. C. Sage, and V. C. Hui,
Sugimura, G. R. Luckhurst, and Z. Ou-Yanigjd. 52, 681 Nature(London 392, 365(1998.
(1995.

[15] P. Pieranski and B. d@me, Phys. Rev. A0, 317 (1989.

[10] T. Beica_, S. Frunza,_R. Moldovan, and D. N. Stoenescu, Mol[16] p. G. de Gennes and J. Proghe Physics of Liquid Crystals
Cryst. Lig. Cryst. Sci. Technol., Sect. 201, 39 (1997). 2nd ed.(Clarendon, Oxford, 1993

[11] Assuminggs( 8o, bo) = 92(6o) +93( o), let us pay attention to [17] K. H. Yang, Appl. Phys. Lett43, 171(1983.

the surface norma#,=0. We havegy|,-o=Const:+ g5(¢o). [18] M. Jiang, X. Huang, Z. Wang, K. Ma, Q. Sun, and X. Zhang,
This means that an infinitude of values@f exist in the nor- Lig. Cryst. 18, 419 (1995

mal direction corresponding to the infinitude of valuesdgf [19] F. M. Leslie, Mol. Cryst. Lig. Cryst12, 57 (1970

This unphysical dependence updpg leads to the singularity .
20] M. h W. Helfrich, Appl. Phys. L 127(19712).
along the surface normal, as illustrated in Figd)22(c), and [20] Schadt and efneh, App ys. Lett (1979

2(d) [21] P. Ribiere, S. Pirkl, and P. Oswald, Phys. Rev4#4 8198
[12] C. V. Brown, M. J. Towler, V. C. Hui, and G. P. Bryan-Brown, (1992.

031709-11



