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Abstract

A class of fifth-order weighted essentially non-oscillatory (WENO) schemes based on Hermite polyno-
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(RKDG) methods in [J. Comput. Phys. 193 (2003) 115]. In this paper, we extend the method to solve two

dimensional non-linear hyperbolic conservation law systems. The emphasis is again on the application of

such HWENO finite volume methodology as limiters for RKDG methods to maintain compactness of

RKDG methods. Numerical experiments for two dimensional Burgers� equation and Euler equations

of compressible gas dynamics are presented to show the effectiveness of these methods.
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1. Introduction

In [22], we constructed a class of fifth-order weighted essentially non-oscillatory (WENO)
schemes based on Hermite polynomials, termed HWENO (Hermite WENO) schemes, for solving
one dimensional non-linear hyperbolic conservation law systems, and applied this HWENO finite
volume methodology as limiters for the Runge–Kutta discontinuous Galerkin (RKDG) methods.
In this paper, we extend the method to solve two dimensional non-linear hyperbolic conservation
law systems:
ut þ f ðuÞx þ gðuÞy ¼ 0;

uðx; y; 0Þ ¼ u0ðx; yÞ:

�
ð1:1Þ
WENO schemes have been designed in recent years as a class of high order finite volume or
finite difference schemes to solve hyperbolic conservation laws with the property of maintaining
both uniform high order accuracy and an essentially non-oscillatory shock transition. We have
the third-order finite volume WENO schemes in one space dimension in [18], the third and
fifth-order finite difference WENO schemes in multi-space dimensions with a general framework
for the design of the smoothness indicators and non-linear weights in [16], finite difference
WENO schemes of higher orders (seventh to eleventh order) in [1], and finite volume WENO
schemes on unstructured and structured meshes in [12,15,17,20,24]. WENO schemes are de-
signed based on the successful ENO schemes in [14,27,28]. Both ENO and WENO schemes
use the idea of adaptive stencils in the reconstruction procedure based on the local smoothness
of the numerical solution to automatically achieve high order accuracy and a non-oscillatory
property near discontinuities. ENO uses just one (optimal in some sense) out of many candi-
date stencils when doing the reconstruction; while WENO uses a convex combination of all
the candidate stencils, each being assigned a non-linear weight which depends on the local
smoothness of the numerical solution based on that stencil. WENO improves upon ENO in
robustness, better smoothness of fluxes, better steady state convergence, better provable conver-
gence properties, and more efficiency. For a detailed review of ENO and WENO schemes, we
refer to the lecture notes [26].

The main difference between the one dimensional Hermite WENO scheme designed in [22], see
also related earlier work in [3,11,19,29], and the traditional WENO schemes is that the former has
a more compact stencil than the latter for the same order of accuracy. This compactness is
achieved by evolving both the function and its first derivative values in time and they are both
used in the reconstruction in HWENO schemes. As a result, a fifth order one dimensional
HWENO reconstruction uses only 3 points, while a fifth-order one dimensional WENO recon-
struction would need to use 5 points.

One major emphasis of the HWENO methodology in [22] is its application as limiters for the
RKDG (Runge–Kutta discontinuous Galerkin) methods. The discontinuous Galerkin (DG)
method is a finite element method which evolves k degrees of freedom (in one dimension)
per cell for a kth order accurate scheme, thus no reconstruction is needed. We refer to, e.g.
[7,9,10,23] for the detailed description of the RKDG methods. An important component of
RKDG methods for solving conservation laws (1.1) with strong shocks in the solutions is a
non-linear limiter, which is applied to control spurious oscillations. Although many limiters
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exist in the literature, e.g. [2,4–9], they tend to degenerate accuracy when mistakenly used in
smooth regions of the solution. In [21], we initialized a study of using WENO methodology
as limiters for RKDG methods. The idea is to first identify ‘‘troubled cells’’, namely those cells
where limiting might be needed, then to abandon all moments in those cells except the cell ave-
rages and reconstruct those moments from the information of neighboring cells using a WENO
methodology. This technique works quite well in our one and two dimensional test problems
[21]. In [22], this approach is further improved by using HWENO rather than WENO metho-
dology in the limiter so that a more compact stencil is used.

In this paper, we extend the HWENO methodology in [22] to solve two dimensional non-linear
hyperbolic conservation law systems. The emphasis is again on the application of such HWENO
finite volume methodology as the limiters for RKDG methods to maintain compactness of
RKDG methods. Numerical experiments for two dimensional Burgers� equation and Euler equa-
tions of compressible gas dynamics are presented to show the effectiveness of these methods.

The organization of this paper is as follows. In Section 2, we describe in detail the construction
and implementation of HWENO schemes with Runge–Kutta time discretizations, for two dimen-
sional scalar and system equation (1.1). In Section 3, we investigate the usage of the HWENO
finite volume methodology as limiters for RKDG methods, following the idea in [21,22], with
the goal of obtaining a robust and high order limiting procedure to simultaneously obtain uni-
form high order accuracy and sharp, non-oscillatory shock transition for RKDG methods. In Sec-
tion 4 we provide extensive numerical examples to demonstrate the behavior of the HWENO
schemes and DG methods with HWENO limiters with Runge–Kutta time discretizations. Con-
cluding remarks are given in Section 5.
2. The construction of Hermite WENO schemes

In this section we first consider two dimensional scalar conservation laws (1.1). For simplicity
of presentation, we assume that the mesh is uniform with the cell size xiþ1

2
� xi�1

2
¼ Dx,

yjþ1
2
� yj�1

2
¼ Dy and cell centers ðxi; yjÞ ¼ ð1

2
ðxiþ1

2
þ xi�1

2
Þ; 1

2
ðyjþ1

2
þ yj�1

2
ÞÞ. We also denote the cells

by I ij ¼ ½xi�1
2
; xiþ1

2
� � ½yj�1

2
; yjþ1

2
�. Let v ¼ ou

ox, w ¼ ou
oy. Taking the derivatives of (1.1), we obtain:
vt þ hx þ ry ¼ 0;

vðx; y; 0Þ ¼ ou0ðx;yÞ
ox ;

(
ð2:1Þ

wt þ qx þ sy ¼ 0;

wðx; y; 0Þ ¼ ou0ðx;yÞ
oy ;

(
ð2:2Þ
where
hðu; vÞ ¼ f 0ðuÞv; rðu; vÞ ¼ g0ðuÞv;

qðu;wÞ ¼ f 0ðuÞw; sðu;wÞ ¼ g0ðuÞw:

We integrate Eqs. (1.1), (2.1) and (2.2) on a control volume Iij to obtain the semi-discrete finite

volume scheme as:
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d

dt
uð0Þij ¼ � 1

DxDy

Z
oIij

F 
 nds; ð2:3Þ

d

dt
uð1Þij ¼ � 1

Dy

Z
oIij

H 
 nds; ð2:4Þ

d

dt
uð2Þij ¼ � 1

Dx

Z
oIij

Q 
 nds; ð2:5Þ
where
uð0Þij ¼ 1

DxDy

Z
Iij

udxdy; uð1Þij ¼ 1

Dy

Z
I ij

ou
ox

dxdy; uð2Þij ¼ 1

Dx

Z
Iij

ou
oy

dxdy
and
F ¼ ðf ; gÞT; H ¼ ðh; rÞT; Q ¼ ðq; sÞT:

The line integrals in (2.3), (2.4) and (2.5) are discretized by a q-point Gaussian integration

formula
Z
oIij

F 
 nds � joI ijj
Xq
l¼1

xlF ðuðGl; tÞÞ 
 n; ð2:6Þ

Z
oIij

H 
 nds � joI ijj
Xq
l¼1

xlHðuðGl; tÞ; vðGl; tÞÞ 
 n; ð2:7Þ

Z
oIij

Q 
 nds � joI ijj
Xq
l¼1

xlQðuðGl; tÞ;wðGl; tÞÞ 
 n: ð2:8Þ
Since we are constructing schemes up to fourth-order accuracy, 2-point Gaussian will be used in
each line integration, and F(u(Gl, t)) Æ n, H(u(Gl, t), v(Gl, t)) Æ n, Q(u(Gl, t), w(Gl, t)) Æ n are replaced
by numerical fluxes such as the Lax–Friedrichs fluxes:
f ðuðGl; tÞÞ � 1
2
½f ðu�ðGl; tÞÞ þ f ðuþðGl; tÞÞ � aðuþðGl; tÞ � u�ðGl; tÞÞ�; ð2:9Þ

hðuðGl; tÞ; vðGl; tÞÞ � 1
2
½hðu�ðGl; tÞ; v�ðGl; tÞÞ þ hðuþðGl; tÞ; vþðGl; tÞÞ
� aðvþðGl; tÞ � v�ðGl; tÞÞ�; ð2:10Þ

qðuðGl; tÞ;wðGl; tÞÞ � 1
2
½qðu�ðGl; tÞ;w�ðGl; tÞÞ þ qðuþðGl; tÞ;wþðGl; tÞÞ
� aðwþðGl; tÞ � w�ðGl; tÞÞ�; ð2:11Þ
for Gl ¼ ðxi
1=2; yj
 ffiffi3p
=6Þ, u±(Gl, t), v

±(Gl, t), w
±(Gl, t) are the left and right limits of the solutions u,

v, w at the cell interface Gl respectively; and
gðuðGl; tÞÞ � 1
2
½gðu�ðGl; tÞÞ þ gðuþðGl; tÞÞ � aðuþðGl; tÞ � u�ðGl; tÞÞ�; ð2:12Þ
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Fig. 1. The big stencil.
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rðuðGl; tÞ; vðGl; tÞÞ � 1
2
½rðu�ðGl; tÞ; v�ðGl; tÞÞ þ rðuþðGl; tÞ; vþðGl; tÞÞ
� aðvþðGl; tÞ � v�ðGl; tÞÞ�; ð2:13Þ

sðuðGl; tÞ;wðGl; tÞÞ � 1
2
½sðu�ðGl; tÞ;w�ðGl; tÞÞ þ sðuþðGl; tÞ;wþðGl; tÞÞ
� aðwþðGl; tÞ � w�ðGl; tÞÞ�; ð2:14Þ
for Gl ¼ ðxi
 ffiffi3p
=6; yj
1=2Þ, u±(Gl, t), v

±(Gl, t), w
±(Gl, t) are the bottom and top limits of the solutions

u, v, w at the cell interface Gl respectively. What we want to do is to reconstruct u±(Gl, t), v
±(Gl, t),

w±(Gl, t) from fuð0Þij ; u
ð1Þ
ij ; u

ð2Þ
ij g.

For simplicity we relabel the cell Iij and its neighboring cells as I1, . . ., I9 as shown in Fig. 1.
We summarize the procedure to construct the fourth-order HWENO scheme below. Procedures

to construct HWENO schemes of other orders of accuracy are similar.
Step 1. Reconstruction of u�(Gl, t) from fuð0Þij ; u

ð1Þ
ij ; u

ð2Þ
ij g based on the Hermite type interpolation.

1. Given eight small stencils S1, S2, . . .,S8 shown in Fig. 2 and the big stencil T ¼
S8

m¼1Sm shown
in Fig. 1, and denoting the cells as Im, m = 1, . . ., 9 as shown in the big stencil, Fig. 1, we con-
struct Hermite quadratic reconstruction polynomials p1(x,y), . . .,p8(x,y) in the small stencils
such that:
1

DxDy

Z
Ik

pnðx; yÞdxdy ¼ uð0Þk ;

1

Dy

Z
Ikx

opnðx; yÞ
ox

dxdy ¼ uð1Þkx ;
1

Dx

Z
Iky

opnðx; yÞ
oy

dxdy ¼ uð2Þky ; ð2:15Þ
for
n ¼ 1; k ¼ 1; 2; 4; 5; kx ¼ 4; ky ¼ 2; n ¼ 2; k ¼ 2; 3; 5; 6; kx ¼ 6; ky ¼ 2;

n ¼ 3; k ¼ 4; 5; 7; 8; kx ¼ 4; ky ¼ 8; n ¼ 4; k ¼ 5; 6; 8; 9; kx ¼ 6; ky ¼ 8
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Fig. 2. The eight small stencils and information used for the reconstruction, from left to right and top to bottom are the

stencils: S1, . . . ,S8 respectively.
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and
1

DxDy

Z
Ik

pnðx; yÞdxdy ¼ uð0Þk ;
for
n ¼ 5; k ¼ 1; 2; 3; 4; 5; 7; n ¼ 6; k ¼ 1; 2; 3; 5; 6; 9;

n ¼ 7; k ¼ 1; 4; 5; 7; 8; 9; n ¼ 8; k ¼ 3; 5; 6; 7; 8; 9:
2. To combine the quadratic polynomials to obtain a fourth-order approximation of u at the
point Gl.
If we choose the linear weights denoted by cðlÞ1 ; . . . ; cðlÞ8 such that
uðGlÞ ¼
X8

n¼1

cðlÞn pnðGlÞ ð2:16Þ
is valid for any polynomial u of degree at most 3, then we can obtain a fourth-order approx-
imation of u at the point Gl for all sufficiently smooth functions u.
Notice that (2.16) holds for any polynomial u of degree at most 2 if

P8

n¼1c
ðlÞ
n ¼ 1. This is be-

cause each individual pn(x,y) reconstructs quadratic polynomials exactly. There are four other

constraints on the linear weights cðlÞ1 ; . . . ; cðlÞ8 from requiring (2.16) to hold for u = x3, x2y, xy2

and y3 respectively. This leaves 3 free parameters in determining the linear weights cðlÞ1 ; . . . ; cðlÞ8 .
These free parameters are uniquely determined by least square
min
X8

n¼1

ðcðlÞn Þ2
 !
subject to the constraints listed above. The linear weights cðlÞ1 ; . . . ; cðlÞ8 chosen this way are
positive.

3. We compute the smoothness indicator, denoted by bn, for each stencil Sn, which measures how
smooth the function pn(x,y) is in the target cell Iij. The smaller this smoothness indicator bn, the
smoother the function pn(x,y) is in the target cell. We use the same recipe for the smoothness
indicator as in [15]:
bn ¼
X2

jkj¼1

jI ijj2jkj�1

Z
Iij

o
jkj

oxk1oyk2
pnðx; yÞ

 !2

dxdy; ð2:17Þ
where k = (k1,k2).
4. We compute the non-linear weights based on the smoothness indicators:
xðlÞ
n ¼ xðlÞ

nP
kx

ðlÞ
k

; xðlÞ
k ¼ cðlÞk

ðe þ bkÞ
2
; ð2:18Þ
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where cðlÞk are the linear weights determined in Step 1.2 above, and e is a small number to avoid
the denominator to become 0. We use e = 10�6 in all the computation in this paper. The final
HWENO reconstruction is then given by:
u�ðGlÞ �
X8

n¼1

xðlÞ
n pnðGlÞ: ð2:19Þ
The reconstruction to u+(Gl) is similar to the above procedure.

Step 2. Reconstruction of v�(Gl, t) and w�(Gl, t) from fuð0Þij ; u
ð1Þ
ij ; u

ð2Þ
ij g based on the Hermite type

interpolation.

1. We construct Hermite reconstruction polynomials of the form
pnðx; yÞ ¼ a0 þ a1xþ a2y þ a3x2 þ a4xy þ a5y2 þ a6x3 þ a7y3; n ¼ 1; . . . ; 8
in the small stencils such that:
1

DxDy

Z
Ik

pnðx; yÞdxdy ¼ uð0Þk ;

1

Dy

Z
Ikx

opnðx; yÞ
ox

dxdy ¼ uð1Þkx ;
1

Dx

Z
Iky

opnðx; yÞ
oy

dxdy ¼ uð2Þky ;
for
n ¼ 1; k ¼ 1; 2; 4; 5; kx ¼ 4; 5; ky ¼ 2; 5; n ¼ 2; k ¼ 2; 3; 5; 6; kx ¼ 5; 6; ky ¼ 2; 5;

n ¼ 3; k ¼ 4; 5; 7; 8; kx ¼ 4; 5; ky ¼ 5; 8; n ¼ 4; k ¼ 5; 6; 8; 9; kx ¼ 5; 6; ky ¼ 5; 8;

n ¼ 5; k ¼ 1; 2; 3; 4; 5; 7; kx ¼ 5; ky ¼ 5; n ¼ 6; k ¼ 1; 2; 3; 5; 6; 9; kx ¼ 5; ky ¼ 5;

n ¼ 7; k ¼ 1; 4; 5; 7; 8; 9; kx ¼ 5; ky ¼ 5; n ¼ 8; k ¼ 3; 5; 6; 7; 8; 9; kx ¼ 5; ky ¼ 5:
2. To combine the polynomials to obtain third-order approximation to ux and uy at the point Gl,

we choose the linear weights denoted by cðlÞx1 ; . . . ; c
ðlÞ
x8 , cðlÞy1 ; . . . ; c

ðlÞ
y8 such that
o

ox
uðGlÞ ¼

X8

n¼1

cðlÞxn
o

ox
pnðGlÞ; ð2:20Þ

o

oy
uðGlÞ ¼

X8

n¼1

cðlÞyn
o

oy
pnðGlÞ ð2:21Þ
are valid for any polynomial u of degree at most 3, then we can obtain third-order approxi-
mations to ux and uy at the point Gl for all sufficiently smooth functions u.
Notice that (2.20) and (2.21) hold for any polynomial u which is a linear combination of 1, x,
y, x2, xy, y2, x3, y3 if

P8
n¼1c

ðlÞ
xn ¼ 1 and

P8
n¼1c

ðlÞ
yn ¼ 1 respectively. This is because each individ-

ual pn(x,y) reconstructs such polynomials (hence their derivatives) exactly. There are two other
constraints on each of the groups of linear weights cðlÞx1 ; . . . ; c

ðlÞ
x8 and cðlÞy1 ; . . . ; c

ðlÞ
y8 , from requiring
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(2.20) and (2.21) to hold for u = x2y and xy2 respectively. This leaves 5 free parameters in
determining each group of the linear weights, which are obtained uniquely by least square
min
X8

n¼1

ðcðlÞxn Þ
2

 !
; min

X8

n¼1

ðcðlÞyn Þ
2

 !
subject to the constraints listed above. The linear weights chosen this way are positive.
3. We compute the smoothness indicator, denoted by bn:
bn ¼
X3

jkj¼2

jI ijj2jkj�1

Z
Iij

ojkj

oxk1oyk2
pnðx; yÞ

 !2

dxdy; ð2:22Þ
where k = (k1,k2).
4. We compute the non-linear weights based on the smoothness indicators by formula (2.18). The

final HWENO reconstruction to v�(Gl) and w�(Gl) are given by:
v�ðGlÞ �
X8

n¼1

xxn
o

ox
pnðGlÞ; w�ðGlÞ �

X8

n¼1

xyn
o

oy
pnðGlÞ
respectively. The reconstructions to v+(Gl) and w+(Gl) are similar to the above procedure.

For systems of conservation laws, such as the Euler equations of gas dynamics, all of the recon-
structions are performed in the local characteristic directions to avoid oscillations. For details of
such local characteristic decompositions, see, e.g. [26].

The semi-discrete scheme (2.3)–(2.5), written as
ut ¼ LðuÞ
is then discretized in time by a total variation diminishing (TVD) Runge–Kutta method [27], for
example the third-order version given by
uð1Þ ¼ un þ DtLðunÞ;

uð2Þ ¼ 3

4
un þ 1

4
uð1Þ þ 1

4
DtLðuð1ÞÞ;

unþ1 ¼ 1

3
un þ 2

3
uð2Þ þ 2

3
DtLðuð2ÞÞ:

ð2:23Þ
3. HWENO reconstruction as limiters for the discontinuous Galerkin method

In the discontinuous Galerkin method, the solution as well as the test function space is given by
V k
h ¼ fp : pjIij 2 PkðI ijÞg, where Pk(Iij) is the space of polynomials of degree �k on the cell Iij. We

adopt a local orthogonal basis over Iij, fvðijÞl ðx; yÞ; l ¼ 0; 1; . . . ;K; K ¼ 1
2
ðk þ 1Þðk þ 2Þ � 1g:
vðijÞ0 ðx; yÞ ¼ 1; vðijÞ1 ðx; yÞ ¼ x� xi
Dx

; vðijÞ2 ðx; yÞ ¼
y � yj
Dy

;
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vðijÞ3 ðxÞ ¼ x� xi
Dx


 �2

� 1

12
; vðijÞ4 ðx; yÞ ¼

ðx� xiÞðy � yjÞ
DxDy

; vðijÞ5 ðyÞ ¼
y � yj
Dy

� 
2

� 1

12
; . . . :
Then the numerical solution uh(x,y, t) in the space V k
h can be written as:
uhðx; y; tÞ ¼
XK
l¼0

uðlÞij ðtÞv
ðijÞ
l ðx; yÞ; for ðx; yÞ 2 I ij ð3:1Þ
and the degrees of freedom uðlÞij ðtÞ are the moments defined by
uðlÞij ðtÞ ¼
1

al

Z
Iij

uhðx; y; tÞ vðijÞl ðx; yÞdxdy; l ¼ 0; 1; . . . ;K;
where al ¼
R
Iij
ðvðijÞl ðx; yÞÞ2 dxdy are the normalization constants since the basis is not orthonormal.

In order to determine the approximate solution, what we would like to do is to evolve the degrees
of freedom uðlÞij :
d

dt
uðlÞij þ 1

al
�
Z
Iij

f ðuhðx; y; tÞÞ d

dx
vðijÞl ðx; yÞ þ gðuhðx; y; tÞÞ d

dy
vðijÞl ðx; yÞ

� 

dxdy

 

þ
Z y

jþ1
2

y
j�1

2

ðf ðuhðxiþ1
2
; yÞÞvðijÞl ðxiþ1

2
; yÞ � f ðuhðxiþ1

2
; yÞÞvðijÞl ðxi�1

2
; yÞÞdy

þ
Z x

iþ1
2

x
i�1

2

ðgðuhðx; yjþ1
2
ÞÞvðijÞl ðx; yjþ1

2
Þ � gðuhðx; yj�1

2
ÞÞvðijÞl ðx; yj�1

2
ÞÞdx

1
A ¼ 0; l ¼ 0; 1; . . . ;K:

ð3:2Þ
In (3.2) the first integral term can be computed either exactly or by a suitable numerical quad-
rature accurate to at least O(h2k+2). The second and third integral terms can also be computed by
suitable numerical quadratures, but the flux functions f and g would need to be replaced by mon-
otone numerical fluxes (or approximate Riemann solvers in the system case) because they are
computed at cell interfaces. For k 6 2, we can use the following 2-point Gaussian quadrature:
Z

I ij

f ðuhðx; y; tÞÞ d

dx
vðijÞl ðx; yÞdxdy � 1

4
DxDy

X2

n¼1

X2

m¼1

f ðuhðxin; yjm; tÞÞ
d

dx
vðijÞl ðxin; yjmÞ;

Z
I ij

gðuhðx; y; tÞÞ d

dy
vðijÞl ðx; yÞdxdy � 1

4
DxDy

X2

n¼1

X2

m¼1

gðuhðxin; yjm; tÞÞ
d

dy
vðijÞl ðxin; yjmÞ;

Z y
jþ1

2

y
j�1

2

f
�
uh
�
xiþ1

2
; y
��
vðijÞl

�
xiþ1

2
; y
�
dy � 1

2
Dy
X2

m¼1

f̂
�
u�iþ1

2
;jm; u

þ
iþ1

2
;jm

�
vðijÞl

�
xiþ1

2
; yjm

�
;

Z x
iþ1

2

x
i�1

2

g
�
uh
�
x; yjþ1

2

��
vðijÞl

�
x; yjþ1

2

�
dx � 1

2
Dx
X2

n¼1

ĝ
�
u�in;jþ1

2
; uþ

in;jþ1
2

�
vðijÞl

�
xin; yjþ1

2

�
;
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where xi1 ¼ xi �
ffiffi
3

p

6
Dx; xi2 ¼ xi þ

ffiffi
3

p

6
Dx; yj1 ¼ yj �

ffiffi
3

p

6
Dy; yj2 ¼ yj þ

ffiffi
3

p

6
Dy are Gaussian quadrature

points, u

iþ1

2
;jm

¼ uhðx

iþ1

2

; yjm; tÞ are the left and right limits of the discontinuous solution uh at the

cell interface ðxiþ1
2
; yjmÞ and u


in;jþ1
2

¼ uhðxin; y
jþ1
2

; tÞ are the bottom and top limits of the discontinu-

ous solution uh at the cell interface ðxin; yjþ1
2
Þ. The fluxes f̂ ðu�; uþÞ and ĝðu�; uþÞ are monotone

fluxes (non-decreasing in the first argument and non-increasing in the second argument) for the
scalar case and an exact or approximate Riemann solver for the system case. The semi-discrete
scheme (3.2) is discretized in time by a non-linearly stable Runge–Kutta time discretization,
e.g. the third-order version (2.23).

The limiter adopted in [5,9] is described below in some detail, and in this paper we use it to detect
‘‘troubled cells’’. The limiting is performed on the first moment uð1Þij and uð2Þij , using the differences of
means. For a scalar equation, uð1Þij would be limited by either the standard minmod limiter [13]:
m
1

2
uð1Þij ; u

ð0Þ
iþ1;j � uð0Þij ; u

ð0Þ
ij � uð0Þi�1;j

� 

;

where m is given by:
mða1; a2; . . . ; anÞ ¼
s 
min1�j�njajj if signða1Þ ¼ signða2Þ ¼ 
 
 
 ¼ signðanÞ ¼ s;

0 otherwise;

�
ð3:3Þ
or by the TVB modified minmod function [25]
~mða1; a2; . . . ; anÞ ¼
a1 if ja1j � MDx2;

mða1; a2; . . . ; anÞ otherwise;

�
ð3:4Þ
where M > 0 is the TVB constant. The choice of M depends on the solution of the problem. For
scalar problems it is possible to estimate M by the initial condition as in [7] (M is proportional to
the second derivative of the initial condition at smooth extrema), however it is more difficult to
estimate M for the system case. If M is chosen too small, accuracy may degenerate at smooth extr-
ema of the solution; however if M is chosen too large, oscillations will appear.

Similarly, uð2Þij is limited by
m
1

2
uð2Þij ; u

ð0Þ
i;jþ1 � uð0Þij ; u

ð0Þ
ij � uð0Þi;j�1

� 

or
~m
1

2
uð2Þij ; u

ð0Þ
i;jþ1 � uð0Þij ; u

ð0Þ
ij � uð0Þi;j�1

� 

with a change of Dx to Dy in (3.4).
For systems, we perform the limiting in local characteristic variables as in [9].
Similar to [21,22], in this paper we use the limiter described above to identify ‘‘troubled cells’’,

namely, if one of the minmod functions gets enacted (returns other than the first argument), this
cell is declared ‘‘troubled’’ and marked for further reconstructions. Since the HWENO recon-
struction maintains high order accuracy in the troubled cells, it is less crucial to choose an
accurate M. We present in Section 3 numerical results obtained with different M�s. Basically, if
M is chosen too small, more good cells will be declared as troubled cells and will be subject to
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unnecessary HWENO reconstructions. This does increase the computational cost but does not de-
grade the order of accuracy in these cells.

For the troubled cells, we would like to reconstruct the polynomial solution while retaining its
cell average. In other words, we will reconstruct the degrees of freedom, or the moments, uðlÞij for
any troubled cell Iij for l = 1, . . .,K and retain only the cell average uð0Þij .

For the third-order k = 2 case, we summarize the procedure to reconstruct the first and second-
order moments uð1Þij ; . . . ; u

ð5Þ
ij for a troubled cell Iij using HWENO reconstruction. For simplicity,

we relabel the ‘‘troubled cell’’ and its neighboring cells as I1, . . ., I9 as shown in Fig. 1.

1. We construct Hermite quadratic reconstruction polynomials p1(x,y), . . .,p8(x,y) in the small
stencils satisfying the conditions in Step 1.1, Section 2, with (2.15) replaced by
Z

Ikx

pnðx; yÞv
ðkxÞ
1 ðx; yÞdxdy ¼ uð1Þkx a1;

Z
Iky

pnðx; yÞv
ðkyÞ
2 ðx; yÞdxdy ¼ uð2Þky a2:
2. We find the combination coefficients, also called linear weights, denoted by cðlÞ1 ; . . . ; cðlÞ8 ,
satisfying:
Z

I5

uvð5Þl ðx; yÞdxdy ¼
X8

n¼1

cðlÞn

Z
I5

pnðx; yÞv
ð5Þ
l ðx; yÞdxdy; l ¼ 1; . . . ; 5;
for u ¼ vð5Þ1 ; . . . ; vð5Þ9 , and ask for
min
X8

n¼1

ðcðlÞn Þ2
 !
under these restrictions. For l = 1, 2, these lead to
cðlÞ1 ¼ cðlÞ2 ¼ cðlÞ3 ¼ cðlÞ4 ¼ 11

76
; cðlÞ5 ¼ cðlÞ6 ¼ cðlÞ7 ¼ cðlÞ8 ¼ 2

19
and for l = 3, 4, 5 we obtain:
cðlÞn ¼ 1

8
; n ¼ 1; . . . ; 8:
3. Compute the smoothness indicators:

(a) For the reconstruction of uð1Þij , we compute the smoothness indicator bn as:
bn ¼
X2

k¼1

jI ijj2k�1

Z
Iij

ok

oxk
pnðx; yÞ

� 
2

dxdy: ð3:5Þ
(b) For the reconstruction of uð2Þij , we compute the smoothness indicator bn as:
bn ¼
X2

k¼1

jI ijj2k�1

Z
Iij

ok

oyk
pnðx; yÞ

� 
2

dxdy: ð3:6Þ
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(c) For the reconstruction of uð3Þij , uð4Þij and uð5Þij , we compute the smoothness indicator bn as:
bn ¼
X2

jkj¼2

jI ijj2k�1

Z
Iij

ojkj

oxk1oyk2
pnðx; yÞ

 !2

dxdy ð3:7Þ
and compute the non-linear weights based on the smoothness indicators by (2.18). The
moments of the reconstructed polynomial is then given by:
uðlÞij ¼ 1

al

X8

n¼1

xðlÞ
n

Z
Iij

pnðx; yÞvðijÞn ðx; yÞdxdy; l ¼ 1; 2; 3; 4; 5: ð3:8Þ
For the system cases, to find out the ‘‘troubled cells’’, we could either use a componentwise min-
mod TVB limiter or a characteristic one. It turns out that, even though a componentwise minmod
TVB limiter saves CPU time, it tends to give false alarms for many cells (i.e. declaring too many
good cells as troubled cells) that the HWENO reconstruction would be performed in many more
cells. We have thus used a characteristic based minmod TVB limiter to detect troubled cells. In
order to achieve better qualities at the price of more complicated computations, the reconstruc-
tions of two first moments uð1Þij ; u

ð2Þ
ij are performed in the local characteristic directions to avoid

oscillations, and the reconstructions of the three second-order moments uð3Þij ; u
ð4Þ
ij ; u

ð5Þ
ij are per-

formed componentwise.
4. Numerical results

In this section we present the results of our numerical experiments for the fourth-order
HWENO schemes with the third-order TVD Runge–Kutta method (HWENO4-RK3) and the
third-order DG method with HWENO limiter (DG3-HWENO4-RK3) developed in the previous
sections. A uniform mesh with Nx · Ny cells is used for all the test cases, the CFL number is taken
as 0.6 for HWENO4 and 0.18 for DG3-HWENO4-RK3 except for some accuracy tests where a
suitably reduced time step is used to guarantee that spatial error dominates.

4.1. Accuracy test

We first test the accuracy of the schemes on scalar and system problems. For all accuracy tests
of DG3-HWENO4-RK3 we have used the TVB minmod limiter with a small M = 0.01 to identify
troubled cells (this is close to a TVD limiter with M = 0), resulting in many good cells identified as
troubled cells. In this way we can clearly see the effect of the HWENO reconstruction limiter on
the accuracy of the RKDG method.

We have tested many standard problems for accuracy, such as linear advection, non-linear
Burgers� equation, and non-linear Euler equations. We present only the results of Burgers� equa-
tions and non-linear Euler equations on uniform meshes as representative examples to save space.

Example 4.1. We solve the following non-linear scalar Burgers� equation in two dimensions:
ut þ
u2

2

� 

x

þ u2

2

� 

y

¼ 0 ð4:1Þ



Table 1

Burgers� equation ut + (u2/2)x + (u2/2)y = 0

N · N HWENO4-RK3

L1 error Order L1 error Order

10 · 10 1.13E�02 3.46E�02

20 · 20 9.12E�04 3.63 5.97E�03 2.53

40 · 40 6.09E�05 3.90 4.56E�04 3.71

80 · 80 3.09E�06 4.30 3.59E�05 3.67

160 · 160 1.70E�07 4.19 2.95E�06 3.60

N · N DG with HWENO limiter DG with no limiter

L1 error Order L1 error Order L1 error Order L1 error Order

10 · 10 2.98E�02 5.03E�01 5.19E�03 1.83E�01

20 · 20 1.81E�03 4.04 4.09E�02 3.62 8.29E�04 2.65 4.16E�02 2.14

40 · 40 1.73E�04 3.38 6.04E�03 2.76 1.12E�04 2.88 6.04E�03 2.79

80 · 80 2.07E�05 3.06 1.00E�03 2.59 1.44E�05 2.96 1.00E�03 2.59

160 · 160 2.49E�06 3.06 1.38E�04 2.87 1.83E�06 2.98 1.38E�04 2.87

Initial condition u(x,y, 0) = 0.5 + sin(p(x + y)/2) and periodic boundary conditions. HWENO4-RK3 and DG3-

HWENO4-RK3 (M = 0.01) comparing with RKDG without limiter. Local Lax–Friedrichs flux. t = 0.5/p. L1 and L1
errors. Uniform meshes with N · N cells.
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with the initial condition u(x,y, 0) = 0.5 + sin(p(x + y)/2) and a 4-periodic boundary condition
in both directions. When t = 0.5/p the solution is still smooth. The errors and numerical or-
ders of accuracy for HWENO4-RK3 and DG3-HWENO4-RK3 comparing with the original
RKDG method without a limiter are shown in Table 1. We can see that the HWENO lim-
iter keeps both the designed order and the magnitude of accuracy of the original RKDG
method.

Example 4.2. We solve the following non-linear system of Euler equations:
nt þ f ðnÞx þ gðnÞy ¼ 0 ð4:2Þ
with
n ¼ ðq; qu; qv;EÞT; f ðnÞ ¼ ðqu;qu2 þ p; quv; uðE þ pÞÞT;

gðnÞ ¼ ðqv; quv; qv2 þ p; vðE þ pÞÞT:
Here q is the density, (u,v) is the velocity, E is the total energy, p is the pressure, which is related to
the total energy by E ¼ p

c�1
þ 1

2
qðu2 þ v2Þ with c = 1.4. The initial condition is set to be

q(x,y, 0) = 1 + 0.2sin(p(x + y)), u(x,y, 0) = 0.7, v(x,y, 0) = 0.3, p(x,y, 0) = 1, with a 2-periodic
boundary condition. The exact solution is qðx; y; tÞ ¼ 1þ 0:2 sinðpðxþ y � ðuþ vÞtÞÞ, u = 0.7,
v = 0.3, p = 1. We compute the solution up to t = 2. The errors and numerical orders of accuracy
for HWENO4-RK3 and DG3-HWENO4-RK3 (M = 0.01) comparing with RKDG without



Table 2

Euler equations

N · N HWENO4-RK3

L1 error Order L1 error Order

10 · 10 2.14E�02 3.34E�02

20 · 20 2.39E�04 6.49 5.19E�04 6.01

40 · 40 2.74E�05 3.12 5.22E�05 3.31

80 · 80 2.62E�06 3.39 4.28E�06 3.61

160 · 160 1.88E�07 3.80 3.20E�07 3.74

N · N DG with HWENO limiter DG with no limiter

L1 error Order L1 error Order L1 error Order L1 error Order

10 · 10 7.15E�03 5.26E�02 7.94E�04 5.53E�03

20 · 20 2.67E�04 4.75 1.10E�03 5.59 1.03E�04 2.95 8.79E�04 2.65

40 · 40 2.66E�05 3.32 1.29E�04 3.08 1.26E�05 3.03 1.28E�04 2.78

80 · 80 2.36E�06 3.49 1.71E�05 2.92 1.50E�06 3.07 1.71E�05 2.91

160 · 160 2.19E�07 3.43 2.17E�06 2.97 1.81E�07 3.05 2.17E�06 2.97

Initial condition q(x,y, 0) = 1 + 0.2sin(p(x + y)), u(x,y, 0) = 0.7, v(x,y, 0) = 0.3, p(x,y, 0) = 1 and periodic boundary

conditions. HWENO4-RK3 and DG3-HWENO4-RK3 (M = 0.01) comparing with RKDG without limiter. Local Lax–

Friedrichs flux. t = 2.0. L1 and L1 errors for the density q. Uniform meshes with N · N cells.
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limiter are shown in Table 2. We can see that again the HWENO limiter keeps both the designed
order and the magnitude of accuracy of the original RKDG method.
4.2. Test cases with shocks

We now test the performance of HWENO4-RK3 scheme and DG3-HWENO4-RK3 for prob-
lems containing shocks. We have also computed many more problems, but will not present all the
results to save space.

Example 4.3. We solve the same non-linear Burgers� equation (4.1) as in Example 4.1 with the
same initial condition uðx; y; 0Þ ¼ 0:5þ sinðpðxþ yÞ=2Þ, except that we now plot the results at
t = 1.5/p when a shock has already appeared in the solution. In Fig. 3, the solutions of HWENO4-
RK3 and DG3-HWENO4-RK3 using 80 · 80 cells are shown. We can see that both schemes give
good non-oscillatory shock transitions for this problem.

Example 4.4. Double Mach reflection. This problem is originally from [30]. The computational
domain for this problem is [0,4] · [0,1]. The reflecting wall lies at the bottom, starting from
x ¼ 1

6
. Initially a right-moving Mach 10 shock is positioned at x ¼ 1

6
; y ¼ 0 and makes a 60� angle

with the x-axis. For the bottom boundary, the exact post-shock condition is imposed for the part
from x = 0 to x ¼ 1

6
and a reflective boundary condition is used for the rest. At the top boundary,

the flow values are set to describe the exact motion of a Mach 10 shock. We compute the solution
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Fig. 3. 2D Burgers� equation: u(x, 0) = 0.5 + sin(p(x + y)/2), t = 1.5/p. 80 · 80 grid points, by HWENO4-RK3 (top) and

DG3-HWENO4-RK3 (bottom). Left: a cut of the solution at x = y, where the solid line is the exact solution and the

squares are the computed solution; right: the surface of the solution.

Table 3

The maximal percentage of troubled cells subject to HWENO limiters in the double Mach reflection problem

M 0.01 10 100

960 · 240 18.57 10.76 4.65

1920 · 480 16.76 11.22 5.23
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up to t = 0.2. In Table 3 we document the maximal percentage of cells declared to be ‘‘troubled
cells’’ for different TVB constant M in the minmod limiter to identify troubled cells. We can see
that only a small percentage of cells are declared as ‘‘troubled cells’’. Three different uniform
meshes, with 480 · 120, 960 · 240 and 1920 · 480 cells, as well as three different values of the
TVB constant, M = 0.01, M = 10 and M = 100, are used in the numerical experiments. To save
space, we show only the simulation results on the most refined mesh with 1920 · 480 cells in
Fig. 4, and the ‘‘zoomed-in’’ figures around the double Mach stem to show more details, for
the cases with 960 · 240 and 1920 · 480 cells in Fig. 5. All the figures are showing 30 equally
spaced density contours from 1.5 to 22.7.
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Fig. 4. Double Mach reflection problem. RKDG with HWENO limiters. 1920 · 480 cells. 30 equally spaced density

contours from 1.5 to 22.7. TVB constant top: M = 0.01; middle: M = 10; bottom: M = 100.
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Example 4.5. A Mach 3 wind tunnel with a step. This model problem is also originally from [30].
The setup of the problem is as follows. The wind tunnel is 1 length unit wide and 3 length units
long. The step is 0.2 length units high and is located 0.6 length units from the left-hand end of the
tunnel. The problem is initialized by a right-going Mach 3 flow. Reflective boundary conditions
are applied along the wall of the tunnel and inflow/out flow boundary conditions are applied at
the entrance/exit. The corner of the step is a singular point and we treat it the same way as in [30],
which is based on the assumption of a nearly steady flow in the region near the corner. In Table 4
we show the maximum percentage of HWENO limiter used during the calculation. In Figs. 6, 7,
we show 30 equally spaced density contours from 0.32 to 6.15 computed by the scheme DG3-
HWENO4-RK3 at time t = 4. We use uniform meshes with 2 meshes of 240 · 80 and 480 · 160
cells respectively.
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Fig. 5. Double Mach reflection problem. RKDG with HWENO limiters. 960 · 240 cells (left) and 1920 · 480 cells

(right). Zoomed-in region to show more details. TVB constant top: M = 0.01; middle: M = 10; Bottom: M = 100.

Table 4

The maximal percentage of troubled cells subject to HWENO limiters in the forward step problem

M 0.01 10 100

240 · 80 39.1 21.65 8.20

480 · 160 34.71 19.99 8.25
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Fig. 6. Forward step problem by DG3-HWENO4-RK3 with 240 · 80 cells. 30 equally spaced density contours from

0.32 to 6.15. TVB constant top: M = 0.01; middle: M = 10; bottom: M = 100.
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5. Concluding remarks

In this paper, we extend the HWENO schemes and their application as limiters for the Runge–
Kutta discontinuous Galerkin (RKDG) methods developed in [22] to solve two dimensional
non-linear hyperbolic conservation law systems. The emphasis is on the application of such HWE-
NO finite volume methodology as the limiters for RKDG methods to maintain compactness of
RKDG methods. HWENO schemes evolve both the solution and its derivatives, thus requiring
more storage and evolution CPU time per grid point than regular WENO schemes. However,
when used as limiters for the RKDG methods, the cost of HWENO reconstruction is about
the same as the regular WENO reconstruction and the former has a more compact stencil
in the reconstruction. Numerical experiments for two dimensional Burgers� equation and
Euler equations of compressible gas dynamics are presented to show the effectiveness of the
methods.
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Fig. 7. Forward step problem by DG3-HWENO4-RK3 with 480 · 160 cells. 30 equally spaced density contours from

0.32 to 6.15. TVB constant top: M = 0.01; middle: M = 10; bottom: M = 100.
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