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In this paper we define the directed Euler tour graph of a directed Eulerian graph by
T-transformations, which was introduced by Xia Xin-guo in 1984, and prove that any edge in a
directed Euler tour graph is contained in a Hamilton cycle. ‘

Let D =(V, X) be a directed Eulerian multigraph without loops, and let E
be a directed Euler tour of D. For a vertex v of D with id(v) =od(v)=k=2,
E passes through- v exactly k times. So we may write E:
XQUXq . ..X1UX5...X3U. .. UXg ... X, Where xg, Xq, ..., X;_; are arcs going into
v and x4, . . ., X, are arcs going out of v. A triple (x;_;, v, x;) is called a transition
of E through v. A subsequence of E starting from v and ending at u (or v) which
contains at least one arc is called a v-u (or v-v) segment of E. Let S and S’ be
two arc-disjoint v-u segments of E such that (S, S’) is not a partition of E. We
call § and S’ to be exchangeable. A directed Euler tour F is said to be obtained
from E by a T-transformation at S and S’ if F is obtained from E by exchanging S
and S’. The directed Euler tour graph of D, denoted by Eu(D), is an undirected
simple graph defined as follows: The vertices of Eu(D) are directed Euler tours of
D, and two directed Euler tours E and F are adjacent in Eu(D) if they can be
obtained from each other by a T-transformation.

Xia Xin-guo [3] introduced the concept of the T-transformation of directed
Euler tours and proved that any directed Euler tour graph is connected. In the
present paper we prove that any directed Euler tour graph is edge-Hamiltonian as
stated in the following.

Theorem. Let D be a directed Euler graph having at least three directed Euler
tours. Then any edge of Eu(D) is contained in a Hamilton cycle of Eu(D).

Proof. For a cut vertex v of D with id(V) =2 (see Fig. 1(a)), there are exactly
two transitions (x, v, x,) and (xi, v, x,) of E at v. Let D' be the graph obtained
from D by replacing v by a pair of vertices v’ and v” (see Fig. 1(b)). It is easy to
see that Eu(D) =Eu(D’). Hence we may assume that D has no cut vertex v with
id(v) =2.

Let O be a subset of the vertex set of D such that v € Q if and only if id(v) = 2.
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(a) (b)
Fig. 1.

Let A be the sum of indegrees of vertices in Q. The proof is by induction on A.
Since D has at least 3 Euler tours, we have A =4.

If A =4, then D is one of the graphs shown in Fig. 2.
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Fig. 2:

In case (a), |V(Eu(D)|=2. In case (b), D has precisely 6 Euler tours, and it is
easy to check that Eu(D) = K. The conclusion is evident.

Now suppose that the conclusion is true for 4 <A <m, where m is an integer.
Let A=m + 1. Take any edge E,E, of Eu(D), E,, E, € V(Eu(D)). By definition,
E, is obtained from E; by a T-transformation, and vice versa. Two types of
T-transformation are considered.

Typé I. The T-transformation is carried out by exchanging two exchangeable v-v
segments. We have

Ei=Xuxp...X0%;. .. XUXfp. . . XQUXy . . . X,
and
E,=XUxp. . . XUX4. .. XUXp. .. XUXp . .. Xp

We can relabel x, or x, as x,, and relabel the other arcs with v as its head or tail
by x4, X1, X2, X3, . . . , X; in accordance with the order arising in E,. Because the
T-transformation between E; and E, can be regarded as exchanging the positions
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of ux,...x.v and vx, . . . x;v, we may also take x, or x, as xo. Then we rewrite
E, and E, as follows.

[4 [

Ei=XoUXy...X[UX141 -« - XiqUX;e o e XjUXjq o o« Xj1UXg . - - Xoy
E — ! ! ! v ' ’ !
25 XUX; - . . XjUXppq - -« X;qUXy - . . X UXjyg .« - Xe—1UXg . . . Xy

where 1<siI<is<j<k-—-1.

Type II. The T-transformation is carried out by exchanging two exchangeable
v-u (v #u) segments. As in Type I, we may label it as

E,=XqUX1 ... X]_qUXpeo U .. X[UXp4q .. X[ UK. o Xj_qUX;
ce .. XjUXjyq .. XpqUXg . . . Xg,

Ey=XqUX;. . . Xj_qUXj. .. U...X[UXp4q ... X;—1UXy. ..
Xj—UXp. o U X[UXjyq oo o X1 Uk« - . X,

where 1</ <i=<j=<k. Because the T-transformation between E, and E, can be
regarded as exchanging the positions of these two exchangeable u-v segments, we
may also take the arc going into u as x,.

In both types we call v (or u) as a reference vertex and x, as a reference arc.

Denote by S; the set of directed Euler tour of D containing the transition
(x0, v, x;). Then it is obvious that §,, S,, . . ., form a partition of the vertex set of
Eu(D). Let L; be the subgraph of Eu(D) induced by §;. Since L, is isomorphic to
the directed Euler tour graph of the directed graph which is obtained from D by
replacing v by two vertices v’ and v” such that x4 and x; are incident to v’ and the
other arcs incident to v in D are incident to v". By the induction hypothesis, L; is
edge-Hamiltonian or isomorphic to K; (where |S;| = 1) or K, (where |S;| =2).

Now we are going to find a cycle C in Eu(D) satisfying the following
conditions.

(1) C contains E,E,;

(2) For each i, if |S;|>1, then C contains exactly one edge 4; in L;, and if

|S;] =1, then C contains exactly the vertex of S;.

If there exists such a cycle C in Eu(D), we denote by H; a Hamilton cycle
containing the edge a; in L; (if |S;| <2, let H,=@), then (H{UH,U---UH,
U---)AC is a Hamilton cycle containing edge E,E, of Eu(D). Thereby, the
theorem is proved. 0O

We consider the following three cases.

Case 1. id(v) =2.
E, can only be obtained from E; by exchanging two exchangeable v-u (v # u)
segments and V(Eu(D)) =S, U S,.
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Subcase 1.1. id(u) =3

In this case, u occurs more than once in a v-v segment of E,. We can choose a
suitable reference arc such that

Ei=Xxouxy...U...U...X1UX3... U...Xp
Then the required cycle C = FEEEF,F is one of the following.
(1) F=xwxy...u...u...x9%3...u...x0=F,,
E=xqux,... 8...X10%...U...U...xX0=E,,
E=xux;...U...U...X10X1...U...X0,
Ei=xqUXxy...U...X10%...0.. . U...XQ
2 E=xouxy...u...u...x0x3...u...x0=E;,
E=xux,...u... u...xvxy...u...x5=E,,
E=xxs...u...XU%;...U...U...Xp
F=xux;...8...X10%...8...U...X
Subcase 1.2. id(u)=2

Since D has at least three directed Euler tours, at least one of L, and L, has
more than one vertex.

(1.2.1) If, say, |S;| =1, then |S|=2

Let E, be the only directed Euler tour of S,. Then for all u;, 4; € Q — v there
are no exchangeable u;~y; segments in E;. Consequently, we have id(u;) =2,
id(x;) =2, and there exists a vertex u; € O — v —u. We may choose a suitable
reference arc such that E;=xqux,...u...u;...X0% ... Uy ... U...Xo The
required cycle C = FEEF is as follows.

E_:"x(,)vxl...u-..ul...x,vxz...ul,..u__.x{):El’
BE=xoux;...Ug...0...85...X70%y...u...x=E,,

E=xqux...U1...X10% ... U...Uy... U...X{

(1.2.2) Suppose that |S;| =2, |S,]|=2

Then there exist two exchangeable u;;-u;, segments in E; and two exchangeable
u-uj; segments in E,, where u;,, u;;, u;; and u;, are in Q —v —u.

Let T;, T; be the v-u segments.in E;; and T;, T, be the u-v segments in E;. If T;
and T; (or T, and T;) have an internal vertex u; € Q — v — u in common, then the
required cycle can be formed by exchanging v-u segments and w;-u (or u-u;)
segments alternately. So we can assume that neither T; and T; nor 7, and T, have
an internal vertex in common. We now consider two cases.

(1.2.2.1) For u;, u;€ Q — v — u, there are two exchangeable u;-u; segments in E,
(or E,). We make the numbers of u;’s, u’s in each of 7;, I, T; and T, as a
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quadruple (i,, i, i3, is), where i, + i, + i; + i, = 4, which determines the distribu-
tion of u;’s and u;’s in E,. Since any one of u and v can be taken as a reference
vertex and any arc going into v or u can be taken as a reference arc, only one of
the four quadruples (iy, iy, is, is), (is, i3, is, i1), (i3, is, i1, i2) and (is, iy, @5, i3)
needs to be considered. Moreover, since we can take F, = E, and F, = E,, only
one of the two quadruples (iy, i,, i3, is) and (i3, i,, i), is) needs to be considered.
Therefore, we need to consider the following eight cases in total.

1. (1,1, 1,1), 2. (1,1,2,0), 3. (1,2,1,0), 4. (2,2,0,0),

5. (2,0,2,0), 6. (3,1,0,0), 7. 3,0,1,0), 8. (4,0,0,0).
For cases 1,2, 5, and 7 one can see that T, and T; or T, and T, have an internal
vertex in common, which is contrary to our assumption. For Cases 4, 6, and 8, we

shall form the cycle C from E, by exchanging v-u segments and u;-u; (u;-u;)
segments alternately. For the Case 3, the required cycle C is as follows.

E=X(,)vx1...ui...u...uj...u,-...x;vxz...uj...u...X6=E1,
F‘2=x6UX2...uj...u...uj...ui...x’lvxlu..ui...u...X(’):Ez,
F=xoUxz... Wi ... . X1UXq. 0. 8. .. U...U...U...Xg,

Fo=XqUXx1... 8. . Xq0%2... 0. . U U . Wj... U... X

(1.2.2.2) For any vertices u;, u;€ Q —v —u, there are no exchangeable u;-u;
segments in both E;, and E,. Then id(x;)=id(x;)=2, and there are two
exchangeable u-u; (u;-u) segments in E,, and there are two exchangeable u-u;
(u;j-u) segments in E, at the same time.

Since neither 7; and T; nor 7, and T, have an internal vertex in common, we
have

E1=x6vxl..oui.o.u...ui.-.x;.vxZQo-u---x({),
E=xquxs...U...U...X10% ... U...U...X{
Then u; may appear in E, in the following manners.
(1) E=xeuxp...u...0... 0. . . X0X ... U...U...U...Xo

) E,=xquxy...U... U...X0U% .. U . U .. U...U... X,

’

(B) E=xeuxz...Uj...U...U...X30% .. . U...U...U...Xq,
4) E=xuxy...W...U...U...U.. XVX ... U...U...X

It is not difficult to see that for each of Cases 1-4, there are exchangeable Ui-u;
(u;-u;) segments in E;, contradicting the assumption of this subcase.

Case 2. id(v)=3

Subcase 2.1. E, is obtained from E, by exchanging two exchangeable v-v
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segments, i.e.,
E =XqUx1...X30%5 . . . X5UX5. . . X,

E,=xqux,...XUX ... X1UX5. .. X,

(2.1.1) The vertex v is a cut vertex

We can take a suitable reference arc such that {xg, x3} is an edge cut and
V(Eu(D)) = $,US,. Suppose {x,, x;} and {x,, x,} are edge cuts of D too. Note
that |V(Eu(D))|=3. Then there is a v-v segment in which there exist two
exchangeable u;-u; segments (;, u; € Q — v — u) and in which v only occurs as the
end vertex of the v-v segment. Obviously, the required cycle C=F, ... F,F can
be formed by exchanging v-v segments and u;-u; segments alternately. Now we
suppose that {x,, x;} and {x,, x,} are not edge cuts of D. Then there is a vertex
u, € Q — V arising in the segments vx; . . . x;v and vx, . . . x;v. The required cycle
C=F...FF can be formed by exchanging v-v segments and u, — v segments
alternately.

(2.1.2) The vertex v is not a cut vertex and V(Eu(D))=8§,US,US;

Then there exists a vertex u; € Q-v which arises in both the segments
vX;...x3v and vx;...xqu. If each v-v segment in E; contains the vertex u,,
then the required cycle C=EE . .. KF is as follows.

Fo=XUXgeoeligee X1UX0 .. . Up. .. X5UX5. .. Uy...Xo=E;,

E=XUXy...U;..7X50%1...U;...X10X3...U;...X=E,,

E=XUXz.e llgee . XUX3 ... Uy. .. X530 ... Up...Xg,

E,=X0UX3...U5...X20%3 ... Uy...X1UX1...U;...Xg

FE=XQUX3.oollg.cXUX ... Uy...X50X0. .. Uy...Xq,

]

Fo=X{UX1...U3...X50%3... Uy...X1UX2...U;...Xg

If there is a v-v segment, say vx, . . . x,vu, which does not contain the vertex u,,
then there exists a vertex u,e€ Q — v —u, which arises in both the segments
vX,...x3v and vx;...x;v. As before we consider the possible distribution of
u,’s and u,’s in E;. Note that the T-transformation between E; and E, can be
regarded as exchanging any two exchangeable v-v segments in E;, and we can put
F,=E,, E,=E,. So we can choose a suitable reference arc such that E; and the
required cycle C=FE ... FF are as follows.

F‘l=x6vx1...u2-.-ulooax’lvxz...uz...x5vx3...u1-..x6=E1,

P‘2=x(’)vx20oou20.ox’2vx1..-uz.o.uloocx,lvxso.-ulo--x(’):&,
E=x{Uxs...lp...8;...X10Xy...Uy...X50%3...8y...XQ,

Fe=x4Uxs...U;...X1U%...Uz...X0%...Uy...Uy...Xp
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’

FE=XUX3...lpee . X1UX2 ... Uy .. . XoUXy .o lp. .. Uy...Xg,

Fa=XouUx;...Up.c.X30X3 ... Uy...X10X2. .. Up...ly...X.

Subcase 2.2. E, is obtained from E; by exchanging two exchangeable v-u
segments.

If id(u) = 2, since we can take u as a reference vertex, it can be dealt with in
the same way as in Case 1. If id(u) =4, it shall be considered later. Now we
assume id(u) = 3.

(2.2.1) The vertices u and v arise in E, alternately
By choosing a suitable reference vertex and a suitable reference arc, the
required cycle C = EF, . . . FF is as follows.

FE=x{Uxy...0...X10%...0...X0x3...uUu...xo=E;,

E=XUXy...0...X10X...8...X50%3...U...xo=E,,

!

E=xqUxs...U...X0%5...8...X1UX ... U...Xg,

Fo=Xx0Ux3...U0...X50%5...8...XUX; ... U...X0

Fg=x(’)vx3000u.--xivxl...u-..xévxz...u...x(l),

F=xqux,...u.. . X{0X3...8...X30%, ... U...X]

(2.2.2) Suppose that u does not arise in a v-v segment

We can choose a suitable reference vertex and a reference arc such that u
does not arise in the segment UX, . .. X3V and E, =
XoUXy...U...U...X7U0X5...X3UX3...U...Xo. Then the required cycle C=
EE. .. FF can be one of the following.

(1) FK=xwxy...u...U...XUx...X30%5...4...x3=E;,
E=xqux;...U... U...X30%...X30%;...8...x0=E,,
E=XUX3...U...X10%5 ... X50%y ... U...U...XQ
Fo=XqUxs...XUX3. . . U.. . X0X; ... 0. .. U...Xp
175=x(',vx2...x;vx3...u...u...x{vxl...u...x{,,

F=x0ux;...0...X30X%2...X50%3...U...U...Xg

2) Fl=x(,vx1...u...u...x{vxz...x’zvx‘_,,...u...x(’,=E1,
E=xqux,...X0%3. .. U... U... X105 ... 8...X0=E,,
E=xqux;...X0%3 ... U... XU, ... U...U...Xg
Fo=xquxs...8...X0%5 ... X508 ... U...U...Xg
FE=xquxy...u...u...X10X5...X0% ... 8...Xp,

Fs=xqUX;...U...X1UX3...X50X3...U...U...X,
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B) E=xquxy...Uu...u...X{0%...X0%...8...%=E,
E=xUx;...0...X10%...X30%1...8...U...Xxg=E,,
E=xvxs...U...0...Xj0X5 ... X3UX; ... U. .. X,
Fo=xqux,...X3UX5...U...U...X10X%;... U...X
FE=x0uxs...X30%3...8...X10%...U...U...Xq,

Fo=xqux,...u...X10%3...X5CX3... U...U...X,

4 F=xqUxq...u...u...X{U%...X50%3...4...%=E,
E=XUXy...X5UX3.. . Uee e X3UX1...U... U...Xo=E,,
F§=x6vx2...xévx;...u...u...x’lvxl...u...xo, |
E=xux;...U...U...X10%...X50%; ... U...Xq,
FE=XxUXxs...U...X1UX5...X0% ... U... U...Xq

F=XUX;...8...X10%2 ... X503 ... U...U...X

Case 3. idd(v)=k=4

Subcase 3.1. E, is obtained by exchanging to exchangeable v-v segments, i.e.,

where 1=<il<isj=<k-1.

(3.1.1) {x, x;} is an edge cut of D, and V(Eu(D))= U §;
The required cycle C = FRE ... B _,F is as follows.

] !
F=X{UXy...X0X 1 ... X[ 1U%; 0 . . X0Xj4q - . . XoqUX - - - X0 = E,
’
E =X(’)vxi .o x;vx'+1 .o .x;._lvxl . vax,-.n e x;‘_lvxk .. X0F Ez,
! ’ ’ [ ! [ '
FE=X0UX; .. XjUX1.. . XUX2 . . . XoUX3 . .« XiqUXjy1 .« - Xp1UXg - - - X0y
— ! i ' ’ ’ ’ '
Fo=xqux5. .. XoUX;. . . XjUX1 00 XqUX3 00 o X qUXjyg - - « X1 UXg - - - X0y
F=X{xy...X30%; .. . XjUX3 . . . X3UXy. . . Xj_1UXg - - - X0
’ [ [4 ! ? !
Fo=XqUX3...X30%3 ... X20X . . . X1UX4. . . X UXg . . - X0,
E=X{UX3...X50%; ... X30Xs . . . XJUX5 . . . Xp_1UXg - - - X0,

Fa=X{UXs...XiU%3... X50X; . . . X5UX5 . . . X4 Uk - - - X0»

—_ ! ’ ’ ’ ’ [} '
Ei 1=XQUXj_3.0 X qUX1 ... X; 2UX; 0  XUX;01 .- Xig1VUXig2 o o« XgqUXg . - . X0,

— ! ’ ’ ’ ’ ’ ’
Fz,- =XoUXi41 e+ « Xig1Uj—g oo e XjugqUXy .« . X; 2UX; . o . XiUXjy2 - o« X qUXg . - - X
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—_t ’ ’ ' ' ’
F2i+1 SXoUX 410 o Xg41UX ¢ o e XUX; 00 . . . Xj32UX ;43 o« X qUXg . . . X,

— ! ’ ’ ' '
By 3=XqUXg—1 0 X3—UXy ... XUX5 . . . X 2UXg . . . X0,

Bora =XQUX1 .. . X1UXg—g e e X3 qUX . . . Xj_oUXg . . . X

(3.1.2) {x¢, x;} is not an edge cut of D, and V(Eu(D))=J §;

The sequence of F, from F, to E; 5 is the same as in (3.1.1). Because {xg, x,} is
not an edge cut of D, there is a vertex u, € Q — v such that u,; arises in both
segments UX;_; . . . XU and vxy . . . xov in Fy_s.

If u arises in the segment vx;_, . . . X;_,v, then we have

!
By 3=XUXp—1e0clly.. . Xj_qUXq ... X3 oUXk...Uy... X0,

!
B =XUXp e« o Uy oo e X qUXg oo e XUX0 o o o XjoUXp_1 . . Uy . . . Xg,

'
F2k—1 =XoUXr .. Up ... x;c_lvx2 . e x;lc_zvxl .o .x'lvxk_l eoolly ... X('),

’

B =XqUXq ... X{1UXj—geeolgee  Xgeq¥Xo . o . XpoUXpg . . . Uy . . . X0,

If u, arises in the segment vx, ...xv Or UX,...X;_,U, We can obtain the
required cycle C=FFE . .. EF in a similar way as above.
Note that if i =k — 1, then

B 3= X§UXg—3 . . XjpUXq1 - . . Xfe_3VXg—q - - - XpmqUXg - . . X0
If u, arises in the segment x;_, . . . X;_,, then

— ! ’ ’ ’
F2k_3 =XVXg—2cce 1. . - Xp2UX1 .. . Xp3UXp—1-.. Xpe1UXes.ly ... X,

— ! ' ’ ’
By o=XqUxp .. .U .. X UKy e e XWXy e X UXp—2 - . - Ug . . . X,

— ! ’ ’ ’

F2k..1 Z=XUX oo o Upee e Xp2UXp 1. .. X3 1UX1 e e XpaUXp_o...U;... X,
— ! ’ ’ ’ ’

E,=x0Ux{...Xp_3UX%—-1-. cXpg—UXg oo lly .. . Xp_oUXg_2...U1...Xp.

If u, arises in the segment vx, ... X;_3V OF UX;_;...X;_;U, We can obtain the
required cycle C = FF, . .. EF in a similar way as above.

Subcase 3.2. E, is obtained by exchanging two exchangeable v-u segments, i.e.,
Ei=XqUXy... X1 qUX;.o M. . . XUXppy o X[ UKo o o XjqUXj o U ..
’ ! 13
XiUXjp1 - -« Xp—qUXg . . . X0 = Fi,
E,=XqUX;. .. X[ qUXj... U...X[UX4y ... X[ 1UXq. ..
X qUXp. o Ue . X[ UXjpp oo XU - . X0= D5,

where 1=siI<isj<k.
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(3.2.1) {x{, xz} is an edge cut, and V(Eu(D)) =} §;
In a similar way as in Subcase (3.1.1), we can form the sequence
E, F, ..., BE;_, from FE, such that

By 2=XqUX1...X1UX%; 00 . Xj_qUXjo oo U. .. X[UX 141 - - -

Xi VX2 . X7 qUXp. o U, . XjUXjq . . X UXk o . . X

(3.3.2) {xg, xx} is not an edge cut, and V(Eu(D)) =)} S;
From F, we form the sequence K, E, . .., F;_, such that
—_ ! ' ’ !
B a=XoUXg_1 - . X qUX; oo 0 X;qUXj 0. . . X UX 47 - .
XiAUXy e Xp_qUX oo 8. . XjUXj4q . . Xp—2UXg . . . X,
14 14 [ !
F2k_3 =XoUXg—1 . - X 1UX1 ... Xp oUXg ... Xg.

Because {x,, x;} is not an edge cut of D, then there exists a vertex u; € Q — v
such that

’

— ’
B3 =XgUXg—1.. .Uy o X oUXp. .. Up...Xg

Furthermore, the sequénce Ey_3, FBg_s, ..., E, F, is the same as in Subcase
(3.1.2).

The proof is complete. [
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