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Weak boundary anchoring, twisted nematic effect, and homeotropic to twisted-planar transition
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Expansion analysis shows that in second order, the weak boundary coupling of nematic liquid crystals
should be depicted by two anchoring coefficients and an orthonormal vector triplet. Using this binomial
anchoring energy, we have derived the analytical expression of the threshold and saturation properties of the
twisted nematic effect and the homeotropic to twisted-planar transition. Our results prove clearly that these two
quite different transitions are reverse effects of each other.
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I. INTRODUCTION

Surface anchoring plays an essential role in the scie
and technology of liquid crystals. In the past several deca
many surface treatment techniques have been invente
build appropriate anchoring properties, such as rubb
deposition of surfactants, oblique evaporation of SiO, e
@1,2#, and many methods have been developed to mea
the anchoring energy relating to the liquid crystal-solid int
face. Researchers have also made noteworthy attemp
construct proper mathematical descriptions of anchor
phenomena. So far many good results have been obta
@3#. However, the situation is not yet satisfactory. Many co
tradictory expressions of anchoring energy are in use tod

The analysis of field-induced structural transitions, su
as the twisted nematic~TN! effect, is a significant subject in
liquid crystal science. In general, structural transitions
attributed to the competition among the elastic energy
liquid crystal, the interaction of liquid crystal with the ap
plied electric or magnetic field, and the surface anchor
energy. A proper expression of the anchoring energy is
critical importance for precise understanding of the structu
transitions.

A monostable anchoring surface is schematically rep
sented in Fig. 1. The easy axiseW is in the (ue ,fe) direction.
As the surface directornW 0 deviates fromeW , the surface en-
ergy gs increases. As a function of spatial directions, t
form of gs(u0 ,f0) is dependent on the nature of speci
substrates. In practical investigation, many simple exp
sions have been employed in analyses of structural tra
tions of liquid crystals and anchoring transitions of substr
surfaces. Rapini and Papoular~RP! @4# originally introduced
the trigonometric expression of the anchoring energy@Fig.
2~a!#,

gs5W sin2 u0 . ~1!

This expression achieved much success in describing the
meotropic surface. However, a problem happens as it is
plied to the planar and tilted anchoring surface, since
polar and azimuthal anchoring cannot be distinguish
Many types of generalizations of Eq.~1! have been made to
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describe the planar and tilted anchoring@5–10#. A simple and
commonly used modification is to introduce directly
f0-dependent term. For tilted anchoring, it is assumed th

gs5W1 sin2~u02ue!1W2 sin2~f02fe!, ~2!

where the coefficientsW1,2 are the polar and azimuthal an
choring strengths, respectively. The problem with this e
pression is that it has two energy-minimized direction
(ue ,fe) and (ue ,fe1p). This problem disappears for ho
mogeneous planar anchoring and homeotropic anchoring
these two cases, Eq.~2! is simplified to

gs5W1 cos2 u01W2 sin2 f0 ~3!

and

gs5W1 sin2 u01W2 sin2 f0 , ~4!

respectively. The polar diagrams of these three express
are shown in Figs. 2~b!–2~d!. The common feature of thes
expressions is the singularity along the normalẑ to the sub-
strate as seen in the figures. In other words, the ancho
energy is not properly defined in the surface normal. In
origin, this is due to the unphysical dependence of Eqs.~2!–
~4! on f0: The singularity is a result of the artificial separ
tion of the anchoring energy into au0-dependent part and
f0-dependent part@11#.

A meaningful improvement was made by Beicaet al.
@10#. They proposed an expression of surface energy con
ing of two square terms of inner products,

gs5W18~nW 0•nW 1!21W28~nW 0•nW 2!2, ~5!

wherenW 15(eW3zW)/ueW3zWu andnW 25eW3nW 1 . (nW 1 ,nW 2 ,eW ) are the
three principal axes of anchoring. Comparatively, this e

FIG. 1. Schematic of surface anchoring. In this figure,fe50,
andF ~not labeled! is the angle between planeseOj andeOn0.
©2002 The American Physical Society09-1
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FIG. 2. Cut-away view of the polar diagrams of anchoring energy functions discussed in this paper. In each figure, the surfa
substrate is represented by thexOy plane; the length of the radius vector from the originO to any point at the curved surface represents
interfacial energygs in that direction~in arbitrary units!. ~a! The RP expression Eq.~1!, with W51. This polar diagram is axisymmetric.~b!
Equation~2! with ue52p/5, fe50, W153, andW251. This diagram is not centrosymmetric. There are two easy directions: On
denoted bye, and the other is its mirror-symmetric vector with respect to theyOz plane. The singularity along thez axis is clear.~c!
Equation~3! with W153 andW251; ~d! Eq. ~4! with W152 andW252.5. These two diagrams are centrosymmetric; yet, they are
singular along thez axis. ~e! Equation~11! with Wp53 andWa51; ~f! Eq. ~12! with W151 andW253. In these two centrosymmetri
diagrams, the singularity existing in~b!, ~c!, and~d! does not appear. These two diagrams,~e! and~f!, are congruent, with the difference o
only a rotation. For the common tilted anchoring expressed by Eq.~10!, the corresponding polar diagram is the same as diagram~f! except
for a Euler rotation (fe ,ue ,ce).
031709-2
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WEAK BOUNDARY ANCHORING, TWISTED NEMATIC . . . PHYSICAL REVIEW E 65 031709
pression is preferable to Eq.~2! since the problem of the
presence of two degenerate easy directions is resolved. H
ever, Eq.~5! is still incomplete, and in certain cases it giv
wrong predictions. We give two examples. First, in the h
meotropic anchoring case,eW5zW; according to their defini-
tions, we getnW 15nW 250. Consequently, Eq.~5! degenerates
to gs50, and cannot depict the homeotropic surface. A
result, even RP’s initial expression Eq.~1! is not included in
Eq. ~5!. Second, recent finite-element simulation@12# found
that the asymmetrically modulated surface, with in-pla
easy axis along the grooving direction, may have princi
axes of anchoring obliquely intersecting with the normal
the surface. This is in obvious contradiction with the arg
ment of Beicaet al., since Eq.~5! predicts that ifeW5xW , the
anchoring triplet must be (xW ,yW ,zW).

In our recent work@13#, we have proposed an expressi
of the anchoring energy through spherical harmonic exp
sion. Up to the second rank, an orthonormal vector triple
naturally introduced, which consists of the three princip
axes of anchoring. The subtle difference of this anchor
triplet from that introduced in Ref.@10# not only resolves the
problems of Eq.~5!, but also reveals more physical conten
Using this harmonic anchoring energy, we have also a
lyzed the TN effect and the voltage-controlled-twist effe
@14#, and obtained satisfactory results. In this paper, we sh
the versatility of this surface energy expression in more
tail. The polar diagrams of the anchoring energy functio
discussed in this article are shown in Fig. 2. We also g
detailed derivation of the threshold and saturation proper
of a twisted nematic liquid-crystal~TNLC! slab, and the ho-
meotropic to twisted-planar~HTP! transition. The latter, in-
vented recently, is of practical importance due to its supe
optical properties in liquid-crystal displays. Our analys
show that these two structural transitions, though appare
very different, are intimately related in that their thresho
and saturation properties are expressed by essentially id
cal but exchanged formulas, i.e., the formulas for the thre
old property of the TN effect correspond to those of t
saturation property of the HTP effect, and vice versa. Thi
convincing evidence for the conclusion that these two d
tinct transitions are actually reverse effects of each othe

II. EXPANSION OF SURFACE ENERGY

It should be emphasized that the equivalence ofnW and
2nW leads to centrosymmetry of the surface energygs ,

gs~nW 0!5gs~2nW 0!, or gs~u0 ,f0!5gs~p2u0 ,p1f0!.
~6!

Consequently,gs can be regarded as a function defined
the whole solid angle, though the liquid crystal exists only
one side of the interface. As a direct result of the centrosy
metry, any odd-order terms disappear spontaneously in a
ries expansion ofgs .

It is instructive to examine the expressions given in Se
from the viewpoint of symmetry. Indeed, Eq.~2! is not a
03170
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proper expression of the anchoring energy because it is
centrosymmetric, as represented in Fig. 2~b!.

Consider the expansion of interfacial energygs of a
monostable anchoring surface.gs has two minima ineW and
2eW directions. As a function of surface orientation, the i
terfacial energygs has been expanded into spherical harmo
ics by Pieranski and Je´rôme, in the analysis of an anchorin
transition @15#, where the surface normalẑ was employed
naturally as the polar axis of the spherical coordinate. D
ferent from Ref.@15#, in this paper, the easy axiseW will be
employed as the polar axis of the spherical harmonics.
though this mathematical technique does not lead to esse
difference, it does simplify the treatment and the form of t
result. We have

gs~Q,F!5 (
l 50,2,4•••

(
m52 l

l

glmYlm~Q,F!, gl 2m5glm* ,

~7!

where Q and F are the polar and azimuthal angles wi
respect toeW ~Fig. 1!. The starting direction of the azimutha
angleF is to be determined later.

In Eq. ~7!, the (lm500) term is the isotropic part and ca
be discarded. SinceY20(Q,F)5(3 cos2 Q21)/2, the (lm
520) term contributes an energy term which correspond
the single-constant energy highlighted by Sugimuraet al. @9#

cos2 Q5~nW 0•eW !2. ~8!

Now consider the (lm5261) couple. Writing G21
[g21Y21(Q,F)1c.c., whereY215sinQ cosQeiF, we have

F]G21

]Q G
Q50

5g21e
iF1c.c.Þ0.

This is in contradiction with the fact that the easy ax
eW (Q50) is a stationary direction. So we conclude th
g2150. This significant simplification is indeed originate
from the employment ofeW as the polar axis of the spherica
harmonics. As for the (lm5262) couple, we have

g22Y22~Q,F!1c.c.54ug22usin2 Q cos2 F22ug22usin2 Q,
~9!

where, without loss of generality, the starting azimuthal
rectionF50 has been chosen especially to offset the ar
ment ofg22. Merging the second term on the right-hand si
of Eq. ~9! with Eq. ~8!, and redefining the coefficients, w
get the second-order anchoring energy

gs~Q,F!5Wj sin2 Q cos2 F1Wh sin2 Q sin2 F

5Wj~nW •jW !21Wh~nW •hW !2, ~10!

where the unit vectorsjW andhW , together with the easy axiseW ,
are the stationary directions of the second-order ancho
energy. The orthonormal vector triplet (jW ,hW ,eW ) is of Euler
9-3
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WEI ZHAO, CHEN-XU WU, AND MITSUMASA IWAMOTO PHYSICAL REVIEW E 65 031709
angles (fe ,ue ,ce) with respect to the elementary triple
( x̂,ŷ,ẑ) ~Fig. 1!. Wj (Wh) is the energy difference betwee
jW (hW ) andeW directions.

Equation~10! offers a simple and clear description of th
anisotropic interfacial energy. Formally it is analogous to E
~5!. It is worthy to emphasize the difference between the
Equation~5! depicts only the special case withce50, yet
our present expression applies to arbitrary monostable t
anchoring cases, including theceÞ0 case.

Now we discuss some special cases. Consider the ho
geneous planar anchoring. AssumingeW5xW , we know thatjW

and hW are two unit vectors in theyOz plane. According to
the symmetry of the surface, two cases should be discu
separately.~a! Anchoring surface withouty↔2y mirror
symmetry. Therefore, in generalceÞ0, andjW and hW inter-
sect obliquely with theẑ axis. This is just the planar ancho
ing case studied by Brownet al. through numerical simula
tion @12#. Their results revealed that a substrate surf
treated by asymmetric grooving may have two stationary
rections~not the easy axis! intersecting with the surface nor
mal obliquely, whereas they are still perpendicular to ea
other and perpendicular to the easy axis~the grooving direc-
tion!. These features are in good agreement with the pre
tions of our present analysis.~b! Anchoring surface with
y↔2y mirror symmetry. In this case,ce50, Eq. ~10! be-
comes

gs5Wp~nW 0• ẑ!21Wa~nW 0• ŷ!2

5Wp cos2 u01Wa sin2 u0 sin2 f0 , ~11!

where Wp and Wa are the polar and azimuthal anchorin
strengths, respectively. The polar diagram of this expres
is shown in Fig. 2~e!. We find that the singularity along th
surface normal seen in Fig. 2~c! does not appear in Fig. 2~e!.

In the homeotropic anchoring case,eW5 ẑ, Eq. ~10! is sim-
plified to @Fig. 2~f!#

gs5W1~nW 0• x̂!21W2~nW 0• ŷ!2

5W1 sin2 u0 cos2 f01W2 sin2 u0 sin2 f0 . ~12!

If the surface is isotropic in the plane,W15W2, RP’s initial
expression is obtained. On the other hand, Refs.@8# and@14#
offered examples of homeotropic substrate whose in-pl
isotropy was broken by rubbing or photolithographic groo
ing. Their surface energy is expressed by Eq.~12! properly.
Comparing to Fig. 2~d!, the polar diagram of Eq.~12!, as
shown in Fig. 2~f!, is not singular along thez axis.

In the tilted anchoring case, ifce50, Eq. ~10! returns to
Eq. ~5!. In general, a nontrivialce means that none of th
three stationary directions of the surface energy is located
the substrate surface. So far we have never noticed an
ports of observations of this kind of effect. Asymmetric
grooving or oblique evaporation of SiO on a solid surface
intersected directions may realize it.
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III. FIELD-CONTROLLED TWISTED NEMATIC
TRANSITION

A. Torque balance equations

In this section, we analyze the structural transition o
TNLC slab sandwiched between two identical substra
with homogeneous planar anchoring, located atz50 and l,
respectively~Fig. 3!. The upper substrate is rotated at ang
f t with respect to the lower one. The anchoring energy
the lower and upper substrates are expressed as

gs
05Wp cos2 u01Wa sin2 u0 sin2 f0 ,

~13!
gs

l 5Wp cos2 u l1Wa sin2 u l sin2~f l2f t!,

respectively, whereu0,l andf0,l are the boundary values o
the orientation anglesu and f. An electric field is applied
perpendicular to the plates. The Gibbs free energy of
liquid-crystal cell is the sum of the bulk energy and the s
face energy. In the problem that we are concerned with,
director nW is only dependent onz. In the continuum theory,
the free energy per unit area of the TNLC slab is expres
as @16#

f 5E
0

l

gedz2
1

2E0

l

DW •EW dz1gs
01gs

l , ~14!

where the two boundary couplings are manifested as add
terms. This simplifies the variational calculation. The fi
integral in Eq.~14! is the elastic energy of nematic liqui
crystals, with

ge5
1

2
@k11~¹•nW !21k22~nW •¹3nW 12p/p0!2

1k33@nW 3~¹3nW !#2#

5
1

2
@ f ~u!u (1)21h~u!f (1)2#1k2 sin2 uf (1)1

k2
2

2k22
,

~15!

wherek11, k22, andk33 are the splay, twist, and bend elast
constants of the liquid crystal, respectively,p0 denotes the

FIG. 3. Schematic of the twisted nematic slab fabricated
tween the two planesz50 andl.
9-4
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pitch of the material,k2522pk22/p0 is the chiral elastic
modulus,u (1)5du/dz, f (1)5df/dz, and

f ~u!5k11sin2 u1k33cos2 u,
~16!

h~u!5sin2 u~k22sin2 u1k33cos2 u!.

The second integral in Eq.~14! is the dielectric energy

2
1

2E0

l

DW •EW dz52
V2

2 F E
0

l dz

e'1ea cos2 u
G21

[2
V2ē

2l
,

~17!

whereea5e i2e' is the dielectric anisotropy of the liquid
crystal material. The quantityVē/ l 5s5Dz is indeed the
surface densitys of the electric charge on the substrates,
the z componentDz of the dielectric displacement, which i
constant across the liquid-crystal cell.

The torque balance equations can be constructed thro
minimization of the free-energy Eq.~14!. A brief variational
calculationd f 50 and subsequent integration generate t
bulk equations and two boundary conditions for the low
substrate surface

f ~u!u (1)21
~C12k2 sin2 u!2

h~u!
2

Dz
2

e'1ea cos2 u
5C2 ,

~18!

f (1)5~C12k2 sin2 u!/h~u!, ~19!

f ~u0!u (1)uz501~Wp2Wa sin2 f0!sin 2u050, ~20!

h~u0!f (1)uz501k2 sin2 u02Wa sin2 u0 sin 2f050,
~21!

whereC1 andC2 are constants of integration. For reasons
symmetry, the boundary conditions for the upper subst
are essentially the same as those for the lower one. A
owing to symmetry, we have, at the midplane

u (1)uz5 l /250,

u~ l /2!5uM , ~22!

f~ l /2!5f t/2,

whereuM is dependent on the applied voltageV.
Equations~18!–~22! are the basic relations for solving th

director distribution and the threshold and saturation prop
ties of the TNLC slab. Comparatively, the two bulk equ
tions are the same as those derived previously, while
boundary conditions are more complicated than the co
sponding equations obtained in Refs.@4–7,9,17#, for in the
present equations the two orientation anglesu0 andf0, and
the two anchoring coefficients,Wp andWa , are all entangled
together.

The integration of Eqs.~18!–~22! generates

C15Wa sin2 u0 sin 2f0 , ~23!
03170
r

gh

o
-

f
te
so

r-
-
e

e-

l

2
5E

u0

uM
N1/2~u!du, ~24!

f t

2
2f05E

u0

uM
h21~u!~C12k2 sin2 u!N1/2~u!du, ~25!

f ~u0!N21/2~u0!52~Wp2Wa sin2 f0!sin 2u0 , ~26!

whereN(u) is defined by

N~u!5 f ~u!F eaDz
2~cos2 uM2cos2 u!

~e'1ea cos2 uM !~e'1ea cos2 u!

1
~C12k2 sin2 uM !2

h~uM !
2

~C12k2 sin2 u!2

h~u! G21

.

~27!

For a given voltageV, the values ofu0 , f0, anduM can be
determined by Eqs.~23!–~26!.

B. Fréedericksz transition

The threshold and saturation properties of a TN cell c
be obtained through observing the behavior ofuM . At the
threshold voltageVF , uM begins to deviate fromp/2; at the
saturation voltageVS , uM approaches 0 and the liquid
crystal director becomes homeotropic.

To derive the threshold property of the Fre´edericksz tran-
sition, we supposeu05uM5p/2 for V,VF and uM→p/2
when V→VF . In this extreme case, Eqs.~23!–~26! can be
solved analytically. It is convenient to introduce the dime
sionless parameters,

l5pk11/~2lWp!,

g5Wa /Wp , ~28!

uF5VF /Vc ,

where Vc5pAk11/ea is the threshold voltage of an un
twisted nematic slab (f t50) with rigid boundary coupling
(Wa→`,Wp→`). After a lengthy derivation~see the Ap-
pendix for more details!, we get three equations defining th
threshold property of the TN effect,

f t22f0
F2

2p l

p0
5

pgk11

2lk22
sin 2f0

F , ~29!

12g sin2 f0
F5lX tan~pX/2!, ~30!

uF5FX21
~k3322k22!Df2

k11p
2

1
4lk22Df

p0k11p
G 1/2

, ~31!

wheref0
F is the threshold value off0, andDf5f t22f0

F

the total twist of the liquid crystal director at the threshold.X
is a subsidiary variable.uF can be solved asX and f0

F has
been obtained from Eqs.~29! and ~30!. Incidentally, in Eq.
9-5
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~29! f0
F is indeed dependent only on the azimuthal anchor

strengthWa . Thus Wa can be determined if the thresho
anglef0

F is measured@18#.
It is instructive to compare the present paper with pre

ous studies. Beckeret al. @6# studied a substrate with stron
azimuthal and weak polar couplings. In Eqs.~29!–~31!, tak-
ing the limit g→`, we getf0

F50, and

lX tan~pX/2!51, ~32!

uF5FX21
~k3322k22!f t

2

k11p
2

1
4lk22f t

p0k11p
G 1/2

. ~33!

This recovers the result reported by Beckeret al. @6#. When
p0→`, Eqs.~32! and ~33! reduce to the corresponding fo
mula given by Yang@17#,

lFuF
22

~k3322k22!f t
2

k11p
2 G 1/2

tanH p

2 FuF
22

~k3322k22!f t
2

k11p
2 G 1/2J

51. ~34!

If we further take the equal-elastic-constant approximati
the result by Nehringet al. @5# is found,

~l/p!~f t
21p2uF

2 !1/2 tan@~f t
21p2uF

2 !1/2/2#51. ~35!

Now consider a TN cell consisting of strong anchoring su
strates and an achiral liquid-crystal material. In the limitl
→0, Eq. ~34! becomes

uF5F11
~k3322k22!f t

2

k11p
2 G 1/2

. ~36!

So we have returned to the result given by Leslie@19# and
Schadt and Helfrich@20#.

On the other hand, under the conditiong51, Eqs.~29!
and ~30! become, respectively,

f t22f0
F2

2p l

p0
5

pk11

2lk22
sin 2f0

F , ~37!

cos2 f0
F5lX tan~pX/2!. ~38!

Together with Eq.~31!, they precisely recover the result ob
tained by Sugimuraet al. under the assumption of equal p
lar and azimuthal anchoring coefficients@9#.

Figure 4 shows thel andg dependencies of the thresho
voltageuF and the surface twist anglef0

F of a TN cell, with
f t590°, andl /p050. The material parameters used in c
culation are k33/k1151.5,k22/k1150.6. Five groups of
curves are drawn, withg5`, 1, 0.1, 0.01, and 0, respec
tively. The first two values ofg is to recover the results
reported in Refs.@6# and@9#, respectively. The next two val
ues ofg is to simulate the more realistic cases in which t
azimuthal anchoring is one or two orders weaker than
polar coupling.g50 is an extreme case, corresponding
the degenerate planar anchoring. It is clear from Fig. 4~a!
that the threshold voltage is mainly dependent onl, and
03170
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almost independent fromg. Comparatively, theg depen-
dency of the surface twist anglef0

F is far more remarkable
As shown in Fig. 4~b!, with the decrease ofg from ` to 0,
the f0

F2l curve varies continuously fromf0
F[0 to f0

F

[45°. This implies that near the threshold the optical pro
erties of the TNLC slab is strongly dependent on the a
muthal anchoring of the substrates.

C. Saturation properties

The saturation property of a TNLC slab can be analy
cally solved through treating Eqs.~23!–~26! in the limit uM
→0 when V→VS . Through a lengthy calculation, we ge
three equations~see the Appendix for more details!

sin2 T5
1

g
cosh2~pY/2!F12

k33lY

k11
tanh~pY/2!G

3F12
k11~12g!

k33lY
tanh~pY/2!G , ~39!

tanf0
S5tanTF12

k11

k33lY
tanh~pY/2!G

3F12
k11~12g!

k33lY
tanh~pY/2!G21

, ~40!

uS5H k33

k11
FY21S 2lk22

p0k33
D 2G J 1/2

, ~41!

FIG. 4. l andg dependencies of the threshold property of a 9
twisted nematic slab.~a! The reduced threshold voltageuF ; ~b! the
surface twist anglef0

F at the threshold. As special cases, the resu
reported in Refs.@6# and @9# are plotted, withg5` and 1, respec-
tively. The material parameters used arek33/k1151.5, k22/k11

50.6, andl /p050.
9-6
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whereT5f t/22p lk22/(p0k33), Y is a subsidiary variable
uS5VS /Vc the reduced saturation voltage, andf0

S the sur-
face twist angle at the saturation. OnceY has been found
from Eq.~39!, the saturation voltageuS and the surface twis
anglef0

S can be calculated using Eqs.~40! and ~41!.
To understand this complex result, we compare it w

previous studies. In the limitg→`, Eq. ~40! simply gives
f0

S50, and Eq.~39! is reduced to

sin2 T5
k11

k33lY
sinh~pY/2!cosh~pY/2!

3F12
k33lY

k11
tanh~pY/2!G . ~42!

This equation, together with Eq.~41!, is consistent with the
result reported in Ref.@6#. For equal-elastic-constant ap
proximation andp0→`, Eqs.~41! and ~42! are reduced to

sin2 T5
1

luS
sinh~puS/2!cosh~puS/2!

3@12luS tanh~puS/2!#, ~43!

which is the same as the result obtained by Nehringet al. @5#.
On the other hand, with the conditiong51, Eqs.~39! and

~40! give

sin2 T5cosh2~pY/2!F12
k33

k11
lY tanh~pY/2!G , ~44!

FIG. 5. l andg dependencies of the saturation property of a 9
twisted nematic slab.~a! The reduced saturation voltageuS ; ~b! the
surface twist anglef0

S at saturation. The curves withg5` and 1
recover the results reported in Refs.@6# and @9#, respectively. The
material parameters used arek33/k1151.5, k22/k1150.6, andl /p0

50.
03170
tanf0
S5tanTF12

k11

k33lY
tanh~pY/2!G . ~45!

This is in agreement with the result reported in Ref.@9#.
We have calculated numerically thel andg dependencies

of the reduced voltageuS and the surface twist anglef0
S at

the saturation, using the same values of parameters as t
in Fig. 4. The result is represented in Fig. 5. It is clear th
f0

S is again strongly dependent ong, whereas the depen
dency ofuS ong is not so notable, except the unrealistic ca
with g5`. From Figs. 4~b! and 5~b!, it can be concluded
that the total twist angle of the liquid-crystal slab, and th
the optical properties of the TN cell, are closely relevant
the azimuthal anchoring.

Figures 4~a! and 5~a! show that for certain values ofg,
theuF(l) anduS(l) curves intersect. For weaker anchorin
conditions withl larger than its value at the intersectio
point, the saturation voltage is lower than the threshold v
age, and the liquid-crystal cell is bistable@6#. Detailed analy-
sis reveals that there exists a critical valuegc for the TN
effect with l /p050,

gc5
2Ak33/k1111

A3k33
2 /k22

2 231Ak33/k1111
. ~46!

When 0<g<gc , uF(l) anduS(l) curves do not intersect
and the liquid-crystal cell is monostable; wheng
.gc , uF(l) and uS(l) curves intersect, and the liquid
crystal cell is monostable or bistable depending on the va
of l. For the typical values of parameters illustrated in F
5~a!, we havegc'0.57. Thus forg51 and`, theuF(l) and
uS(l) curves intersect, in accordance with the results
tained in Refs.@6# and @9#. However, for a usual TN cell,g
should be in the order of magnitude of 0.1 or 0.01, which
far smaller thangc , thus usual TN cells have no bistab
behavior.

IV. HOMEOTROPIC TO TWISTED-PLANAR TRANSITION

It is not surprising that the results on the TNLC slab w
homogeneous planar substrates, expressed by Eqs.~29!–~31!
and ~39!–~41!, can be applied to the liquid-crystal cell wit
homeotropic substrates, since Eq.~10! depicts the two types
of anchoring surfaces in a common form. Reference@8# re-
ported the HTP device consisting of a chiral liquid-crys
slab with negative dielectric anisotropy. Its two homeotrop
substrates have been rubbed slightly, along different dir
tions with a cross anglef t , to introduce in-plane anisotropy
When no voltage is applied between the substrates, the liq
crystal aligns in uniform homeotropic conformation, if th
chiral modulus of the liquid-crystal material is not so stro
@21#. When a voltage is applied across the cell, the elec
field couples to the negative dielectric anisotropy of the l
uid crystal, and a structural transition is induced at a thre
old voltageV̂F , at which the liquid crystal begins to tilt an
twist. Further increase of the voltage toV̂S finally leads to
the saturation configuration which is a twisted planar str
ture. Experimental observation demonstrated the outstan

°

9-7



o
ha

la
o

he

ys
he

N
u

u-

s
on
or
-
ca
T
d

t
ec
T
rt
p
a

fin

-
th

T

ld

us

on-

si-

t

he

m
is
the
-
g

WEI ZHAO, CHEN-XU WU, AND MITSUMASA IWAMOTO PHYSICAL REVIEW E 65 031709
optical property of the HTP cell.
Although in the last section we have always focused

the TNLC slab, the results obtained are not limited to t
effect. If Wp.0 andWa.0 in Eq. ~13!, and the dielectric
anisotropy of the liquid-crystal material is positive (ea.0),
then the liquid-crystal director transforms from twisted p
nar alignment to homeotropic alignment with the increase
the voltage. This is the conventional TN effect. On the ot
hand, if Wp,0 and Wa.0 in Eq. ~13!, and the dielectric
anisotropy of the liquid-crystal material is negative (ea,0),
then as the voltage across the cell increases, the liquid-cr
director transforms from homeotropic alignment to t
twisted planar alignment. This is the HTP effect.

Intuitively, the HTP effect is just the reversal of the T
effect. However, this speculation is not evident in the n
merical analysis of the HTP transition reported in Ref.@8#,
where Eq.~4! was employed to depict the boundary co
pling. As shown in Fig. 2~d!, the polar diagram of Eq.~4! is
singular along the normal to the substrate surface. Thi
especially fatal to the understanding of the HTP transiti
since it proceeds from the homeotropic alignment. Theref
it is beneficial to employ Eq.~12! to characterize the bound
ary coupling. By doing so, we have found that the analyti
results about the TN effect can also be applied to the H
transition, if only the following replacements are performe

Wp↔2W1 , Wa↔W215W22W1 . ~47!

It should be emphasized that with these replacements
equations defining the threshold property of the TN eff
generate the relations for the saturation property of the H
transition, while the equations giving the saturation prope
of the TN effect lead to the description of the threshold pro
erty of the HTP transition. This is convincing evidence th
they are reverse effects of each other.

To demonstrate the results of this replacement, we de
the dimensionless parameters

l̂5pk33/~2lW1!,

ĝ5W21/W1 ,

~48!

ûF5V̂F /V̂c ,

ûS5V̂S /V̂c ,

where V̂c5p(k33/ueau)1/2 is the threshold voltage of a ho
meotropically aligned slab of an achiral liquid crystal wi
rigid boundary coupling (W2150,W1→`). In this section
the notations with a caret denote the quantities of the H
effect.

Using Eqs.~47! and~48!, we can determine the thresho
property of the HTP transition from modifying Eqs.~39!–
~41! ~see the Appendix for more details!,
03170
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sin2 T5
1

ĝ
cos2S pŶ

2
D F11

11ĝ

l̂Ŷ
tanS pŶ

2
D G

3F l̂Ŷ tanS pŶ

2
D 21G , ~49!

tanf̂0
F5tanTF11

1

l̂Ŷ
tanS pŶ

2
D GF11

11ĝ

l̂Ŷ
tanS pŶ

2
D G21

,

~50!

ûF5F Ŷ22S 2lk22

p0k33
D 2G1/2

. ~51!

In these equations, the hyperbolic functions in Eqs.~39!–
~41! have changed into trigonometric functions. The min
sign on the right-hand side of Eq.~51! implies thatûF can be
zero or even imaginary, i.e., the transition may occur sp
taneously in zero voltage, ifp0 is short enough. This will be
discussed later.

Similarly, the modification of Eqs.~29!–~31! generates
the equations of the saturation property of the HTP tran
tion,

f t22f̂0
S2

2p l

p0
5

pĝk33

2l̂k22

sin 2f̂0
S, ~52!

11ĝ sin2 f̂0
S5

k11

k33
l̂X̂ tanhS pX̂

2
D , ~53!

ûS5S k11

k33
D 1/2F X̂22

~k3322k22!Df̂2

k11p
2

2
4lk22Df̂

p0k11p
G 1/2

,

~54!

whereDf̂5f t22f̂0
S is the total twist of the liquid crystal a

the saturation.
As a special case, takingp05` and ĝ50 in Eqs.~51!–

~54!, we get

l̂ûF tan~pûF/2!51, ~55!

l̂ûSS k11

k33
D 1/2

tanhFp2 S k33

k11
D 1/2

ûSG51. ~56!

This is in good accordance with RP’s original result on t
homeotropic liquid-crystal cell@4#.

The realization of HTP transition relies on the unifor
homeotropic alignment of liquid crystal when no voltage
applied. This imposes a restriction on the thickness of
liquid-crystal cell, for the chirality-induced twist is not ad
vantageous to the stability of this initial alignment. Takin
ûF50 andĝ50 ~noting the fact thatW21!W1 in the experi-
ment @8#!, we can derive from Eqs.~51! and ~49!

tanS pLk22

p0k33
D5

p0

pk22
W1 , ~57!
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where L is the critical thickness of the cell: ifl ,L, the
uniform homeotropic alignment is stable. In the rigid anch
ing limit, W1→`, L reaches its maximal value

L

p0
5

k33

2k22
. ~58!

Noting the fact that usuallyk33;2k22, this relation implies
that the critical cell thickness is approximate to the pitch
the liquid crystal,L;p0. This is in good agreement with th
result about the rigid-anchoring homeotropic cell repor
previously@21#. Equation~57! also indicates thatL decreases
for weaker boundary couplingW1. Nevertheless,l 5p0/4 is
safe for the building of the homeotropic alignment, as h
been done in Ref.@8#.

The present result on the HTP effect expressed by E
~51!–~54! is not consistent with the numerical result report
in Ref. @8#. For example, as reported there, the azimut
anglef̂0 is always approximate to zero, and the total tw
anglef t22f̂0

F is a constantf t (5p/2 there!. For compari-

son, noting thatW21!W1 or ĝ!1 in the experiment, we can
derive from Eq.~50! that, at least at the threshold,

f̂0
F.T5

f t

2
2

p lk22

p0k33
. ~59!

Taking f t5p/2, l 5p0/4, and k22/k3350.5, we havef̂0
F

.p/8, and the total twist anglef t22f̂0
F.p/4 is just half of

the value reported in Ref.@8#. This notable difference shoul
be meaningful to the understanding of the optical proper
of the HTP cell. In its origin,f̂0[0 reported in Ref.@8# is a
consequence of the expression of the anchoring energy
~4!. As shown in Fig. 2~d!, there is a finite difference of the
anchoring energy between the (u050,f050) and (u0
50,f05p/2) directions, though they are physically iden
cal. This determines thatf̂0 must be zero at least near th
threshold, for the bulk elastic energy of infinitesimal disto
tion must be dominated by the finite difference of the surfa
energy. This indicates that the singular expression Eq.~4!
cannot lead to proper understanding of the HTP transitio

In Fig. 6, we plot the anchoring dependencies of
threshold and saturation properties of the HTP effect ca
lated based on Eqs.~51!–~54!. The material parameters use
are k11/k3351 andk22/k3350.5. The ratiol /p050.25 is to
follow the initial idea in Ref.@8#. The threshold and satura
tion voltages of the HTP cell are hardly dependent onĝ or
the azimuthal anchoring, whereas the surface twist anglef̂0

F

at the threshold is affected by the azimuthal anchoring i
much greater extent. For smallg (,0.1), f̂0

F is approxi-
mate to p/8, in agreement with the evaluation perform
above. Due to the values of parameters, the surface t
angle f̂0

S at the saturation is always zero, independent

both l̂ and ĝ; the saturation voltageûS is independent from
ĝ.
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V. CONCLUSIONS

In this paper, we have studied the surface anchoring
liquid crystals. Through spherical harmonic expansion of
surface energy, a two-term expression of the anchoring
ergy is derived, which is highly symmetric, as is embodi
by the anchoring triplet (jW ,hW ,eW ), and shown in Figs. 2~e! and
2~f!.

Using the present expression of the anchoring energy,
have made a rigorous analysis of weak boundary coup
effects for structural transitions of nematic liquid crysta
The threshold and saturation properties of TN effect are
rived in detail. The formulas obtained for TN effect hav
been applied to the HTP transition based on the fact that
present anchoring energy depicts the homogeneous pl
and the homeotropic anchoring surfaces uniformly. O
analysis shows that the TN and the HTP transitions are
tually reverse effects of each other. These results impr
our understanding of these structural transitions.

APPENDIX

1. Derivation of Eqs. „29…–„31…

For convenience, we introduce a variablea,

cosu5cosuM sina, ~cosu05cosuM sina0!. ~A1!

Substituting this equation into Eqs.~24!–~26!, then taking
the limit uM→p/2, we get, respectively,

FIG. 6. l̂ and ĝ dependencies of the threshold and saturat
properties of the homeotropic to twisted-planar transition.~a! The

reduced threshold (ûF) and saturation (ûS) voltages;~b! the surface

twist angle f̂0
F at threshold. The parameters used arek11/k33

51, k22/k3350.5, l /p050.25, andf t5p/2. Owing to the values

of these parameters, the surface twist anglef̂0
S at saturation is al-

ways zero and not plotted; the saturation voltageûS is independent

from ĝ.
9-9
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pX

2
5

p

2
2a0 , ~A2!

f t

2
2f0

F5S p

2
2a0D S C12k2

k22
D l

pX
, ~A3!

Wp2Wa sin2 f0
F5

pk11X

2l
cota0 , ~A4!

whereC15Wa sin 2f0
F , as reduced from Eq.~23!, and

X5H eaVF
2

p2k11

1
l 2

p2k11k22
2 @~2k222k33!~C12k2!2

12k2k22~C12k2!#J 1/2

. ~A5!

The threshold voltageVF and the surface twist anglef0
F

should be determined by Eqs.~A2!–~A5!.
Using the parameters defined by Eq.~28!, the ratio of Eq.

~A3! to Eq. ~A2! gives Eq.~29!, the elimination ofa0 from
Eqs.~A2! and ~A4! gives Eq.~30!, and Eq.~A5! reduces to
Eq. ~31!.

2. Derivation of Eqs. „39…–„40…

Introduce a variableb,

sinu5
sinuM

cosb
, S sinu05

sinuM

cosb0
D . ~A6!

Substituting this equation into Eqs.~24!–~26!, then taking
the limit uM→0, we get

sinb0

AY21q2 cos2 b0

5
1

Y
tanhS pY

2 D , ~A7!

T2f0
S5sin21S q sinb0

AY21q2D , ~A8!

Wp2Wa sin2 f0
S5

pk33

2l
sinb0AY21q2 cos2 b0, ~A9!

respectively, where

q5
lWa sin 2f0

S

pk33cos2 b0

. ~A10!
03170
The relation betweenY and the reduced saturation voltag
uS5VS /Vc is expressed by Eq.~41!.

Eliminating b0 from Eqs.~A7! and~A9!, we can express
f0

S via Y as

sin2 f0
S5

11h2l2Y22hlY@ tanh~pY/2!1coth~pY/2!#

g$~22g!2hlY@ tanh~pY/2!1coth~pY/2!#%
,

~A11!

where h5k33/k11, and the dimensionless parameters d
fined in Eq.~28! are used.

Using Eq. ~A11! to simplify Eq. ~A8!, after a lengthy
calculation, we can eliminateb0 and f0

S , and obtain Eq.
~39!. Finally, using Eq.~39! we can rewrite Eq.~A11! to Eq.
~40!.

3. Derivation of Eqs. „51…–„54…

From Eqs.~47! and ~48!, we can get the following re-
placement relations:

g↔2ĝ, l↔2
k11

k33
l̂. ~A12!

Since in the TN effect and the HTP effect, the twisted plan
twisted tilt, and homeotropic configurations appear in reve
order, it is natural that the threshold and the saturation v
ages of the two effects are exchanged,

uF↔ i S k33

k11
D 1/2

ûS , uS↔ i S k33

k11
D 1/2

ûF , ~A13!

where the imaginary uniti comes from the opposite signs o
ea in the definitions ofVc and V̂c . The variablesX and Y
employed in Sec. III have to be treated carefully. It should
noted that there is a factorl or g21 on the right-hand side o
Eqs.~30! and~39!. Due to the negative signs in Eq.~A12!, X
and Y determined by these relations should become ima
nary. For convenience, we introduce variablesX̂ and Ŷ, and
request them to satisfy the following replacement relation

X↔ iX̂, Y↔ iŶ. ~A14!

The substitution of Eqs.~A12!–~A14! into Eqs. ~39!–~41!
generates Eqs.~49!–~51!. The same substitution into Eqs
~29!–~31! generates Eqs.~52!–~54!.
.
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@3# B. Jérôme, Rep. Prog. Phys.54, 391 ~1991!.
@4# A. Rapini and M. Papoular, J. Phys.~Paris!, Colloq.30, C4.54

~1969!.
@5# J. Nehring, A. R. Kmetz, and T. J. Scheffer, J. Appl. Phys.47,
850 ~1976!.

@6# M. E. Becker, J. Nehring, and T. J. Scheffer, J. Appl. Phys.57,
4539 ~1985!.

@7# R. Hirning, W. Funk, J.-R. Trebin, M. Schmidt, and H
Schmiedel, J. Appl. Phys.70, 4211~1991!.
9-10



o

,

i,

g,

WEAK BOUNDARY ANCHORING, TWISTED NEMATIC . . . PHYSICAL REVIEW E 65 031709
@8# S.-W. Suh, S. T. Shin, and S.-D. Lee, Appl. Phys. Lett.68,
2819 ~1996!; Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A
302, 163 ~1997!.

@9# A. Sugimura and Z. Ou-Yang, Phys. Rev. E51, 784~1995!; A.
Sugimura, G. R. Luckhurst, and Z. Ou-Yang,ibid. 52, 681
~1995!.

@10# T. Beica, S. Frunza, R. Moldovan, and D. N. Stoenescu, M
Cryst. Liq. Cryst. Sci. Technol., Sect. A301, 39 ~1997!.

@11# Assuminggs(u0 ,f0)5gs
z(u0)1gs

a(f0), let us pay attention to
the surface normalu050. We havegsuu0505Const.1gs

a(f0).
This means that an infinitude of values ofgs exist in the nor-
mal direction corresponding to the infinitude of values off0.
This unphysical dependence uponf0 leads to the singularity
along the surface normal, as illustrated in Figs. 2~b!, 2~c!, and
2~d!.

@12# C. V. Brown, M. J. Towler, V. C. Hui, and G. P. Bryan-Brown
03170
l.

Liq. Cryst. 27, 233 ~2000!.
@13# W. Zhao, C.-X. Wu, and M. Iwamoto, Phys. Rev. E62, R1481

~2000!.
@14# G. P. Bryan-Brown, C. V. Brown, I. C. Sage, and V. C. Hu

Nature~London! 392, 365 ~1998!.
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