HAMILTON CYCLES IN DIRECTED EULER TOUR GRAPHS

Fu-ji ZHANG and Xiao-feng GUO

Department of Mathematics, Xinjiang University, Urumchi, Xinjiang, China

Received 12 November 1984 Revised 24 April 1986

In this paper we define the directed Euler tour graph of a directed Eulerian graph by *T*-transformations, which was introduced by Xia Xin-guo in 1984, and prove that any edge in a directed Euler tour graph is contained in a Hamilton cycle.

Xia Xin-guo [3] introduced the concept of the *T*-transformation of directed Euler tours and proved that any directed Euler tour graph is connected. In the present paper we prove that any directed Euler tour graph is edge-Hamiltonian as stated in the following.

Theorem. Let D be a directed Euler graph having at least three directed Euler tours. Then any edge of Eu(D) is contained in a Hamilton cycle of Eu(D).

Proof. For a cut vertex v of D with id(V) = 2 (see Fig. 1(a)), there are exactly two transitions (x'_0, v, x_1) and (x'_1, v, x_2) of E at v. Let D' be the graph obtained from D by replacing v by a pair of vertices v' and v'' (see Fig. 1(b)). It is easy to see that $Eu(D) \cong Eu(D')$. Hence we may assume that D has no cut vertex v with id(v) = 2.

Let Q be a subset of the vertex set of D such that $v \in Q$ if and only if $id(v) \ge 2$.

0012-365X/87/\$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

Let λ be the sum of indegrees of vertices in Q. The proof is by induction on λ . Since D has at least 3 Euler tours, we have $\lambda \ge 4$.

If $\lambda = 4$, then D is one of the graphs shown in Fig. 2.

Fig. 2.

In case (a), |V(Eu(D)| = 2. In case (b), D has precisely 6 Euler tours, and it is easy to check that $\text{Eu}(D) = K_6$. The conclusion is evident.

Now suppose that the conclusion is true for $4 \le \lambda \le m$, where m is an integer. Let $\lambda = m + 1$. Take any edge E_1E_2 of Eu(D), E_1 , $E_2 \in V(\text{Eu}(D))$. By definition, E_2 is obtained from E_1 by a T-transformation, and vice versa. Two types of T-transformation are considered.

Type I. The T-transformation is carried out by exchanging two exchangeable v-v segments. We have

$$E_1 = x'_a v x_b \dots x'_c v x_d \dots x'_e v x_f \dots x'_g v x_h \dots x'_a$$

and

$$E_2 = x'_a v x_f \dots x'_g v x_d \dots x'_e v x_b \dots x'_c v x_h \dots x'_a.$$

We can relabel x'_a or x'_e as x'_0 , and relabel the other arcs with v as its head or tail by $x_1, x'_1, x_2, x'_2, \ldots, x_k$ in accordance with the order arising in E_1 . Because the T-transformation between E_1 and E_2 can be regarded as exchanging the positions

of $vx_d ldots x'_e v$ and $vx_h ldots x'_a v$, we may also take x'_c or x'_g as x'_0 . Then we rewrite E_1 and E_2 as follows.

$$E_1 = x_0' v x_1 \dots x_l' v x_{l+1} \dots x_{i-1}' v x_i \dots x_j' v x_{j+1} \dots x_{k-1}' v x_k \dots x_0',$$

$$E_2 = x_0' v x_i \dots x_j' v x_{l+1} \dots x_{i-1}' v x_1 \dots x_l' v x_{j+1} \dots x_{k-1}' v x_k \dots x_0',$$
where $1 \le l < i \le j \le k-1$.

Type II. The T-transformation is carried out by exchanging two exchangeable v-u ($v \neq u$) segments. As in Type I, we may label it as

$$E_{1} = x'_{0}vx_{1} \dots x'_{l-1}vx_{l} \dots u \dots x'_{l}vx_{l+1} \dots x'_{i-1}vx_{i} \dots x'_{j-1}vx_{j}$$

$$\dots u \dots x'_{j}vx_{j+1} \dots x'_{k-1}vx_{k} \dots x'_{0},$$

$$E_{2} = x'_{0}vx_{i} \dots x'_{j-1}vx_{j} \dots u \dots x'_{l}vx_{l+1} \dots x'_{i-1}vx_{1} \dots$$

$$x'_{l-1}vx_{l} \dots u \dots x'_{j}vx_{i+1} \dots x'_{k-1}vx_{k} \dots x'_{0},$$

where $1 \le l < i \le j \le k$. Because the *T*-transformation between E_1 and E_2 can be regarded as exchanging the positions of these two exchangeable u-v segments, we may also take the arc going into u as x_0' .

In both types we call v (or u) as a reference vertex and x'_0 as a reference arc.

Denote by S_i the set of directed Euler tour of D containing the transition (x'_0, v, x_i) . Then it is obvious that S_1, S_2, \ldots , form a partition of the vertex set of Eu(D). Let L_i be the subgraph of Eu(D) induced by S_i . Since L_i is isomorphic to the directed Euler tour graph of the directed graph which is obtained from D by replacing v by two vertices v' and v'' such that x'_0 and x_i are incident to v' and the other arcs incident to v in D are incident to v''. By the induction hypothesis, L_i is edge-Hamiltonian or isomorphic to K_1 (where $|S_i| = 1$) or K_2 (where $|S_i| = 2$).

Now we are going to find a cycle C in Eu(D) satisfying the following conditions.

- (1) C contains E_1E_2 ;
- (2) For each i, if $|S_i| > 1$, then C contains exactly one edge a_i in L_i , and if $|S_i| = 1$, then C contains exactly the vertex of S_i .

If there exists such a cycle C in $\operatorname{Eu}(D)$, we denote by H_i a Hamilton cycle containing the edge a_i in L_i (if $|S_i| \le 2$, let $H_i = \emptyset$), then $(H_1 \cup H_2 \cup \cdots \cup H_j \cup \cdots) \Delta C$ is a Hamilton cycle containing edge $E_1 E_2$ of $\operatorname{Eu}(D)$. Thereby, the theorem is proved. \square

We consider the following three cases.

Case 1.
$$id(v) = 2$$
.

 E_2 can only be obtained from E_1 by exchanging two exchangeable v-u ($v \neq u$) segments and $V(\text{Eu}(D)) = S_1 \cup S_2$.

Subcase 1.1. $id(u) \ge 3$

In this case, u occurs more than once in a v-v segment of E_1 . We can choose a suitable reference arc such that

$$E_1 = x_0'vx_1 \ldots u \ldots u \ldots x_1'vx_2 \ldots u \ldots x_0'$$

Then the required cycle $C = F_1 F_2 F_3 F_4 F_1$ is one of the following.

(1)
$$F_1 = x'_0 v x_1 \dots u \dots u \dots x'_1 v x_2 \dots u \dots x'_0 = E_1,$$

 $F_2 = x'_0 v x_2 \dots u \dots x'_1 v x_1 \dots u \dots u \dots x'_0 = E_2,$
 $F_3 = x'_0 v x_2 \dots u \dots u \dots x'_1 v x_1 \dots u \dots x'_0,$
 $F_4 = x'_0 v x_1 \dots u \dots x'_1 v x_2 \dots u \dots u \dots x'_0,$
(2) $F_1 = x'_0 v x_1 \dots u \dots u \dots x'_1 v x_2 \dots u \dots x'_0 = E_1,$
 $F_2 = x'_0 v x_2 \dots u \dots u \dots x'_1 v x_1 \dots u \dots x'_0 = E_2,$
 $F_3 = x'_0 v x_2 \dots u \dots x'_1 v x_1 \dots u \dots x'_0,$

$$F_4 = x_0' v x_1 \dots u \dots x_1' v x_2 \dots \underline{u \dots u} \dots x_0'.$$

Subcase 1.2. id(u) = 2

Since D has at least three directed Euler tours, at least one of L_1 and L_2 has more than one vertex.

(1.2.1) If, say, $|S_1| = 1$, then $|S_2| \ge 2$

Let E_1 be the only directed Euler tour of S_1 . Then for all $u_i, u_j \in Q - v$ there are no exchangeable $u_i - u_j$ segments in E_1 . Consequently, we have $\mathrm{id}(u_i) = 2$, $\mathrm{id}(u_j) = 2$, and there exists a vertex $u_1 \in Q - v - u$. We may choose a suitable reference arc such that $E_1 = x_0'vx_1 \dots u_1 \dots x_1'vx_2 \dots u_1 \dots u_1 \dots x_0$. The required cycle $C = F_1F_2F_3F_1$ is as follows.

$$F_{1} = x'_{0}vx_{1} \dots u_{1} \dots x'_{1}vx_{2} \dots u_{1} \dots u_{1} \dots x'_{0} = E_{1},$$

$$F_{2} = x'_{0}vx_{2} \dots u_{1} \dots u_{1} \dots x'_{1}vx_{1} \dots u_{1} \dots x'_{0} = E_{2},$$

$$F_{3} = x'_{0}vx_{2} \dots u_{1} \dots x'_{1}vx_{1} \dots u_{1} \dots u_{1} \dots x'_{0}.$$

(1.2.2) Suppose that $|S_1| \ge 2$, $|S_2| \ge 2$

Then there exist two exchangeable u_{i1} - u_{j1} segments in E_1 and two exchangeable u_{i2} - u_{j2} segments in E_2 , where u_{i1} , u_{i2} , u_{i1} and u_{i2} are in Q - v - u.

Let T_1 , T_3 be the v-u segments in E_1 ; and T_2 , T_4 be the u-v segments in E_1 . If T_1 and T_3 (or T_2 and T_4) have an internal vertex $u_i \in Q - v - u$ in common, then the required cycle can be formed by exchanging v-u segments and u_i -u (or u- u_i) segments alternately. So we can assume that neither T_1 and T_3 nor T_2 and T_4 have an internal vertex in common. We now consider two cases.

(1.2.2.1) For u_i , $u_j \in Q - v - u$, there are two exchangeable u_i - u_j segments in E_1 (or E_2). We make the numbers of u_i 's, u_j 's in each of T_1 , T_2 , T_3 and T_4 as a

quadruple (i_1, i_2, i_3, i_4) , where $i_1 + i_2 + i_3 + i_4 = 4$, which determines the distribution of u_i 's and u_j 's in E_1 . Since any one of u and v can be taken as a reference vertex and any arc going into v or u can be taken as a reference arc, only one of the four quadruples (i_1, i_2, i_3, i_4) , (i_2, i_3, i_4, i_1) , (i_3, i_4, i_1, i_2) and (i_4, i_1, i_2, i_3) needs to be considered. Moreover, since we can take $F_1 = E_2$ and $F_2 = E_1$, only one of the two quadruples (i_1, i_2, i_3, i_4) and (i_3, i_2, i_1, i_4) needs to be considered. Therefore, we need to consider the following eight cases in total.

1.
$$(1, 1, 1, 1)$$
, 2. $(1, 1, 2, 0)$, 3. $(1, 2, 1, 0)$, 4. $(2, 2, 0, 0)$,

For cases 1, 2, 5, and 7 one can see that T_1 and T_3 or T_2 and T_4 have an internal vertex in common, which is contrary to our assumption. For Cases 4, 6, and 8, we shall form the cycle C from E_1 by exchanging v-u segments and u_i - u_j (u_j - u_i) segments alternately. For the Case 3, the required cycle C is as follows.

$$F_{1} = x'_{0}vx_{1} \dots u_{i} \dots u_{i} \dots u_{j} \dots u_{i} \dots x'_{1}vx_{2} \dots u_{j} \dots u \dots x'_{0} = E_{1},$$

$$F_{2} = x'_{0}vx_{2} \dots u_{j} \dots u_{i} \dots u_{j} \dots u_{i} \dots x'_{1}vx_{1} \dots u_{i} \dots u_{i} \dots x'_{0} = E_{2},$$

$$F_{3} = x'_{0}vx_{2} \dots u_{j} \dots u_{i} \dots x'_{1}vx_{1} \dots u_{i} \dots u_{i} \dots u_{j} \dots u_{i} \dots x'_{0},$$

$$F_{4} = x'_{0}vx_{1} \dots u_{i} \dots x'_{1}vx_{2} \dots u_{i} \dots u_{i} \dots u_{i} \dots u_{i} \dots u_{i} \dots x'_{0}.$$

(1.2.2.2) For any vertices u_i , $u_j \in Q - v - u$, there are no exchangeable $u_i - u_j$ segments in both E_1 and E_2 . Then $id(u_i) = id(u_j) = 2$, and there are two exchangeable $u - u_i$ ($u_i - u$) segments in E_1 , and there are two exchangeable $u - u_j$ ($u_j - u$) segments in E_2 at the same time.

Since neither T_1 and T_3 nor T_2 and T_4 have an internal vertex in common, we have

$$E_1 = x_0' v x_1 \dots u_i \dots u_i \dots x_1' v x_2 \dots u \dots x_0',$$

$$E_2 = x_0' v x_2 \dots u \dots u_i \dots x_1' v x_1 \dots u_i \dots u \dots x_0'.$$

Then u_i may appear in E_2 in the following manners.

(1)
$$E_2 = x'_0 v x_2 \ldots u \ldots u_j \ldots u_i \ldots x'_1 v x_1 \ldots u_i \ldots u_i \ldots u_j \ldots x'_0$$

(2)
$$E_2 = x_0' v x_2 \dots u \dots u_i \dots x_1' v x_1 \dots u_i \dots u_i \dots u_i \dots u_i \dots x_0'$$

(3)
$$E_2 = x_0' v x_2 \dots u_i \dots u_i \dots x_1' v x_1 \dots u_i \dots u_i \dots x_0'$$

(4)
$$E_2 = x'_0 v x_2 \dots u_j \dots u_j \dots u_i \dots x'_1 v x_1 \dots u_i \dots u_i \dots x'_0$$

It is not difficult to see that for each of Cases 1-4, there are exchangeable u_i - u_j (u_j - u_i) segments in E_1 , contradicting the assumption of this subcase.

Case 2.
$$id(v) = 3$$

Subcase 2.1. E_2 is obtained from E_1 by exchanging two exchangeable v-v

segments, i.e.,

$$E_1 = x_0' v x_1 \dots x_1' v x_2 \dots x_2' v x_3 \dots x_0',$$

$$E_2 = x_0' v x_2 \dots x_2' v x_1 \dots x_1' v x_3 \dots x_0'.$$

(2.1.1) The vertex v is a cut vertex

We can take a suitable reference arc such that $\{x'_0, x_3\}$ is an edge cut and $V(\operatorname{Eu}(D)) = S_1 \cup S_2$. Suppose $\{x_1, x'_1\}$ and $\{x_2, x'_2\}$ are edge cuts of D too. Note that $|V(\operatorname{Eu}(D))| \ge 3$. Then there is a v-v segment in which there exist two exchangeable u_i - u_j segments $(u_i, u_j \in Q - v - u)$ and in which v only occurs as the end vertex of the v-v segment. Obviously, the required cycle $C = F_1 \dots F_4 F_1$ can be formed by exchanging v-v segments and u_i - u_j segments alternately. Now we suppose that $\{x_1, x'_1\}$ and $\{x_2, x'_2\}$ are not edge cuts of D. Then there is a vertex $u_1 \in Q - V$ arising in the segments $vx_1 \dots x'_1 v$ and $vx_2 \dots x'_2 v$. The required cycle $C = F_1 \dots F_4 F_1$ can be formed by exchanging v-v segments and $u_1 - v$ segments alternately.

(2.1.2) The vertex v is not a cut vertex and $V(Eu(D)) = S_1 \cup S_2 \cup S_3$

Then there exists a vertex $u_1 \in Q$ -v which arises in both the segments $vx_1 \ldots x_2'v$ and $vx_3 \ldots x_0'v$. If each v-v segment in E_1 contains the vertex u_1 , then the required cycle $C = F_1F_2 \ldots F_6F_1$ is as follows.

$$F_{1} = x'_{0}vx_{1} \dots u_{1} \dots x'_{1}vx_{2} \dots u_{1} \dots x'_{2}vx_{3} \dots u_{1} \dots x'_{0} = E_{1},$$

$$F_{2} = x'_{0}vx_{2} \dots u_{1} \dots x'_{2}vx_{1} \dots u_{1} \dots x'_{1}vx_{3} \dots u_{1} \dots x'_{0} = E_{2},$$

$$F_{3} = x'_{0}vx_{2} \dots u_{1} \dots x'_{1}vx_{3} \dots u_{1} \dots x'_{2}vx_{1} \dots u_{1} \dots x'_{0},$$

$$F_{4} = x'_{0}vx_{3} \dots u_{1} \dots x'_{2}vx_{2} \dots u_{1} \dots x'_{1}vx_{1} \dots u_{1} \dots x'_{0},$$

$$F_{5} = x'_{0}vx_{3} \dots u_{1} \dots x'_{1}vx_{1} \dots u_{1} \dots x'_{2}vx_{2} \dots u_{1} \dots x'_{0},$$

$$F_{6} = x'_{0}vx_{1} \dots u_{1} \dots x'_{2}vx_{3} \dots u_{1} \dots x'_{1}vx_{2} \dots u_{1} \dots x'_{0}.$$

If there is a v-v segment, say $vx_2 cdots x_2'v$, which does not contain the vertex u_1 , then there exists a vertex $u_2 \in Q - v - u_1$ which arises in both the segments $vx_2 cdots x_2'v$ and $vx_3 cdots x_1'v$. As before we consider the possible distribution of u_1 's and u_2 's in E_1 . Note that the T-transformation between E_1 and E_2 can be regarded as exchanging any two exchangeable v-v segments in E_1 , and we can put $F_1 = E_2$, $F_2 = E_1$. So we can choose a suitable reference arc such that E_1 and the required cycle $C = F_1F_2 cdots F_6F_1$ are as follows.

$$F_{1} = x'_{0}vx_{1} \dots u_{2} \dots u_{1} \dots x'_{1}vx_{2} \dots u_{2} \dots x'_{2}vx_{3} \dots u_{1} \dots x'_{0} = E_{1},$$

$$F_{2} = x'_{0}vx_{2} \dots u_{2} \dots x'_{2}vx_{1} \dots u_{2} \dots u_{1} \dots x'_{1}vx_{3} \dots u_{1} \dots x'_{0} = E_{2},$$

$$F_{3} = x'_{0}vx_{2} \dots u_{2} \dots u_{1} \dots x'_{1}vx_{1} \dots u_{2} \dots x'_{2}vx_{3} \dots u_{1} \dots x'_{0},$$

$$F_{4} = x'_{0}vx_{3} \dots u_{1} \dots x'_{1}vx_{1} \dots u_{2} \dots x'_{2}vx_{2} \dots u_{2} \dots u_{1} \dots x'_{0},$$

$$F_5 = x'_0 v x_3 \dots u_1 \dots x'_1 v x_2 \dots u_2 \dots x'_2 v x_1 \dots u_2 \dots u_1 \dots x'_0,$$

$$F_6 = x'_0 v x_1 \dots u_2 \dots x'_2 v x_3 \dots u_1 \dots x'_1 v x_2 \dots u_2 \dots u_1 \dots x'_0.$$

Subcase 2.2. E_2 is obtained from E_1 by exchanging two exchangeable v-u segments.

If id(u) = 2, since we can take u as a reference vertex, it can be dealt with in the same way as in Case 1. If $id(u) \ge 4$, it shall be considered later. Now we assume id(u) = 3.

(2.2.1) The vertices u and v arise in E_1 alternately

By choosing a suitable reference vertex and a suitable reference arc, the required cycle $C = F_1 F_2 \dots F_6 F_1$ is as follows.

$$F_{1} = x'_{0}vx_{1} \dots u \dots x'_{1}vx_{2} \dots u \dots x'_{2}vx_{3} \dots u \dots x'_{0} = E_{1},$$

$$F_{2} = x'_{0}vx_{2} \dots u \dots x'_{1}vx_{1} \dots u \dots x'_{2}vx_{3} \dots u \dots x'_{0} = E_{2},$$

$$F_{3} = x'_{0}vx_{2} \dots u \dots x'_{2}vx_{3} \dots u \dots x'_{1}vx_{1} \dots u \dots x'_{0},$$

$$F_{4} = x'_{0}vx_{3} \dots u \dots x'_{2}vx_{2} \dots u \dots x'_{1}vx_{1} \dots u \dots x'_{0},$$

$$F_{5} = x'_{0}vx_{3} \dots u \dots x'_{1}vx_{1} \dots u \dots x'_{2}vx_{2} \dots u \dots x'_{0},$$

$$F_{6} = x'_{0}vx_{1} \dots u \dots x'_{1}vx_{3} \dots u \dots x'_{2}vx_{2} \dots u \dots x'_{0}.$$

(2.2.2) Suppose that u does not arise in a v-v segment

We can choose a suitable reference vertex and a reference arc such that u does not arise in the segment $vx_2 cdots x_2'v$ and $E_1 = x_0'vx_1 cdots u cdots x_1'vx_2 cdots x_2'vx_3 cdots u cdots x_0'$. Then the required cycle $C = F_1F_2 cdots cdots F_6F_1$ can be one of the following.

(1)
$$F_1 = x'_0 v x_1 \dots u \dots x'_1 v x_2 \dots x'_2 v x_3 \dots u \dots x'_0 = E_1,$$
 $F_2 = x'_0 v x_3 \dots u \dots x'_1 v x_2 \dots x'_2 v x_1 \dots u \dots x'_0 = E_2,$
 $F_3 = x'_0 v x_3 \dots u \dots x'_1 v x_2 \dots x'_2 v x_1 \dots u \dots u \dots x'_0,$
 $F_4 = x'_0 v x_2 \dots x'_2 v x_3 \dots u \dots x'_1 v x_1 \dots u \dots u \dots x'_0,$
 $F_5 = x'_0 v x_2 \dots x'_2 v x_3 \dots u \dots u \dots x'_1 v x_1 \dots u \dots x'_0,$
 $F_6 = x'_0 v x_1 \dots u \dots x'_1 v x_2 \dots x'_2 v x_3 \dots u \dots u \dots x'_0.$

(2)
$$F_1 = x'_0 v x_1 \dots u \dots x'_1 v x_2 \dots x'_2 v x_3 \dots u \dots x'_0 = E_1,$$
 $F_2 = x'_0 v x_2 \dots x'_2 v x_3 \dots u \dots u \dots x'_1 v x_1 \dots u \dots x'_0 = E_2,$
 $F_3 = x'_0 v x_2 \dots x'_2 v x_3 \dots u \dots x'_1 v x_1 \dots u \dots u \dots x'_0,$
 $F_4 = x'_0 v x_3 \dots u \dots x'_1 v x_2 \dots x'_2 v x_1 \dots u \dots u \dots x'_0,$
 $F_5 = x'_0 v x_3 \dots u \dots u \dots x'_1 v x_2 \dots x'_2 v x_1 \dots u \dots x'_0,$
 $F_6 = x'_0 v x_1 \dots u \dots x'_1 v x_2 \dots x'_2 v x_3 \dots u \dots u \dots x'_0.$

(3)
$$F_1 = x'_0 v x_1 \dots u \dots x'_1 v x_2 \dots x'_2 v x_3 \dots u \dots x'_0 = E_1,$$
 $F_2 = x'_0 v x_3 \dots u \dots x'_1 v x_2 \dots x'_2 v x_1 \dots u \dots u \dots x'_0 = E_2,$
 $F_3 = x'_0 v x_3 \dots u \dots u \dots x'_1 v x_2 \dots x'_2 v x_1 \dots u \dots x'_0,$
 $F_4 = x'_0 v x_2 \dots x'_2 v x_3 \dots u \dots u \dots x'_1 v x_1 \dots u \dots x'_0,$
 $F_5 = x'_0 v x_2 \dots x'_2 v x_3 \dots u \dots x'_1 v x_1 \dots u \dots u \dots x'_0,$
 $F_6 = x'_0 v x_1 \dots u \dots x'_1 v x_2 \dots x'_2 v x_3 \dots u \dots u \dots x'_0.$

(4)
$$F_1 = x'_0 v x_1 \dots u \dots x'_1 v x_2 \dots x'_2 v x_3 \dots u \dots x'_0 = E_1,$$

$$F_2 = x'_0 v x_2 \dots x'_2 v x_3 \dots u \dots x'_1 v x_1 \dots \underline{u \dots u} \dots x'_0 = E_2,$$

$$F_3 = x'_0 v x_2 \dots x'_2 v x_3 \dots u \dots u \dots x'_1 v x_1 \dots u \dots x'_0,$$

$$F_4 = x'_0 v x_3 \dots \underline{u \dots u} \dots x'_1 v x_2 \dots x'_2 v x_1 \dots u \dots x'_0,$$

$$F_5 = x'_0 v x_3 \dots u \dots x'_1 v x_2 \dots x'_2 v x_1 \dots u \dots x'_0.$$

$$F_6 = x'_0 v x_1 \dots u \dots x'_1 v x_2 \dots x'_2 v x_3 \dots u \dots u \dots x'_0.$$

Case 3. $id(v) = k \ge 4$

Subcase 3.1. E_2 is obtained by exchanging to exchangeable v-v segments, i.e.,

$$E_1 = x_0' v x_1 \dots x_l' v x_{l+1} \dots x_{i-1}' v x_i \dots x_j' v x_{j+1} \dots x_{k-1}' v x_k \dots x_0' = F_1,$$

$$E_2 = x_0' v x_i \dots x_j' v x_{l+1} \dots x_{i-1}' v x_1 \dots x_l' v x_{j+1} \dots x_{k-1}' v x_k \dots x_0' = F_2,$$
where $1 \le l < i \le j \le k-1$.

(3.1.1) $\{x'_0, x_k\}$ is an edge cut of D, and $V(\text{Eu}(D)) = \bigcup_{1}^{k-1} S_i$ The required cycle $C = F_1 F_2 \dots F_{2k-2} F_1$ is as follows.

$$F_{1} = x'_{0}vx_{1} \dots x'_{l}vx_{l+1} \dots x'_{l-1}vx_{l} \dots x'_{j}vx_{j+1} \dots x'_{k-1}vx_{k} \dots x'_{0} = E_{1},$$

$$F_{2} = x'_{0}vx_{i} \dots x'_{j}vx_{l+1} \dots x'_{l-1}vx_{1} \dots x'_{l}vx_{j+1} \dots x'_{k-1}vx_{k} \dots x'_{0} = E_{2},$$

$$F_{3} = x'_{0}vx_{i} \dots x'_{j}vx_{1} \dots x'_{1}vx_{2} \dots x'_{2}vx_{3} \dots x'_{l-1}vx_{j+1} \dots x'_{k-1}vx_{k} \dots x'_{0},$$

$$F_{4} = x'_{0}vx_{2} \dots x'_{2}vx_{1} \dots x'_{j}vx_{1} \dots x'_{1}vx_{3} \dots x'_{l-1}vx_{j+1} \dots x'_{k-1}vx_{k} \dots x'_{0},$$

$$F_{5} = x'_{0}vx_{2} \dots x'_{2}vx_{1} \dots x'_{1}vx_{3} \dots x'_{3}vx_{\frac{1}{2}} \dots x'_{k-1}vx_{k} \dots x'_{0},$$

$$F_{6} = x'_{0}vx_{3} \dots x'_{3}vx_{2} \dots x'_{2}vx_{1} \dots x'_{1}vx_{4} \dots x'_{k-1}vx_{k} \dots x'_{0},$$

$$F_{7} = x'_{0}vx_{3} \dots x'_{3}vx_{1} \dots x'_{2}vx_{4} \dots x'_{4}vx_{5} \dots x'_{k-1}vx_{k} \dots x'_{0},$$

$$F_{8} = x'_{0}vx_{4} \dots x'_{4}vx_{3} \dots x'_{3}vx_{1} \dots x'_{2}vx_{5} \dots x'_{k-1}vx_{k} \dots x'_{0},$$

$$\vdots$$

$$F_{2i-1} = x'_{0}vx_{i-1} \dots x'_{i-1}vx_{1} \dots x'_{i-2}vx_{i} \dots x'_{i}vx_{i+1} \dots x'_{i+1}vx_{i+2} \dots x'_{k-1}vx_{k} \dots x'_{0},$$

$$F_{2i} = x'_{0}vx_{i+1} \dots x'_{i+1}vx_{i-1} \dots x'_{i-1}vx_{1} \dots x'_{i-2}vx_{i} \dots x'_{i}vx_{i+2} \dots x'_{i}vx_{i+2} \dots x'_{k-1}vx_{k} \dots x'_{0},$$

$$F_{2i+1} = x'_0 v x_{i+1} \dots x'_{i+1} v x_1 \dots x'_i \underline{v} x_{i+2} \dots x'_{i+2} v x_{i+3} \dots x'_{k-1} v x_k \dots x'_0,$$

$$\vdots$$

$$F_{2k-3} = x'_0 v x_{k-1} \dots x'_{k-1} \underline{v} x_1 \dots x'_1 v x_2 \dots x'_{k-2} v x_k \dots x'_0,$$

$$F_{2k-2} = x'_0 v x_1 \dots x'_1 v x_{k-1} \dots x'_{k-1} v x_2 \dots x'_{k-2} v x_k \dots x'_0.$$

(3.1.2) $\{x'_0, x_k\}$ is not an edge cut of D, and $V(\text{Eu}(D)) = \bigcup_{i=1}^k S_i$

The sequence of F_i from F_1 to F_{2k-3} is the same as in (3.1.1). Because $\{x'_0, x_k\}$ is not an edge cut of D, there is a vertex $u_1 \in Q - v$ such that u_1 arises in both segments $vx_{k-1} \ldots x'_{k-2}v$ and $vx_k \ldots x'_0v$ in F_{2k-3} .

If u arises in the segment $vx_{k-1} \dots x'_{k-1}v$, then we have

$$F_{2k-3} = x'_0 v x_{k-1} \dots u_1 \dots x'_{k-1} v x_1 \dots x'_{k-2} v x_k \dots u_1 \dots x'_0,$$

$$F_{2k-2} = x'_0 v x_k \dots u_1 \dots x'_{k-1} v x_1 \dots x'_1 v x_2 \dots x'_{k-2} v x_{k-1} \dots u_1 \dots x'_0,$$

$$F_{2k-1} = x'_0 v x_k \dots u_1 \dots x'_{k-1} v x_2 \dots x'_{k-2} v x_1 \dots x'_1 v x_{k-1} \dots u_1 \dots x'_0,$$

$$F_{2k} = x'_0 v x_1 \dots x'_1 v x_{k-1} \dots u_1 \dots x'_{k-1} v x_2 \dots x'_{k-2} v x_k \dots u_1 \dots x'_0.$$

If u_1 arises in the segment $vx_1 ldots x_1'v$ or $vx_2 ldots x_{k-2}'v$, we can obtain the required cycle $C = F_1F_2 ldots F_2 F_1$ in a similar way as above.

Note that if i = k - 1, then

$$F_{2k-3} = x'_0 v x_{k-2} \dots x'_{k-2} v x_1 \dots x'_{k-3} v x_{k-1} \dots x'_{k-1} v x_k \dots x'_0$$

If u_1 arises in the segment $x_{k-2} cdots x'_{k-2}$, then

$$F_{2k-3} = x'_0 v x_{k-2} \dots u_1 \dots x'_{k-2} v x_1 \dots x'_{k-3} v x_{k-1} \dots x'_{k-1} v x_k \dots u_1 \dots x'_0,$$

$$F_{2k-2} = x'_0 v x_k \dots u_1 \dots x'_{k-2} v x_1 \dots x'_{k-3} v x_{k-1} \dots x'_{k-1} v x_{k-2} \dots u_1 \dots x'_0,$$

$$F_{2k-1} = x'_0 v x_k \dots u_1 \dots x'_{k-2} v x_{k-1} \dots x'_{k-1} v x_1 \dots x'_{k-3} v x_{k-2} \dots u_1 \dots x'_0,$$

$$F_{2k} = x'_0 v x_1 \dots x'_{k-3} v x_{k-1} \dots x'_{k-1} v x_k \dots u_1 \dots x'_{k-2} v x_{k-2} \dots u_1 \dots x'_0.$$

If u_1 arises in the segment $vx_1 ldots x'_{k-3}v$ or $vx_{k-1} ldots x'_{k-1}v$, we can obtain the required cycle $C = F_1F_2 ldots F_2kF_1$ in a similar way as above.

Subcase 3.2. E_2 is obtained by exchanging two exchangeable v-u segments, i.e.,

$$E_{1} = x'_{0}vx_{1} \dots x'_{l-1}vx_{l} \dots u \dots x'_{l}vx_{l+1} \dots x'_{i-1}vx_{i} \dots x'_{j-1}vx_{j} \dots u \dots$$

$$x'_{j}vx_{j+1} \dots x'_{k-1}vx_{k} \dots x'_{0} = F_{1},$$

$$E_{2} = x'_{0}vx_{i} \dots x'_{j-1}vx_{j} \dots u \dots x'_{l}vx_{l+1} \dots x'_{i-1}vx_{1} \dots$$

$$x'_{l-1}vx_{l} \dots u \dots x'_{j}vx_{i+1} \dots x'_{k-1}vx_{k} \dots x'_{0} = F_{2},$$

where $1 \le l < i \le j \le k$.

(3.2.1) $\{x'_0, x_k\}$ is an edge cut, and $V(\text{Eu}(D)) = \bigcup_{1}^{k-1} S_i$

In a similar way as in Subcase (3.1.1), we can form the sequence $F_2, F_3, \ldots, F_{2k-2}$ from F_2 such that

$$F_{2k-2} = x'_0 v x_1 \dots x'_1 v x_i \dots x'_{j-1} v x_j \dots u \dots x'_l v x_{l+1} \dots x'_{l-1} v x_2 \dots x'_{l-1} v x_l \dots u \dots x'_l v x_{l+1} \dots x'_{k-1} v x_k \dots x'_0.$$

(3.3.2) $\{x'_0, x_k\}$ is not an edge cut, and $V(\text{Eu}(D)) = \bigcup_{1}^{k} S_i$ From F_2 we form the sequence $F_2, F_3, \ldots, F_{2k-4}$ such that

$$F_{2k-4} = x'_0 v x_{k-1} \dots x'_{k-1} v x_i \dots x'_{j-1} v x_j \dots u \dots x'_l v x_{l+1} \dots x'_{l-1} v x_l \dots u \dots x'_j v x_{j+1} \dots x'_{k-2} v x_k \dots x'_0,$$

$$F_{2k-3} = x'_0 v x_{k-1} \dots x'_{k-1} v x_1 \dots x'_{k-2} v x_k \dots x'_0.$$

Because $\{x'_0, x_k\}$ is not an edge cut of D, then there exists a vertex $u_1 \in Q - v$ such that

$$F_{2k-3} = x'_0 v x_{k-1} \dots u_1 \dots x'_{k-2} v x_k \dots u_1 \dots x'_0$$

Furthermore, the sequence F_{2k-3} , F_{2k-2} , ..., F_{2k} , F_1 is the same as in Subcase (3.1.2).

The proof is complete. \Box

Acknowledgments

The authors are greatly indebted to Prof. Li Wei-xuan and the referees for their helpful suggestions.

References

- [1] F.-J. Zhang and X.-F. Guo, Hamilton cycles in Euler tour graphs, J. Combin. Theory Ser. B 40(1) (1986) 1-8.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, (Elsevier, New York, 1976).
- [3] X.-G. Xia, The transformation of directed Euler graph, Acta Math. Appl. Sinica 73-77 (1984).