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Abstract 

A connected graph G is said to be k-cycle resonant if, for 1 < t < k, any t disjoint cycles in G are 
mutually resonant, that is, there is a perfect matching M of G such that each of the t cycles is an 
M-alternating cycle. In this paper, we at the first time introduce the concept of k-cycle resonant 
graphs, and investigate some properties of k-cycle resonant graphs. Some simple necessary and 
sufficient conditions for a graph to be k-cycle resonant are given. The construction of k-cycle 
resonant hexagonal systems are also characterized. 

1. Introduction 

In the investigation of the graphs with perfect matchings, many special classes of 

graphs have been introduced, such as elementary graphs, l-extendable (or matching 

covered) graphs, n-extendable graphs, saturated graphs, factor-critical and bicritical 

graphs, etc. [l-9]. The properties and constructions of these classes of graphs have 

been also investigated extensively. In Ref. [l], Lovisz and Plummer summarized 

works on these topics. 

Let G be a graph with perfect matchings. An edge of G is said to be allowed if it lies 

in a perfect matching of G, otherwise forbidden. A graph G is said to be elementary if 

its allowed edges form a connected subgraph of G. An elementary graph G is said to be 

1-extendable (or matching covered) if all of its edges are allowed. In the topological 

theory of benzenoid hydrocarbons, mathematic chemists [lo-143 are interested in 

normal hexagonal systems, which just correspond to 1-extendable polyhex graphs. 

A hexagonal system H is a 2-connected finite subgraph in the hexagonal lattice such 

that every interior face of H is bounded by a hexagon. A perfect matchings of 

a hexagonal system H is also called a Kekulk structure by chemists. For a Kekult: 
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structure M of H, an edge in M is called an M-double bond, otherwise an M-single 

bond. An edge of H is said to be a fixed double (single) bond of H if it is always 

a double (single) bond in every Kekulk structure of H. 

A normal hexagonal system is a hexagonal system with no fixed bond. Zhang Fuji 

and Chen Rongsi [ 13) proved that a hexagonal system H is normal if and only if every 

hexagon of H is resonant, that is, for any hexagon s of H, there is a Kekult structure 

M of H such that s is an M-alternating cycle. A normal hexagonal system is also said 

to be 1-coverable. The concept of k-coverable hexagonal systems was introduced by 

Zheng Maolin [14]. A hexagonal system H is said to be k-coverable if H contains at 

least k disjoint hexagons and, for 1~ t < k, any t disjoint hexagons of H are mutually 

resonant, that is, there is a KekulC structure M such that the t disjoint hexagons are 

M-alternating cycles. The properties and construction of k-coverable hexagonal 

systems have been also investigated by the same author. 

In the present paper, we are going to introduce a new class of graphs with 

perfect matchings, called k-cycle resonant graphs or k-cycle extendable graphs, which 

are a natural generalization of k-coverable hexagonal systems and n-extendable 

graphs. Some simple necessary and sufficient conditions for a graph to be k-cycle 

resonant are given. The construction of k-cycle resonant hexagonal systems are 

characterized. 

It should be mentioned that the concept of conjugated circuits (namely, resonant 

cycles) in hexagonal systems was first introduced by Randib [15]. Enumeration of 

conjugated circuits has led to expressions for the resonant energies of polycyclic 

conjugated hydrocarbons, etc. Furthermore, Gutman and Randi [16] extended 

enumeration of conjugated circuits to include disjoint conjugated circuits. The k-cycle 

resonant graphs we introduce here have the property that, for 1 d t < k, any t disjoint 

cycles are mutually resonant (or conjugated). 

2. k-Cycle resonant graphs 

Definition 2.1. Let G be a connected graph with perfect matchings. G is said to be 

k-cycle resonant (or extendable) if G contains at least k (2 1) disjoint cycles and, for 

1 d t d k, any t disjoint cycles in G are mutually resonant, that is, there is a perfect 

matching M of G such that the t disjoint cycles are M-alternating cycles. 

Let G be a connected graph. Let Gi be a vertex-induced subgraph of G. For 

convenience, we denote by G - Gi the graph obtained from G by deleting the vertices 

in Gi and their incident edges. A maximal 2-connected subgraph in G is called 

a 2-connected component of G. For a connected graph G with perfect matchings, an 

edge e of G is said to be a fixed double (single) bond if e belongs (does not belong) to 

any perfect matching of G. For a 2-connected graph G, a path P in G is said to be 

a chain if the degree of any end vertex of P is greater than two and the degree of any 

middle vertex of P is equal to two in G. A chain P in a 2-connected graph G is said to 
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be a reducible chain if G- V,(P) is 2-connected, where V,(P) is the set of middle 

vertices of P; otherwise irreducible. 

Theorem 2.2. Let G be a k-cycle resonant graph. Then 

(1) G is bipartite. 

(2) For 1~ t < k and any t disjoint cycles C1, Cz, . . . , C, in G, G - u\ Ci contains no odd 

component. 

(3) Any two 2- connected components in G have no common vertex. 

Proof. (1) and (2) hold obviously. 

(3) Suppose that Gi, Gj are two 2-connected components in G, which have a com- 

mon vertex t’. Then v is a cut vertex of G. Let G; be the component of G-t’ which 

contains Gi - v, and let Cj be a cycle in Gj which contains v. Since Cj is resonant in G, 

Gt must be an even component in G-Cj. For a cycle Ci in Gi, which contains v, the 

number of the vertices in V( Gt) n V( Ci) is odd, and so is 1 V( Gi)\ V( C,)j, implying that 

G-CI contains an odd component, that is, Ci is not resonant in G. This contradicts 

that G is k-cycle resonant. 0 

Theorem 2.3. Let G be a k-cycle resonant graph. Then G is elementary or 1-extendable if 

and only if G is 2-connected. 

Proof. If G is not 2-connected, by Theorem 2.2 (3), G must contain cut edges. Clearly, 

any cut edge of G must be a fixed bond (double or single), implying that G is not 

elementary and 1 -extendable. 

If G is 2-connected, then any edge e of G is contained in a cycle of G [17], and the 

cycle is a resonant cycle. So e is not a fixed bond, implying that G is 1-extendable and 

elementary. 0 

From the above theorems and Theorem 4.1.1 in Ref. [l], we have the following 

corollary. 

Corollary 2.4. Let G be a 2-connected k-cycle resonant graph with hipartition (U, W). 

Then 

(1) G has exactly two minimum vertex covers, namely U and W. 

(2) For every nonempty proper subset X of U, N(X) > 1X1+ 1, where N(X) denotes the 

neighbour set of X. 

(3) Zf 1 U I= 1 WI > 2, for anq’ UE U, WE W, G-u-w has a perfect matching. 

Theorem 2.5. Let G be a 2-connected k-cycle resonant graph. Then any reducible chain 

of G is of odd length. 

Proof. Let P be a reducible chain of G. 
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Since G - V,,,(p) is 2-connected, there is a cycle C in G - V,,,(p) passing through two 

end vertices of p. The component in G-C induced by V,(p) must be an even 

component, since C is resonant. So P is of odd length. 0 

3. Some necessary and sufficient conditions for a graph to be k-cycle resonant 

Theorem 2.2(l), (2) give some necessary conditions for a graph to be k-cycle 

resonant. We can prove these necessary conditions are also sufficient. 

Theorem 3.1. A connected graph with at least k disjoint cycles is k-cycle resonant ifand 

only zf G is bipartite and, for 1 <t Q k and any t disjoint cycles C1, C2, . . . . C, in G, 

G- ui Ci contains no odd component. 

Proof. We need only to prove the sufficiency. 

For k = 1, let G be bipartite, and let G - C contains no odd component for any cycle 

C in G. 

Suppose that G is not l-cycle resonant. Then there is a cycle C* in G, such that 

G - C* has a component with no perfect matching, say G*. Without loss of generality, 

we choose G* such that G* is minimal in the above sense. 

Let ul, u2, . . . . u, be the vertices on C* each of which is adjacent to a vertex in 

G*, and they divide C* into m edge-disjoint segments u1 - u2, u2 -Us, . . . , 

Ui-Ui+~y..e,U~U~, Since G* is connected, there is a path P(Ui, Vi+l), starting from Vi, 

passing through some vertices in G*, and terminating in Ui+l. Let C’ be the cycle 

consisting of P(ui,ui+l) and the segment u~+~--u~+~--~~~--u~ on C*. Then 

1 V(P(Uiy ui+I))nV(G*)l must be an even number. Otherwise G*- V(P( Vi> 4+1)) 

would contain an odd component which is also an odd component of G-C’, 

contradicting our assumption. Then G*- V,,,(P( Vi, Vi+l)) must have no perfect 

matching. Otherwise, G* would have a perfect matching, a contradiction. Hence 

G* - V,,,(P( Vi, Vi+l)) contains a component with no perfect matching, say G**, 

which is also a component of G - C’. But G** is a proper subgraph of G*, contradic- 

ting the choice of G*. 

We now assume that the conclusion of the theorem holds for k <n. Let k=n+ 1. 

Then G is bipartite, and, for 1~ t 9 n + 1 and any t disjoint cycles C1, C,, . . . , C, in G; 

G- ui Ci contains no odd component. 

If t < n, by the induction hypothesis, G is t-cycle resonant. 

If t=n+l, for any n+l disjoint cycles C1,C2,...,Cn,Cn+l in G, G-UyCi has 

a perfect matching, since G is n-cycle resonant. Then the component G,,, in 

G - Uy Ciwhich contains C,+ 1 satisfies that G,+ 1 is bipartite, and, for any cycle 

Cb+l in G,+l, G,+l- C:, + 1 contains no odd component, So G, + 1 is l-cycle resonant, 

implying that C1, C2, . . . , C,, C,+ 1 are mutually resonant, and so G is (n + 1)-cycle 

resonant. 0 
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4. k-cycle resonant hexagonal systems 

A hexagonal system H is a 2-connected plane graph whose every interior face is 

bounded by a regular hexagon. If H contains no interior vertex, it is said to 

be a catacondensed hexagonal system, otherwise a pericondensed hexagonal system. 

For k-cycle resonant hexagonal systems, we can give a more explicit construction 

characterization. 

Theorem 4.1. A hexagonal system H is l-cycle resonant if and only if H is a cata- 
condensed hexagonal system. 

Proof. Suppose that H is l-cycle resonant, but H not a catacondensed hexagonal 

system. Then in H there is a subsystem H’ which is a pericondensed hexagonal system 

with only three hexagons. Let C be the boundary of H’. In the interior of the cycle 

C there is only one interior vertex of H, which is an odd component in H-C, 

contradicting that H is l-cycle resonant. 

Conversely, suppose that H is a catacondensed hexagonal system. 

For any cycle C in H, let H(C) be the subsystem of H whose boundary is C, and let 

G(C) be the graph induced by the hexagons in the exterior of C. Then H(C) and any 

component Hi of G(C) are also catacondensed hexagonal systems, and Hi and C have 

exactly one common edge. So H-C contains no odd component. Now it follows from 

Theorem 3.1 that H is l-cycle resonant. 0 

Theorem 4.2. A hexagonal system H is 2-cycle resonant ifand only if(l) H contains at 

least two disjoint hexagons, and (2) H is a catacondensed hexagonal system with no chain 

of even length. 

Proof. Suppose that H is 2-cycle resonant. By Theorems 4.1 and 2.5, H is a catacon- 

densed hexagonal system, and any reducible chain of H is of odd length. For an 

irreducible chain P of H and the end vertices ui, u2 of P, there are two disjoint 

hexagons in H - V,,,(P), say sl, s2, such that s1 contains u1 and s2 contains u2. Since 

sl, s2 are mutually resonant, P - u1 - u2 is an even component in H - s1 - s2, implying 

that P is of odd length. 

Conversely, suppose that H satisfies conditions (1) and (2) in the theorem, but H is 

not 2-cycle resonant. Then there are two disjoint cycles Ci, Cj such that H -Ci- Cj 

contains an odd component G,-, , by Theorem 3.1. Every 2-connected component in GO 

is a catacondensed hexagonal system. After deleting all 2-connected components of 

GO, the remains contain an odd component which is a path of even length, say P’. 

Every end vertex of P’ is just adjacent to one vertex of degree three in H. Let the two 

vertices of degree three are ul, u2. Then V(P’)u { ul, u2} induces a chain of even 

length in H, contradicting our assumption. 0 
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Theorem 4.3. Let H be a 2-cycle resonant hexagonal system, and let k” be the maximum 
number of disjoint cycles in H. Then H is k*-cycle resonant. 

Proof. By Theorem 4.2, H is a catacondensed hexagonal system with no chain of even 

length. Suppose that H is k-cycle resonant, but not (k + 1)-cycle resonant for 2 <k < k*. 

Then there are k + 1 disjoint cycles Cr. Cz, . . ., Ck + r such that H - u:’ ’ Ci contains 

an odd component. By the same reason as in the proof of Theorem 4.2, a chain of even 

length in H would be found, a contradiction. q 

From Theorems 4.2 and 4.3, we have the following theorem. 

Theorem 4.4. A hexagonal system H is k*-cycle resonant if and only if H is a catacon- 

densed hexagonal system with no chain of even length, where k* is the maximum number 
of disjoint cycles in H. 

co 
k=l, K=3 

k=l, K=4 

H 
2 

k=2, K=5 
H ̂  

k=O, K=6 k=l, K=7 k=2, K=8 

k=O, K=9 k=l, F=ll k=2, K=13 k=2, K=13 
I! 

K-14 
9 li10 

H 
1:=3, 

11 B 
12 K 

13 

Fig. 1. Some hexagonal systems with h hexagons obtained from a same parent hexagonal system with h - 1 
hexagons, where k indicated that the corresponding hexagonal system is k-cycle resonant and K is the 

number of Kekule structures. 
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Table 1. The resonance energies of the hexagonal systems as 

shown in Fig. 1, where RE(LM) denotes the resonance en- 

ergy based on the logarithmic model and RE denotes the 

resonance energy based on conjugated circuit model 

Hexagonal k K RE(LM) RE 

system (ev) (ev) 

HI 1 3 1.3020 1.3233 

HZ 1 4 16422 1.5998 

H3 2 5 1.9068 1.9552 

H, 0 6 2.1232 2.1332 

Hs 1 7 2.3058 2.3107 

H.5 2 8 2.4642 2.5058 

H, 2 8 2.4642 2.5058 

H* 3 9 2.6046 2.7078 

H, 0 9 2.6040 2.5850 

H 10 1 11 2.8424 2.8219 

HI, 2 13 3.0404 3.0916 

HI, 2 13 3.0404 3.0916 

H 13 3 14 3.1273 3.2082 

5. Conclusion 

The present work establishes some simple necessary and sufficient conditions for 

a graph to be k-cycle resonant, which are a good characterization in Edmonds’ sense 

[ 181. By using the conditions, the construction of k-cycle resonant hexagonal systems 

is completely characterized. It may be interesting for chemists that, in the hexagonal 

systems with h hexagons obtained from a same parent hexagonal system with h- 1 

hexagons, k*-cycle resonant systems have greater resonance energies than l-cycle 

resonant systems, also l-cycle resonant systems have greater resonance energies than 

hexagonal systems not being l-cycle resonant. This is true for the logarithmic model 

[19-211 and the Randic’s conjugated circuit model [15,22-291 (see Fig. 1 and 

accompanying Table 1). One also finds that the number of cycles in a proper Clar 

formula [30] of a k*-cycle resonant hexagonal system is just equal to k*. 

For general k-cycle resonant graphs, the construction of them are more complex. 

We shall discuss it elsewhere. 
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