HAMILTON CYCLES IN DIRECTED EULER TOUR **GRAPHS**

Fu-ji ZHANG and Xiao-feng GUO

Department of Mathematics, Xinjiang University, Urumchi, Xinjiang, China

Received 12 November 1984 Revised 24 April 1986

In this paper we define the directed Euler tour graph of a directed Eulerian graph by T-transformations, which was introduced by Xia Xin-guo in 1984, and prove that any edge in a directed Euler tour graph is contained in a Hamilton cycle.

Let $D = (V, X)$ be a directed Eulerian multigraph without loops, and let E be a directed Euler tour of D. For a vertex v of D with $id(v) = od(v) = k \ge 2$, E passes through v exactly k times. So we may write E : $x'_0vx_1 \ldots x'_1vx_2 \ldots x'_2v \ldots vx_k \ldots x'_0$, where $x'_0, x'_1, \ldots, x'_{k-1}$ are arcs going into v and x_1, \ldots, x_k are arcs going out of v. A triple (x'_{i-1}, v, x_i) is called a transition of E through v. A subsequence of E starting from v and ending at u (or v) which contains at least one arc is called a $v-u$ (or $v-v$) segment of E. Let S and S' be two arc-disjoint $v-u$ segments of E such that (S, S') is not a partition of E. We call S and S' to be exchangeable. A directed Euler tour F is said to be obtained from E by a T -transformation at S and S' if F is obtained from E by exchanging S and S'. The directed Euler tour graph of D, denoted by $Eu(D)$, is an undirected simple graph defined as follows: The vertices of $Eu(D)$ are directed Euler tours of D, and two directed Euler tours E and F are adjacent in $Eu(D)$ if they can be obtained from each other by a T-transformation.

Xia Xin-guo [3] introduced the concept of the T-transformation of directed Euler tours and proved that any directed Euler tour graph is connected. In the present paper we prove that any directed Euler tour graph is edge-Hamiltonian as stated in the following.

Theorem. *Let D be a directed Euler graph having at least three directed Euter tours. Then any edge of* $Eu(D)$ *is contained in a Hamilton cycle of* $Eu(D)$ *.*

Proof. For a cut vertex v of D with $id(V) = 2$ (see Fig. 1(a)), there are exactly two transitions (x'_0, v, x_1) and (x'_1, v, x_2) of E at v. Let D' be the graph obtained from D by replacing v by a pair of vertices v' and v'' (see Fig. 1(b)). It is easy to see that $Eu(D) \cong Eu(D')$. Hence we may assume that D has no cut vertex v with $id(v) = 2.$

Let Q be a subset of the vertex set of D such that $v \in Q$ if and only if $id(v) \ge 2$.

0012-365X/87/\$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

Fig. 1.

Let λ be the sum of indegrees of vertices in Q . The proof is by induction on λ . Since D has at least 3 Euler tours, we have $\lambda \ge 4$.

If $\lambda = 4$, then *D* is one of the graphs shown in Fig. 2.

In case (a), $|V(Eu(D))| = 2$. In case (b), D has precisely 6 Euler tours, and it is easy to check that $Eu(D) = K_6$. The conclusion is evident.

Now suppose that the conclusion is true for $4 \le \lambda \le m$, where m is an integer. Let $\lambda = m + 1$. Take any edge E_1E_2 of Eu(D), E_1 , $E_2 \in V(\text{Eu}(D))$. By definition, E_2 is obtained from E_1 by a T-transformation, and vice versa. Two types of **T-transformation are considered.**

Type I. The T-transformation is carried out by exchanging two exchangeable v - v **segments. We have**

$$
E_1 = x'_a \mathbf{v} x_b \dots x'_c \mathbf{v} x_d \dots x'_e \mathbf{v} x_f \dots x'_e \mathbf{v} x_h \dots x'_a
$$

and

$$
E_2 = x'_a v x_f \dots x'_g v x_d \dots x'_e v x_b \dots x'_c v x_h \dots x'_a.
$$

We can relabel x'_a or x'_e as x'_0 , and relabel the other arcs with v as its head or tail by $x_1, x'_1, x_2, x'_2, \ldots, x_k$ in accordance with the order arising in E_1 . Because the T-transformation between E_1 and E_2 can be regarded as exchanging the positions

$$
E_1 = x'_0 \mathbf{v} x_1 \dots x'_l \mathbf{v} x_{l+1} \dots x'_{i-1} \mathbf{v} x_i \dots x'_l \mathbf{v} x_{j+1} \dots x'_{k-1} \mathbf{v} x_k \dots x'_0,
$$

\n
$$
E_2 = x'_0 \mathbf{v} x_i \dots x'_l \mathbf{v} x_{l+1} \dots x'_{i-1} \mathbf{v} x_1 \dots x'_l \mathbf{v} x_{j+1} \dots x'_{k-1} \mathbf{v} x_k \dots x'_0,
$$

where $1 \leq l < i \leq j \leq k - 1$.

Type II. The T-transformation is carried out by exchanging two exchangeable $v-u$ ($v \neq u$) segments. As in Type I, we may label it as

$$
E_1 = x'_0 \mathbf{v} x_1 \dots x'_{l-1} \mathbf{v} x_l \dots u \dots x'_l \mathbf{v} x_{l+1} \dots x'_{l-1} \mathbf{v} x_i \dots x'_{j-1} \mathbf{v} x_j
$$

\n... $\mathbf{u} \dots x'_j \mathbf{v} x_{j+1} \dots x'_{k-1} \mathbf{v} x_k \dots x'_0$,
\n
$$
E_2 = x'_0 \mathbf{v} x_i \dots x'_{j-1} \mathbf{v} x_j \dots u \dots x'_l \mathbf{v} x_{l+1} \dots x'_{i-1} \mathbf{v} x_1 \dots
$$

\n
$$
x'_{l-1} \mathbf{v} x_l \dots u \dots x'_j \mathbf{v} x_{j+1} \dots x'_{k-1} \mathbf{v} x_k \dots x'_0
$$

where $1 \le l \le i \le j \le k$. Because the T-transformation between E_1 and E_2 can be regarded as exchanging the positions of these two exchangeable *u-v* segments, we may also take the arc going into u as x'_0 .

In both types we call v (or u) as a reference vertex and x'_0 as a reference arc.

Denote by S_i the set of directed Euler tour of D containing the transition (x'_0, v, x_i) . Then it is obvious that S_1, S_2, \ldots , form a partition of the vertex set of Eu(D). Let L_i be the subgraph of Eu(D) induced by S_i . Since L_i is isomorphic to the directed Euler tour graph of the directed graph which is obtained from D by replacing v by two vertices v' and v'' such that x'_0 and x_i are incident to v' and the other arcs incident to v in D are incident to v". By the induction hypothesis, L_i is edge-Hamiltonian or isomorphic to K_1 (where $|S_i| = 1$) or K_2 (where $|S_i| = 2$).

Now we are going to find a cycle C in $Eu(D)$ satisfying the following conditions.

- (1) C contains E_1E_2 ;
- (2) For each i, if $|S_i| > 1$, then C contains exactly one edge a_i in L_i , and if $|S_i| = 1$, then C contains exactly the vertex of S_i .

If there exists such a cycle C in Eu(D), we denote by H_i a Hamilton cycle containing the edge a_i in L_i (if $|S_i| \le 2$, let $H_i = \emptyset$), then $(H_1 \cup H_2 \cup \cdots \cup H_i)$ $U \cdots$) ΔC is a Hamilton cycle containing edge E_1E_2 of Eu(D). Thereby, the theorem is proved. \Box

We consider the following three cases.

Case 1. $id(v) = 2$.

 E_2 can only be obtained from E_1 by exchanging two exchangeable $v \cdot u$ ($v \neq u$) segments and $V(\text{Eu}(D)) = S_1 \cup S_2$.

Subcase 1.1. $id(u) \ge 3$

In this case, u occurs more than once in a v -v segment of E_1 . We can choose a suitable reference arc such that

$$
E_1 = x'_0vx_1 \ldots u \ldots u \ldots x'_1vx_2 \ldots u \ldots x'_0.
$$

Then the required cycle $C = F_1 F_2 F_3 F_4 F_1$ is one of the following.

(1)
$$
F_1 = x'_0vx_1 \dots u \dots u \dots x'_1vx_2 \dots u \dots x'_0 = E_1,
$$

\n $F_2 = x'_0vx_2 \dots u \dots x'_1vx_1 \dots u \dots u \dots x'_0 = E_2,$
\n $F_3 = x'_0vx_2 \dots u \dots u \dots x'_1vx_1 \dots u \dots x'_0,$
\n $F_4 = x'_0vx_1 \dots u \dots x'_1vx_2 \dots u \dots u \dots x'_0,$
\n(2) $F_1 = x'_0vx_1 \dots u \dots u \dots x'_1vx_2 \dots u \dots x'_0 = E_1,$
\n $F_2 = x'_0vx_2 \dots u \dots u \dots x'_1vx_1 \dots u \dots x'_0 = E_2,$
\n $F_3 = x'_0vx_2 \dots u \dots x'_1vx_1 \dots u \dots u \dots x'_0,$
\n $F_4 = x'_0vx_1 \dots u \dots x'_1vx_2 \dots u \dots u \dots x'_0.$

Subcase 1.2. $id(u) = 2$

Since D has at least three directed Euler tours, at least one of L_1 and L_2 has more than one vertex.

 $(1.2.1)$ If, say, $|S_1| = 1$, then $|S_2| \ge 2$

Let E_1 be the only directed Euler tour of S_1 . Then for all u_i , $u_i \in Q - v$ there are no exchangeable u_i-u_j segments in E_1 . Consequently, we have $id(u_i)=2$, $id(u_i) = 2$, and there exists a vertex $u_1 \in Q - v - u$. We may choose a suitable reference arc such that $E_1 = x'_0vx_1 \dots u \dots u_1 \dots x'_1vx_2 \dots u_1 \dots u \dots x_0$. The required cycle $C = F_1 F_2 F_3 F_1$ is as follows.

$$
F_1 = x'_0vx_1 \dots u \dots u_1 \dots x'vx_2 \dots u_1 \dots u \dots x'_0 = E_1,
$$

\n
$$
F_2 = x'_0vx_2 \dots u_1 \dots u \dots u_1 \dots x'_1vx_1 \dots u \dots x'_0 = E_2,
$$

\n
$$
F_3 = x'_0vx_2 \dots u_1 \dots x'_1vx_1 \dots u \dots u_1 \dots u \dots x'_0.
$$

(1.2.2) Suppose that $|S_1| \ge 2$, $|S_2| \ge 2$

Then there exist two exchangeable u_{i1} - u_{i1} segments in E_1 and two exchangeable u_{i2} - u_{i2} segments in E_2 , where u_{i1} , u_{i2} , u_{i1} and u_{i2} are in $Q - v - u$.

Let T_1 , T_3 be the v-u segments in E_1 ; and T_2 , T_4 be the u-v segments in E_1 . If T_1 and T_3 (or T_2 and T_4) have an internal vertex $u_i \in Q - v - u$ in common, then the required cycle can be formed by exchanging $v-u$ segments and u_i-u (or $u-u_i$) segments alternately. So we can assume that neither T_1 and T_3 nor T_2 and T_4 have an internal vertex in common. We now consider two cases.

 $(1.2.2.1)$ For u_i , $u_j \in Q - v - u$, there are two exchangeable u_i-u_j segments in E_1 (or E_2). We make the numbers of u_i 's, u_i 's in each of T_1 , T_2 , T_3 and T_4 as a quadruple (i_1, i_2, i_3, i_4) , where $i_1 + i_2 + i_3 + i_4 = 4$, which determines the distribution of u_i 's and u_j 's in E_1 . Since any one of u and v can be taken as a reference vertex and any arc going into v or u can be taken as a reference arc, only one of the four quadruples (i_1, i_2, i_3, i_4) , (i_2, i_3, i_4, i_1) , (i_3, i_4, i_1, i_2) and (i_4, i_1, i_2, i_3) needs to be considered. Moreover, since we can take $F_1 = E_2$ and $F_2 = E_1$, only one of the two quadruples (i_1, i_2, i_3, i_4) and (i_3, i_2, i_1, i_4) needs to be considered. Therefore, we need to consider the following eight cases in total.

> 1. $(1, 1, 1, 1)$, 2. $(1, 1, 2, 0)$, 3. $(1, 2, 1, 0)$, 4. $(2, 2, 0, 0)$, 5. $(2,0,2,0)$, 6. $(3,1,0,0)$, 7. $(3,0,1,0)$, 8. $(4,0,0,0)$.

For cases 1, 2, 5, and 7 one can see that T_1 and T_3 or T_2 and T_4 have an internal vertex in common, which is contrary to our assumption. For Cases 4, 6, and 8, we shall form the cycle C from E_1 by exchanging *v-u* segments and u_i-u_i (u_i-u_i) segments alternately. For the Case 3, the required cycle C is as follows.

$$
F_1 = x'_0vx_1 \dots u_i \dots u_j \dots u_i \dots x'_1vx_2 \dots u_j \dots u \dots x'_0 = E_1,
$$

\n
$$
F_2 = x'_0vx_2 \dots u_j \dots u \dots u_j \dots u_i \dots x'_1vx_1 \dots u_i \dots u \dots x'_0 = E_2,
$$

\n
$$
F_3 = x'_0vx_2 \dots u_j \dots u_i \dots x'_1vx_1 \dots u_i \dots u \dots u_j \dots u \dots x'_0,
$$

\n
$$
F_4 = x'_0vx_1 \dots u_i \dots x'_1vx_2 \dots u_j \dots u \dots u \dots u_j \dots u \dots x'_0.
$$

(1.2.2.2) For any vertices $u_i, u_j \in Q - v - u$, there are no exchangeable u_i-u_j segments in both E_1 and E_2 . Then $id(u_i)=id(u_i)=2$, and there are two exchangeable $u-u_i(u_i-u)$ segments in E_1 , and there are two exchangeable $u-u_j$ (u_i-u) segments in E_2 at the same time.

Since neither T_1 and T_3 nor T_2 and T_4 have an internal vertex in common, we have

$$
E_1 = x'_0 v x_1 \dots u_i \dots u_i \dots u'_1 \dots x'_1 v x_2 \dots u \dots x'_0,
$$

\n
$$
E_2 = x'_0 v x_2 \dots u \dots u_i \dots x'_1 v x_1 \dots u_i \dots u \dots x'_0.
$$

Then u_i may appear in E_2 in the following manners.

$$
(1) \qquad E_2 = x'_0vx_2\ldots u\ldots u_j\ldots u_i\ldots x'_1vx_1\ldots u_i\ldots u\ldots u_j\ldots x'_0
$$

(2)
$$
E_2 = x'_0 v x_2 \dots u \dots u_i \dots x'_1 v x_1 \dots u_i \dots u_j \dots u \dots u_j \dots x'_0,
$$

$$
(3) \qquad E_2 = x'_0 v x_2 \ldots u_j \ldots u \ldots u_i \ldots x'_1 v x_1 \ldots u_i \ldots u_j \ldots u \ldots x'_0,
$$

(4)
$$
E_2 = x'_0 v x_2 \dots u_j \dots u \dots u_j \dots u_i \dots x'_1 v x_1 \dots u_i \dots u \dots x'_0
$$

It is not difficult to see that for each of Cases 1–4, there are exchangeable u_i-u_j (u_j-u_i) segments in E_1 , contradicting the assumption of this subcase.

Case 2. $id(v) = 3$

Subcase 2.1. E_2 is obtained from E_1 by exchanging two exchangeable v-v

segments, i.e.,

$$
E_1 = x'_0 \mathbf{v} x_1 \dots x'_1 \mathbf{v} x_2 \dots x'_2 \mathbf{v} x_3 \dots x'_0,
$$

\n
$$
E_2 = x'_0 \mathbf{v} x_2 \dots x'_2 \mathbf{v} x_1 \dots x'_1 \mathbf{v} x_3 \dots x'_0.
$$

 $(2.1.1)$ The vertex v is a cut vertex

We can take a suitable reference arc such that $\{x'_0, x_3\}$ is an edge cut and $V(\text{Eu}(D)) = S_1 \cup S_2$. Suppose $\{x_1, x_1'\}$ and $\{x_2, x_2'\}$ are edge cuts of D too. Note that $|V(Eu(D))| \geq 3$. Then there is a *v-v* segment in which there exist two exchangeable u_i-u_j segments $(u_i, u_j \in Q - v - u)$ and in which v only occurs as the end vertex of the *v*-*v* segment. Obviously, the required cycle $C = F_1 \text{...} F_4 F_1$ can be formed by exchanging $v-v$ segments and u_i-u_j segments alternately. Now we suppose that $\{x_1, x_1'\}$ and $\{x_2, x_2'\}$ are not edge cuts of D. Then there is a vertex $u_1 \in Q - V$ arising in the segments $vx_1 \ldots x'_1 v$ and $vx_2 \ldots x'_2 v$. The required cycle $C = F_1 \ldots F_4 F_1$ can be formed by exchanging $v \cdot v$ segments and $u_1 - v$ segments alternately.

(2.1.2) The vertex v is not a cut vertex and $V(Eu(D)) = S_1 \cup S_2 \cup S_3$

Then there exists a vertex $u_1 \in Q$ -v which arises in both the segments $vx_1 \ldots x_2'v$ and $vx_3 \ldots x_0'v$. If each *v-v* segment in E_1 contains the vertex u_1 , then the required cycle $C = F_1F_2 \ldots F_6F_1$ is as follows.

$$
F_1 = x'_0vx_1 \dots u_1 \dots x'_1vx_2 \dots u_1 \dots x'_2vx_3 \dots u_1 \dots x'_0 = E_1,
$$

\n
$$
F_2 = x'_0vx_2 \dots u_1 \dots x'_2vx_1 \dots u_1 \dots x'_1vx_3 \dots u_1 \dots x'_0 = E_2,
$$

\n
$$
F_3 = x'_0vx_2 \dots u_1 \dots x'_1vx_3 \dots u_1 \dots x'_2vx_1 \dots u_1 \dots x'_0,
$$

\n
$$
F_4 = x'_0vx_3 \dots u_1 \dots x'_2vx_2 \dots u_1 \dots x'_1vx_1 \dots u_1 \dots x'_0,
$$

\n
$$
F_5 = x'_0vx_3 \dots u_1 \dots x'_1vx_1 \dots u_1 \dots x'_2vx_2 \dots u_1 \dots x'_0,
$$

\n
$$
F_6 = x'_0vx_1 \dots u_1 \dots x'_2vx_3 \dots u_1 \dots x'_1vx_2 \dots u_1 \dots x'_0.
$$

If there is a *v-v* segment, say $vx_2 \ldots x'_2v$, which does not contain the vertex u_1 , then there exists a vertex $u_2 \in Q - v - u_1$ which arises in both the segments $vx_2...x'_2v$ and $vx_3...x'_1v$. As before we consider the possible distribution of u_1 's and u_2 's in E_1 . Note that the T-transformation between E_1 and E_2 can be regarded as exchanging any two exchangeable $v-v$ segments in E_1 , and we can put $F_1 = E_2$, $F_2 = E_1$. So we can choose a suitable reference arc such that E_1 and the required cycle $C = F_1F_2 \ldots F_6F_1$ are as follows.

$$
F_1 = x'_0vx_1 \dots u_2 \dots u_1 \dots x'_1vx_2 \dots u_2 \dots x'_2vx_3 \dots u_1 \dots x'_0 = E_1,
$$

\n
$$
F_2 = x'_0vx_2 \dots u_2 \dots x'_2vx_1 \dots u_2 \dots u_1 \dots x'_1vx_3 \dots u_1 \dots x'_0 = E_2,
$$

\n
$$
F_3 = x'_0vx_2 \dots u_2 \dots u_1 \dots x'_1vx_1 \dots u_2 \dots x'_2vx_3 \dots u_1 \dots x'_0,
$$

\n
$$
F_4 = x'_0vx_3 \dots u_1 \dots x'_1vx_1 \dots u_2 \dots x'_2vx_2 \dots u_2 \dots u_1 \dots x'_0,
$$

$$
F_5 = x'_0vx_3 \dots u_1 \dots x'_1vx_2 \dots u_2 \dots x'_2vx_1 \dots u_2 \dots u_1 \dots x'_0,
$$

\n
$$
F_6 = x'_0vx_1 \dots u_2 \dots x'_2vx_3 \dots u_1 \dots x'_1vx_2 \dots u_2 \dots u_1 \dots x'_0.
$$

Subcase 2.2. E_2 is obtained from E_1 by exchanging two exchangeable $v-u$ segments.

If $id(u) = 2$, since we can take u as a reference vertex, it can be dealt with in the same way as in Case 1. If $id(u) \ge 4$, it shall be considered later. Now we assume $id(u) = 3$.

(2.2.1) The vertices u and v arise in E_1 alternately

By choosing a suitable reference vertex and a suitable reference arc, the required cycle $C = F_1 F_2 \dots F_6 F_1$ is as follows.

$$
F_1 = x'_0 v x_1 \dots u \dots x'_1 v x_2 \dots u \dots x'_2 v x_3 \dots u \dots x'_0 = E_1,
$$

\n
$$
F_2 = x'_0 v x_2 \dots u \dots x'_1 v x_1 \dots u \dots x'_2 v x_3 \dots u \dots x'_0 = E_2,
$$

\n
$$
F_3 = x'_0 v x_2 \dots u \dots x'_2 v x_3 \dots u \dots x'_1 v x_1 \dots u \dots x'_0,
$$

\n
$$
F_4 = x'_0 v x_3 \dots u \dots x'_2 v x_2 \dots u \dots x'_1 v x_1 \dots u \dots x'_0,
$$

\n
$$
F_5 = x'_0 v x_3 \dots u \dots x'_1 v x_1 \dots u \dots x'_2 v x_2 \dots u \dots x'_0,
$$

\n
$$
F_6 = x'_0 v x_1 \dots u \dots x'_1 v x_3 \dots u \dots x'_2 v x_2 \dots u \dots x'_0.
$$

 $(2.2.2)$ Suppose that u does not arise in a v -v segment

We can choose a suitable reference vertex and a reference arc such that u and $E_1 =$ arise in segment $vx_2 \ldots x_2'v$ does not the $x'_0vx_1 \ldots u \ldots u \ldots x'_1vx_2 \ldots x'_2vx_3 \ldots u \ldots x'_0$. Then the required cycle $C =$ $F_1F_2 \ldots F_6F_1$ can be one of the following.

(1)
$$
F_1 = x'_0 \mathbf{v} x_1 \dots u \dots u \dots x'_1 \mathbf{v} x_2 \dots x'_2 \mathbf{v} x_3 \dots u \dots x'_0 = E_1,
$$

\n $F_2 = x'_0 \mathbf{v} x_3 \dots u \dots u \dots x'_1 \mathbf{v} x_2 \dots x'_2 \mathbf{v} x_1 \dots u \dots x'_0 = E_2,$
\n $F_3 = x'_0 \mathbf{v} x_3 \dots u \dots x'_1 \mathbf{v} x_2 \dots x'_2 \mathbf{v} x_1 \dots u \dots u \dots x'_0,$
\n $F_4 = x'_0 \mathbf{v} x_2 \dots x'_2 \mathbf{v} x_3 \dots u \dots x'_1 \mathbf{v} x_1 \dots u \dots x'_0,$
\n $F_5 = x'_0 \mathbf{v} x_2 \dots x'_2 \mathbf{v} x_3 \dots u \dots u \dots x'_1 \mathbf{v} x_1 \dots u \dots x'_0,$
\n $F_6 = x'_0 \mathbf{v} x_1 \dots u \dots x'_1 \mathbf{v} x_2 \dots x'_2 \mathbf{v} x_3 \dots u \dots u \dots x'_0.$

(2)
$$
F_1 = x'_0 v x_1 \dots u \dots u \dots x'_1 v x_2 \dots x'_2 v x_3 \dots u \dots x'_0 = E_1,
$$

\n $F_2 = x'_0 v x_2 \dots x'_2 v x_3 \dots u \dots u \dots x'_1 v x_1 \dots u \dots x'_0 = E_2,$
\n $F_3 = x'_0 v x_2 \dots x'_2 v x_3 \dots u \dots x'_1 v x_1 \dots u \dots u \dots x'_0,$
\n $F_4 = x'_0 v x_3 \dots u \dots x'_1 v x_2 \dots x'_2 v x_1 \dots u \dots x'_0,$
\n $F_5 = x'_0 v x_3 \dots u \dots u \dots x'_1 v x_2 \dots x'_2 v x_3 \dots u \dots u \dots x'_0,$
\n $F_6 = x'_0 v x_1 \dots u \dots x'_1 v x_2 \dots x'_2 v x_3 \dots u \dots u \dots x'_0.$

(3)
$$
F_1 = x'_0 \mathbf{u} x_1 \dots \mathbf{u} \dots \mathbf{u} \dots x'_1 \mathbf{v} x_2 \dots x'_2 \mathbf{v} x_3 \dots \mathbf{u} \dots x'_0 = E_1,
$$

\n $F_2 = x'_0 \mathbf{v} x_3 \dots \mathbf{u} \dots x'_1 \mathbf{v} x_2 \dots x'_2 \mathbf{v} x_1 \dots \mathbf{u} \dots x'_0 = E_2,$
\n $F_3 = x'_0 \mathbf{v} x_3 \dots \mathbf{u} \dots \mathbf{u} \dots x'_1 \mathbf{v} x_2 \dots x'_2 \mathbf{v} x_1 \dots \mathbf{u} \dots x'_0,$
\n $F_4 = x'_0 \mathbf{v} x_2 \dots x'_2 \mathbf{v} x_3 \dots \mathbf{u} \dots \mathbf{u} \dots x'_1 \mathbf{v} x_1 \dots \mathbf{u} \dots x'_0,$
\n $F_5 = x'_0 \mathbf{v} x_2 \dots x'_2 \mathbf{v} x_3 \dots \mathbf{u} \dots x'_1 \mathbf{v} x_1 \dots \mathbf{u} \dots x'_0,$
\n $F_6 = x'_0 \mathbf{v} x_1 \dots \mathbf{u} \dots x'_1 \mathbf{v} x_2 \dots x'_2 \mathbf{c} x_3 \dots \mathbf{u} \dots x'_0.$

(4)
$$
F_1 = x'_0vx_1 \dots u \dots u \dots x'_1vx_2 \dots x'_2vx_3 \dots u \dots x'_0 = E_1,
$$

\n $F_2 = x'_0vx_2 \dots x'_2vx_3 \dots u \dots x'_1vx_1 \dots u \dots u \dots x'_0 = E_2,$
\n $F_3 = x'_0vx_2 \dots x'_2vx_3 \dots u \dots u \dots x'_1vx_1 \dots u \dots x'_0,$
\n $F_4 = x'_0vx_3 \dots u \dots u \dots x'_1vx_2 \dots x'_2vx_1 \dots u \dots x'_0,$
\n $F_5 = x'_0vx_3 \dots u \dots x'_1vx_2 \dots x'_2vx_1 \dots u \dots u \dots x'_0.$
\n $F_6 = x'_0vx_1 \dots u \dots x'_1vx_2 \dots x'_2vx_3 \dots u \dots u \dots x'_0.$

Case 3. $id(v) = k \ge 4$

Subcase 3.1. E_2 is obtained by exchanging to exchangeable v -v segments, i.e.,

$$
E_1 = x'_0 \mathbf{v} x_1 \dots x'_l \mathbf{v} x_{l+1} \dots x'_{i-1} \mathbf{v} x_i \dots x'_j \mathbf{v} x_{j+1} \dots x'_{k-1} \mathbf{v} x_k \dots x'_0 = F_1,
$$

\n
$$
E_2 = x'_0 \mathbf{v} x_i \dots x'_j \mathbf{v} x_{l+1} \dots x'_{i-1} \mathbf{v} x_1 \dots x'_l \mathbf{v} x_{j+1} \dots x'_{k-1} \mathbf{v} x_k \dots x'_0 = F_2,
$$

\nwhere $1 \le l < i \le j \le k - 1$.

(3.1.1) $\{x'_0, x_k\}$ is an edge cut of *D*, and $V(\text{Eu}(D)) = \bigcup_{1}^{k-1} S_i$
The required cycle $C = F_1 F_2 \dots F_{2k-2} F_1$ is as follows.

$$
F_1 = x'_0wx_1 \dots x'_ivx_{l+1} \dots x'_{i-1}wx_i \dots x'_jwx_{j+1} \dots x'_{k-1}vx_k \dots x'_0 = E_1,
$$

\n
$$
F_2 = x'_0vx_i \dots x'_jwx_{l+1} \dots x'_{l-1}vx_1 \dots x'_lvx_{j+1} \dots x'_{k-1}vx_k \dots x'_0 = E_2,
$$

\n
$$
F_3 = x'_0wx_i \dots x'_jwx_1 \dots x'_1wx_2 \dots x'_2vx_3 \dots x'_{i-1}vx_{j+1} \dots x'_{k-1}vx_k \dots x'_0,
$$

\n
$$
F_4 = x'_0vx_2 \dots x'_2vx_i \dots x'_jvx_1 \dots x'_1vx_3 \dots x'_{i-1}vx_{j+1} \dots x'_{k-1}vx_k \dots x'_0,
$$

\n
$$
F_5 = x'_0wx_2 \dots x'_2wx_1 \dots x'_1wx_3 \dots x'_3wx_4 \dots x'_{k-1}vx_k \dots x'_0,
$$

\n
$$
F_6 = x'_0vx_3 \dots x'_3wx_1 \dots x'_2vx_1 \dots x'_1vx_4 \dots x'_{k-1}vx_k \dots x'_0,
$$

\n
$$
F_7 = x'_0wx_3 \dots x'_3wx_1 \dots x'_2vx_4 \dots x'_4vx_5 \dots x'_{k-1}vx_k \dots x'_0,
$$

\n
$$
\vdots
$$

\n
$$
F_{2i-1} = x'_0wx_{i-1} \dots x'_{i-1}vx_1 \dots x'_{i-2}vx_i \dots x'_iwx_{i+1} \dots x'_{i+1}vx_{i+2} \dots x'_{k-1}vx_k \dots x'_0,
$$

\n
$$
F_{2i} = x'_0vx_{i+1} \dots x'_{i+1}vx_{i-1} \dots x'_{i-1}vx_1 \dots x'_{i-2}vx_i \dots x'_{i}vx_{i+2} \dots x'_{k-1}vx_k \dots x'_0,
$$

$$
F_{2i+1} = x'_0 \mathbf{v} x_{i+1} \dots x'_{i+1} \mathbf{v} x_1 \dots x'_i \mathbf{v} x_{i+2} \dots x'_{i+2} \mathbf{v} x_{i+3} \dots x'_{k-1} \mathbf{v} x_k \dots x'_0,
$$

\n
$$
\vdots
$$

\n
$$
F_{2k-3} = x'_0 \mathbf{v} x_{k-1} \dots x'_{k-1} \mathbf{v} x_1 \dots x'_1 \mathbf{v} x_2 \dots x'_{k-2} \mathbf{v} x_k \dots x'_0,
$$

\n
$$
F_{2k-2} = x'_0 \mathbf{v} x_1 \dots x'_1 \mathbf{v} x_{k-1} \dots x'_{k-1} \mathbf{v} x_2 \dots x'_{k-2} \mathbf{v} x_k \dots x'_0.
$$

(3.1.2) $\{x'_0, x_k\}$ is not an edge cut of D, and $V(\text{Eu}(D)) = \bigcup_{i=1}^{k} S_i$

The sequence of F_i from F_1 to F_{2k-3} is the same as in (3.1.1). Because $\{x'_0, x_k\}$ is not an edge cut of D, there is a vertex $u_1 \in Q - v$ such that u_1 arises in both segments $vx_{k-1} \ldots x'_{k-2}v$ and $vx_k \ldots x'_0v$ in F_{2k-3} .

If u arises in the segment $vx_{k-1} \ldots x'_{k-1}v$, then we have

$$
F_{2k-3} = x'_0 \mathbf{v} x_{k-1} \dots u_1 \dots x'_{k-1} \mathbf{v} x_1 \dots x'_{k-2} \mathbf{v} x_k \dots u_1 \dots x'_0,
$$

\n
$$
F_{2k-2} = x'_0 \mathbf{v} x_k \dots u_1 \dots x'_{k-1} \mathbf{v} x_1 \dots x'_1 \mathbf{v} x_2 \dots x'_{k-2} \mathbf{v} x_{k-1} \dots u_1 \dots x'_0,
$$

\n
$$
F_{2k-1} = x'_0 \mathbf{v} x_k \dots u_1 \dots x'_{k-1} \mathbf{v} x_2 \dots x'_{k-2} \mathbf{v} x_1 \dots x'_1 \mathbf{v} x_{k-1} \dots u_1 \dots x'_0,
$$

\n
$$
F_{2k} = x'_0 \mathbf{v} x_1 \dots x'_1 \mathbf{v} x_{k-1} \dots u_1 \dots x'_{k-1} \mathbf{v} x_2 \dots x'_{k-2} \mathbf{v} x_k \dots u_1 \dots x'_0.
$$

If u_1 arises in the segment $vx_1 \ldots x'_1v$ or $vx_2 \ldots x'_{k-2}v$, we can obtain the required cycle $C = F_1 F_2 \dots F_{2k} F_1$ in a similar way as above.

Note that if $i = k - 1$, then

$$
F_{2k-3} = x'_0 v x_{k-2} \dots x'_{k-2} v x_1 \dots x'_{k-3} v x_{k-1} \dots x'_{k-1} v x_k \dots x'_0.
$$

If u_1 arises in the segment $x_{k-2} \dots x'_{k-2}$, then

$$
F_{2k-3} = x'_0 v x_{k-2} \dots u_1 \dots x'_{k-2} v x_1 \dots x'_{k-3} v x_{k-1} \dots x'_{k-1} v x_k \dots u_1 \dots x'_0,
$$

\n
$$
F_{2k-2} = x'_0 v x_k \dots u_1 \dots x'_{k-2} v x_1 \dots x'_{k-3} v x_{k-1} \dots x'_{k-1} v x_{k-2} \dots u_1 \dots x'_0,
$$

\n
$$
F_{2k-1} = x'_0 v x_k \dots u_1 \dots x'_{k-2} v x_{k-1} \dots x'_{k-1} v x_1 \dots x'_{k-3} v x_{k-2} \dots u_1 \dots x'_0,
$$

\n
$$
F_{2k} = x'_0 v x_1 \dots x'_{k-3} v x_{k-1} \dots x'_{k-1} v x_k \dots u_1 \dots x'_{k-2} v x_{k-2} \dots u_1 \dots x'_0.
$$

If u_1 arises in the segment $vx_1 \ldots x'_{k-3}v$ or $vx_{k-1} \ldots x'_{k-1}v$, we can obtain the required cycle $C = F_1 F_2 \dots F_{2k} F_1$ in a similar way as above.

Subcase 3.2. E_2 is obtained by exchanging two exchangeable v -u segments, i.e.,

$$
E_1 = x'_0 \mathbf{v} x_1 \dots x'_{l-1} \mathbf{v} x_l \dots u \dots x'_l \mathbf{v} x_{l+1} \dots x'_{i-1} \mathbf{v} x_l \dots x'_{j-1} \mathbf{v} x_j \dots u \dots
$$

\n
$$
x'_j \mathbf{v} x_{j+1} \dots x'_{k-1} \mathbf{v} x_k \dots x'_0 = F_1,
$$

\n
$$
E_2 = x'_0 \mathbf{v} x_i \dots x'_{j-1} \mathbf{v} x_j \dots u \dots x'_l \mathbf{v} x_{l+1} \dots x'_{i-1} \mathbf{v} x_1 \dots
$$

\n
$$
x'_{l-1} \mathbf{v} x_l \dots u \dots x'_j \mathbf{v} x_{j+1} \dots x'_{k-1} \mathbf{v} x_k \dots x'_0 = F_2,
$$

where $1 \le l \le i \le j \le k$.

(3.2.1) $\{x'_0, x_k\}$ is an edge cut, and $V(\text{Eu}(D)) = \bigcup_{1}^{k-1} S_i$

In a similar way as in Subcase $(3.1.1)$, we can form the sequence $F_2, F_3, \ldots, F_{2k-2}$ from F_2 such that

$$
F_{2k-2} = x'_0vx_1 \dots x'_1vx_i \dots x'_{j-1}vx_j \dots u \dots x'_i vx_{l+1} \dots
$$

$$
x'_{i-1}vx_2 \dots x'_{l-1}vx_l \dots u \dots x'_j vx_{j+1} \dots x'_{k-1}vx_k \dots x'_0.
$$

(3.3.2) $\{x'_0, x_k\}$ is not an edge cut, and $V(Eu(D)) = \bigcup_{i=1}^{k} S_i$

From F_2 we form the sequence $F_2, F_3, \ldots, F_{2k-4}$ such that

$$
F_{2k-4} = x'_0 \nu x_{k-1} \dots x'_{k-1} \nu x_i \dots x'_{j-1} \nu x_j \dots u \dots x'_l \nu x_{l+1} \dots
$$

$$
x'_{i-1} \nu x_1 \dots x'_{l-1} \nu x_l \dots u \dots x'_j \nu x_{j+1} \dots x'_{k-2} \nu x_k \dots x'_0,
$$

$$
F_{2k-3} = x'_0 \nu x_{k-1} \dots x'_{k-1} \nu x_1 \dots x'_{k-2} \nu x_k \dots x'_0.
$$

Because $\{x'_0, x_k\}$ is not an edge cut of D, then there exists a vertex $u_1 \in Q - v$ such that

$$
F_{2k-3} = x'_0 v x_{k-1} \ldots u_1 \ldots x'_{k-2} v x_k \ldots u_1 \ldots x'_0.
$$

Furthermore, the sequence F_{2k-3} , F_{2k-2} , ..., F_{2k} , F_1 is the same as in Subcase $(3.1.2).$

The proof is complete. \Box

Acknowledgments

The authors are greatly indebted to Prof. Li Wei-xuan and the referees for their helpful suggestions.

References

- [1] F.-J. Zhang and X.-F. Guo, Hamilton cycles in Euler tour graphs, J. Combin. Theory Ser. B $40(1)$ (1986) 1-8.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, (Elsevier, New York, 1976).
- [3] X.-G. Xia, The transformation of directed Euler graph, Acta Math. Appl. Sinica 73-77 (1984).