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Abstract In [J. Comput. Phys. 193:115–135, 2004] and [Comput. Fluids 34:642–663,
2005], Qiu and Shu developed a class of high order weighted essentially non-oscillatory
(WENO) schemes based on Hermite polynomials, termed HWENO (Hermite WENO)
schemes, for solving nonlinear hyperbolic conservation law systems, and applied them
as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods on structured
meshes. In this continuation paper, we extend the method to solve two dimensional problems
on unstructured meshes. The emphasis is again on the application of such HWENO finite
volume methodology as limiters for RKDG methods to maintain compactness of RKDG
methods. Numerical experiments for two dimensional Burgers’ equation and Euler equa-
tions of compressible gas dynamics are presented to show the effectiveness of these meth-
ods.

Keywords Runge-Kutta discontinuous Galerkin method · Limiters · HWENO finite
volume scheme · High order accuracy

1 Introduction

In [19, 20], a class of high order weighted essentially non-oscillatory (WENO) schemes
[10, 12, 13, 16, 17] based on Hermite polynomials, termed HWENO (Hermite WENO)
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schemes, for solving nonlinear hyperbolic conservation laws, were developed and applied as
limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods [3–8] on structured
meshes by Qiu and Shu. In this continuation paper, we extend the method to solve nonlinear
hyperbolic conservation laws:

{
ut + f (u)x + g(u)y = 0,

u(x, y,0) = u0(x, y),
(1.1)

on two dimensional unstructured meshes.
Essentially non-oscillatory (ENO) and WENO are finite difference or finite volume

schemes. ENO schemes were designed by Harten et al. in 1987 [11, 26, 27]. The first WENO
scheme was constructed in 1994 by Liu, Osher and Chan for a third order version [16]. In
1996, third and fifth order finite difference WENO schemes in multi-space dimensions were
constructed by Jiang and Shu [13], with a general framework for the design of smoothness
indicators and nonlinear weights. Finite volume WENO schemes on unstructured and struc-
tured meshes also were developed in [10, 12, 15, 21, 24]. A key idea in WENO schemes is a
linear combination of lower order fluxes or reconstruction to obtain a higher order approx-
imation. Both ENO and WENO schemes use the idea of adaptive stencils to automatically
achieve high order accuracy and non-oscillatory property near discontinuities. For the sys-
tem case, WENO schemes based on local characteristic decompositions and flux splitting to
avoid spurious oscillatory.

The main difference between the Hermite WENO scheme designed in [19, 20], see also
related earlier work in [9, 18, 28], and the traditional WENO schemes is that the former has
a more compact stencil than the latter for the same order of accuracy. This compactness is
achieved by evolving both the function and its first derivative values in time and they are both
used in the reconstruction in HWENO schemes. As a result, a fifth order one dimensional
HWENO reconstruction uses only three points, while a fifth order one dimensional WENO
reconstruction would need to use five points.

One major emphasis of the HWENO methodology in [19, 20] is its application as limiters
for the RKDG (Runge-Kutta discontinuous Galerkin) methods. The discontinuous Galerkin
(DG) method is a finite element method which evolves k degrees of freedom (in one di-
mension) per cell for a k-th order accurate scheme, thus no reconstruction is needed. We
refer to, e.g. [4, 7, 8, 23] for the detailed description of the RKDG methods. An important
component of RKDG methods for solving conservation laws (1.1) with strong shocks in the
solutions is a nonlinear limiter, which is applied to control spurious oscillation. Although
many limiters exist in the literature, e.g. [1–7], they tend to degenerate accuracy when mis-
takenly used in smooth regions of the solution. In [22, 30], Qiu et al. studied using WENO
methodology as limiters for RKDG methods on structured and unstructured meshes. The
idea is to first identify “troubled cells”, namely those cells where limiting might be needed,
then to abandon all moments in those cells except the cell averages and reconstruct those
moments from the information of neighboring cells using a WENO methodology. This tech-
nique works quite well in one and two dimensional test problems. In [19, 20], this approach
is further improved by using HWENO rather than WENO methodology in the limiter so that
a more compact stencil is used on structured mesh. More recently, Luo et al. [17], following
[19, 20], developed a Hermite WENO-based limiter for the second order RKDG method on
unstructured meshes.

In this continuation paper, we extend the HWENO methodology in [19, 20] to solve two
dimensional problems on unstructured meshes. Both the third and the forth order schemes
are considered. The emphasis is again on the application of such HWENO finite volume
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methodology as the limiters for RKDG methods to maintain compactness of RKDG meth-
ods. We describe the construction of the third and the forth order Hermite WENO schemes in
Sect. 2 and the details of the procedure for HWENO used as limiters for the second and third
order DG methods in Sect. 3. Numerical experiments for two dimensional Burgers’ equation
and Euler equations of compressible gas dynamics are presented to show the effectiveness
of these methods in Sect. 4. Concluding remarks are given in Sect. 5.

2 The Construction of Hermite WENO Schemes on Unstructured Meshes

We consider two dimensional conservation laws (1.1). Let v = ∂u
∂x

and w = ∂u
∂y

. Taking the
derivatives of (1.1), we can get:

{
vt + hx + ry = 0,

v(x, y,0) = ∂u0(x,y)

∂x
,

(2.1)

{
wt + qx + sy = 0,

w(x, y,0) = ∂u0(x,y)

∂y
,

(2.2)

where h(u, v) = f ′(u)v, r(u, v) = g′(u)v, q(u,w) = f ′(u)w, s(u,w) = g′(u)w. We inte-
grate (1.1), (2.1), (2.2) on the target cell �0 to obtain the semi-discrete finite volume scheme
as:

du(t)

dt
= − 1

|�0|
∫

∂�0

F · nds, (2.3)

dv(t)

dt
= − 1√|�0|

∫
∂�0

H · nds, (2.4)

dw(t)

dt
= − 1√|�0|

∫
∂�0

Q · nds, (2.5)

where u(t) = 1
|�0|

∫
∂�0

u(x, y, t)dxdy, v(t) = 1√|�0|
∫

�0

∂u(x,y,t)

∂x
dxdy, w(t) = 1√|�0|∫

�0

∂u(x,y,t)

∂y
dxdy and F = (f, g)T , H = (h, r)T , Q = (q, s)T , n denotes the outward unit

normal to the edge of the target cell. The line integrals in (2.3), (2.4), (2.5) are discretized
by a 2-point Gaussian integration formula on every edge:

∫
∂�0

F · nds ≈
3∑

ll=1

|∂�0ll
|

2∑
l=1

ωlF (u(Glll , t)) · nll, (2.6)

∫
∂�0

H · nds ≈
3∑

ll=1

|∂�0ll
|

2∑
l=1

ωlH(u(Glll , t), v(Glll , t)) · nll, (2.7)

∫
∂�0

Q · nds ≈
3∑

ll=1

|∂�0ll
|

2∑
l=1

ωlQ(u(Glll , t),w(Glll , t)) · nll . (2.8)
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Fig. 1 The big stencil

And F(u(Glll , t)) ·nll , H(u(Glll , t), v(Glll , t)) ·nll , Q(u(Glll , t),w(Glll , t)) ·nll are replaced
by numerical fluxes such as the Lax-Friedrichs fluxes.

Then we use third order version TVD Runge-Kutta time discrete method [26]:
⎧⎪⎨
⎪⎩

u(1) = un + �tL(un),

u(2) = 3
4un + 1

4u(1) + 1
4�tL(u(1)),

un+1 = 1
3 un + 2

3 u(2) + 2
3 �tL(u(2)),

(2.9)

to obtain fully discrete scheme both in space and time.

2.1 The Construction of HWENO3 Scheme

For the simplicity, we use the reconstruction stencils which are shown in Fig. 1.
1. The reconstruction of function u at Gauss quadrature points (xGl

, yGl
) in the bound-

aries of target cell �0 (as shown in the figure).
Step 2.1.1. We select the big stencil as S = {�0,�1,�2,�3}. Then we construct a

quadratic polynomial P (x, y) to obtain a third order approximation of u by requiring that it
has the same cell average as u on the target cell �0, and matches the cell averages of u, v,
or w on the other triangles in the set S \ {�0} in a least square sense [12].

Step 2.1.2. We then construct three linear polynomials qi(x, y), i = 1,2,3 and the other
three linear polynomials qi(x, y), i = 4,5,6 (which satisfy the cell averages of variable u

on the target cell �0 and its neighbor triangle, then match the cell averages of variables v

and w on the other triangles in a least square sense):

1

|��|
∫

��

qi(x, y)dxdy = ū�, (2.10)

1√|��x |
∫

��x

∂qi(x, y)

∂x
dxdy = v̄�x , (2.11)

1√|��y |
∫

��y

∂qi(x, y)

∂y
dxdy = w̄�y . (2.12)

For

i = 1, � = 0,1,2; i = 2, � = 0,2,3; i = 3, � = 0,3,1;
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i = 4, � = 0,1, �x = 1, �y = 1; i = 5, � = 0,2, �x = 2, �y = 2;
i = 6, � = 0,3, �x = 3, �y = 3.

Step 2.1.3. We find the combination coefficients, also called linear weights, denoted by
γ1, . . . , γ6, satisfying:

P (xGl
, yGl

) =
6∑

i=1

γiqi(xGl
, yGl

) (2.13)

for the quadratic polynomial P (x, y) defined in step 1. Then we can get a third order approx-
imation of u at the point Gl for all smooth u. We know that (2.13) holds for any polynomial
u of degree at most 1, if

∑6
i=1 γi = 1. This is because every qi(x, y) reconstructs linear poly-

nomial exactly. These are three other constraints on the linear weights from requiring (2.13)
to hold for u = x2, xy, y2. This leaves 2 free parameters in determining the linear weights.
And these free parameters are determined by asking for

min

(
6∑

i=1

γ 2
i

)
(2.14)

subject to the constraints listed above. By doing so, we can get the linear weights uniquely
but can not maintain them positively all the time, we can use the methods that presented in
[12, 24] to overcome this drawback.

Step 2.1.4. We compute the smoothness indicators, denote by βi , i = 1, . . . ,6, which
measure how smooth the functions qi(x, y), i = 1, . . . ,6, are in the target cell �0. The
smaller these smoothness indicators, the smoother the functions are in the target cell. We
use the same recipe for the smoothness indicators as in [12, 13]:

βi =
∑
|�|=1

|�0||�|−1
∫

�0

(
∂ |�|

∂x�1∂y�2
qi(x, y)

)2

dxdy, i = 1, . . . ,6 (2.15)

where � = (�1, �2).
Step 2.1.5. We compute the non-linear weights based on the smoothness indicators:

ωi = ω̄i∑6
�=1 ω̄�

, ω̄� = γ�

(ε + β�)2
. (2.16)

Here ε is a small positive number to avoid the denominator to become zero. We take ε =
10−6 in our computation.

The final approximations are then given by: u(xGl
, yGl

) ≈ ∑6
i=1 ωiqi(xGl

, yGl
).

2. The reconstruction of function v at Gauss quadrature points (xGl
, yGl

) in the bound-
aries of target cell �0 (as shown in the figure).

Step 2.2.1. We select the big stencil as S = {�0,�1,�2,�3}. Then we construct a
quadratic polynomial P (x, y) to obtain a third order approximation of v by requiring that it
has the same cell average as v on the target cell and matches the cell averages of u, v, or w

on the other triangles in a least square sense [12].
Step 2.2.2. We then construct three linear polynomials qi(x, y), i = 1,2,3.

1√|��x |
∫

��x

qi(x, y)dxdy = v̄�x . (2.17)
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For

i = 1, �x = 0,1,2; i = 2, �x = 0,2,3; i = 3, �x = 0,3,1.

And construct three quadratic polynomials qi(x, y), i = 4,5,6.

1

|��|
∫

��

qi(x, y)dxdy = ū�, (2.18)

1√|��x |
∫

��x

∂qi(x, y)

∂x
dxdy = v̄�x , (2.19)

1√|��y |
∫

��y

∂qi(x, y)

∂y
dxdy = w̄�y . (2.20)

For

i = 4, � = 0,1, �x = 0,1, �y = 0,1;
i = 5, � = 0,2, �x = 0,2, �y = 0,2;
i = 6, � = 0,3, �x = 0,3, �y = 0,3.

Step 2.2.3. We use the same methodology as Step 2.1.3 to find the linear weights γi, i =
1, . . . ,6.

Step 2.2.4. We compute the smoothness indicators, denote by βi , i = 1, . . . ,6:

βi =
∑
|�|=1

|�0||�|−1
∫

�0

(
∂ |�|

∂x�1∂y�2
qi(x, y)

)2

dxdy, i = 1,2,3, (2.21)

βi =
∑
|�|=1

|�0||�|−1
∫

�0

(
∂ |�|

∂x�1∂y�2

(
∂

∂x
qi(x, y)

))2

dxdy, i = 4,5,6, (2.22)

where � = (�1, �2).
Step 2.2.5. With the linear weights and smoothness indicators we can get nonlinear

weights by (2.16).
The final approximations are then given by:

v(xGl
, yGl

) ≈
3∑

i=1

ωiqi(xGl
, yGl

) +
6∑

i=4

ωi

∂

∂x
qi(xGl

, yGl
).

The procedure of reconstruction of w is similar to that of v.

Remark When some triangles merge in the stencils, we can always use the next layer of
triangles to overcome this situation.

2.2 The Construction of HWENO4 Scheme

1. Reconstruction of function u at the boundaries of target cell �0 of Gauss quadrature
points (xGl

, yGl
).
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Step 2.3.1. We select the big stencil as S = {�0,�1,�2,�3, �11,�12,�21, �22,�31,

�32}. Then we construct a third degree polynomial Q(x,y) to obtain a fourth order approx-
imation of u by requiring that it has the same cell average as u on the target cell �0 and
matches the cell averages of u, v, or w on the other triangles in the set S \ {�0} in a least
square sense.

Step 2.3.2. We can then construct nine quadratic polynomials qi(x, y), i = 1, . . . ,9,
which satisfy the following conditions:

1

|��|
∫

��

qi(x, y)dxdy = ū�, (2.23)

1√|��x |
∫

��x

∂qi(x, y)

∂x
dxdy = v̄�x , (2.24)

1√|��y |
∫

��y

∂qi(x, y)

∂y
dxdy = w̄�y . (2.25)

For

i = 1, � = 0,1,11,12,3,32; i = 2, � = 0,1,11,12,2,21;
i = 3, � = 0,2,21,22,1,12; i = 4, � = 0,2,21,22,3,31;
i = 5, � = 0,3,31,32,2,22; i = 6, � = 0,3,31,32,1,11;
i = 7, � = 0,1,11,12, �x = 1, �y = 1;
i = 8, � = 0,2,21,22, �x = 2, �y = 2;
i = 9, � = 0,3,31,32, �x = 3, �y = 3.

The remaining steps are the same as those for Sect. 2.1. The final approximations are
then given by: u(xGl

, yGl
) ≈ ∑9

i=1 ωiqi(xGl
, yGl

).

2. Reconstruct function v at the boundaries of target cell �0 of Gauss quadrature points
(xGl

, yGl
).

Step 2.4.1. We select the big stencil as S = {�0,�1,�2,�3, �11,�12,�21, �22,
�31, �32}. Then we construct a third degree polynomial Q(x,y) to obtain a fourth order
approximation of v by requiring that it has the same cell average as v on the target cell and
matches the cell averages of u, v, or w on the other triangles in a least square sense.

Step 2.4.2. We can then construct six quadratic polynomials qi(x, y), i = 1, . . . ,6.

1√|��x |
∫

��x

qi(x, y)dxdy = v̄�x . (2.26)

For

i = 1, �x = 0,1,11,12,3,32; i = 2, �x = 0,1,11,12,2,21;
i = 3, �x = 0,2,21,22,1,12; i = 4, �x = 0,2,21,22,3,31;
i = 5, �x = 0,3,31,32,2,22; i = 6, �x = 0,3,31,32,1,11.

And construct three cubic polynomials qi(x, y), i = 7,8,9.

1

|��|
∫

��

qi(x, y)dxdy = ū�, (2.27)
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1√|��x |
∫

��x

∂qi(x, y)

∂x
dxdy = v̄�x , (2.28)

1√|��y |
∫

��y

∂qi(x, y)

∂y
dxdy = w̄�y . (2.29)

For

i = 7, � = 0,1,11,12, �x = 0,11,12, �y = 0,11,12;
i = 8, � = 0,2,21,22, �x = 0,21,22, �y = 0,21,22;
i = 9, � = 0,3,31,32, �x = 0,31,32, �y = 0,31,32.

Then do the remaining steps. The final approximations are then given by: v(xGl
, yGl

) ≈∑6
i=1 ωiqi(xGl

, yGl
) + ∑9

i=7 ωi
∂
∂x

qi(xGl
, yGl

).

The procedure of reconstruction of function w at the boundaries of target cell �0

of Gauss quadrature points (xGl
, yGl

) is similar to that of v.

3 HWENO Reconstruction as a Limiter to the RKDG Method on Unstructured
Meshes

In this section we give the details of the procedure using the HWENO reconstruction as a
limiter for the RKDG method.

Given a triangulation consisting of cells �j , P
k(�j ) denotes the set of polynomials of

degree at most k defined on �j . Here k could actually change from cell to cell, but for
simplicity we assume it is a constant over the whole triangulation. In the DG method, the
solution as well as the test function space is given by V k

h = {v(x, y) : v(x, y)|�j
∈ P

k(�j )}.
We emphasize that the procedure described below does not depend on the specific basis
chosen for the polynomials. We adopt a local orthogonal basis over a target cell, such as �0:
{v(0)

l (x, y), l = 0, . . . ,K;K = (k + 1)(k + 2)/2 − 1}:

v
(0)

0 (x, y) = 1,

v
(0)

1 (x, y) = x − x0√|�0| ,

v
(0)

2 (x, y) = a21
x − x0√|�0| + y − y0√|�0| + a22,

v
(0)

3 (x, y) = (x − x0)
2

|�0| + a31
x − x0√|�0| + a32

y − y0√|�0| + a33,

v
(0)

4 (x, y) = a41
(x − x0)

2

|�0| + (x − x0)(y − y0)

|�0| + a42
x − x0√|�0| + a43

y − y0√|�0| + a44,

v
(0)

5 (x, y) = a51
(x − x0)

2

|�0| + a52
(x − x0)(y − y0)

|�0| + (y − y0)
2

|�0|
+ a53

x − x0√|�0| + a54
y − y0√

�0
+ a55, . . .



J Sci Comput (2009) 39: 293–321 301

where (x0, y0) and |�0| are the barycenter and the area of the target cell �0, respectively.
Then we would need to solve a linear system to obtain the values of a�m by the orthogonality
property: ∫

�0

v
(0)
i (x, y)v

(0)
j (x, y)dxdy = wiδij (3.1)

with wi = ∫
�0

(v
(0)
i (x, y))2dxdy.

The numerical solution uh(x, y, t) in the space V k
h can be written as:

uh(x, y, t) =
K∑

l=0

u
(l)

0 (t)v
(0)
l (x, y), for (x, y) ∈ �0

and the degrees of freedom u
(l)

0 (t) are the moments defined by

u
(l)

0 (t) = 1

wl

∫
�0

uh(x, y, t)v
(0)
l (x, y)dxdy, l = 0, . . . ,K.

In order to determine the approximate solution, we evolve the degrees of freedom u
(l)

0 (t):

d

dt
u

(l)

0 (t) = 1

wl

(∫
�0

(
f (uh(x, y, t))

∂

∂x
v

(0)
l (x, y) + g(uh(x, y, t))

∂

∂y
v

(0)
l (x, y)

)
dxdy

−
∫

∂�0

(f (uh(x, y, t)), g(uh(x, y, t)))T · nv
(0)
l (x, y)ds

)
,

l = 0, . . . ,K. (3.2)

In (3.2) the integral terms can be computed either exactly or by suitable numerical
quadratures which are exact for polynomials of degree up to 2k for the element integral
and up to 2k + 1 for the edge integral. In this paper, we use AG Gaussian points (AG = 6 for
k = 1 and AG = 7 for k = 2) for the element quadrature and EG Gaussian points (EG = 2
for k = 1 and EG = 3 for k = 2) for the edge quadrature:

∫
�0

(
f (uh(x, y, t))

∂

∂x
v

(0)
l (x, y) + g(uh(x, y, t))

∂

∂y
v

(0)
l (x, y)

)
dxdy

≈ |�0|
∑
G

σG

(
f (uh(xG, yG, t))

∂

∂x
v

(0)
l (xG, yG)

+ g(uh(xG, yG, t))
∂

∂y
v

(0)
l (xG, yG)

)
, (3.3)

∫
∂�0

(f (uh(x, y, t)), g(uh(x, y, t)))T · nv
(0)
l (x, y)ds

≈
3∑

ll=1

|∂�0ll
|
∑
G

σ̄G

(
(f (uh(x̄llG , ȳllG , t)),

g(uh(x̄llG , ȳllG , t)))T · nllv
(0)
l (x̄llG , ȳllG)

)
, (3.4)
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where (xG, yG) ∈ �0 and (x̄llG , ȳllG) ∈ ∂�0ll
are the Gaussian quadrature points, and

σG and σ̄G are the Gaussian quadrature weights. Since the edge integral is on element
boundaries where the numerical solution can be discontinuous, the flux (f (uh(x, y, t)),

g(uh(x, y, t)))T · n is replaced by a monotone numerical flux. The simple Lax-Friedrichs
flux is used in all of our numerical tests. The semi-discrete scheme (3.2) is discretized in
time by a non-linear stable Runge-Kutta time discretization.

The method described above can compute solutions of (1.1), which are either smooth
or have weak discontinuities, without further modification. If the discontinuities are strong,
however, the scheme will generate significant oscillations and even nonlinear instability. To
avoid such difficulties, we use limiter technique after each Runge-Kutta inner stage (or after
the complete Runge-Kutta time step) to control the spurious oscillations of the numerical
solution.

The limiter procedure can be divided into two steps:

(1) Identify the “troubled cells”, namely those cells which might need the limiting proce-
dure.

(2) Replace the solution polynomials in those troubled cells by reconstructed polynomials
using the HWENO methodology which maintain the original cell averages (conserva-
tion), have the same orders of accuracy as before, but are less oscillatory.

In this paper, we will use two indicators to detect “troubled cells”.
One is TVB indicator that adopted in [7]. The main procedure is as follows: We use

(xm�
, ym�

), � = 1,2,3, to denote the midpoints of the edges on the boundary of the target
cell �0, and (xbi

, ybi
), i = 1,2,3, to denote the barycenters of the neighboring triangles �i ,

i = 1,2,3, as shown in Fig. 2.
We then have

xm1 − xb0 = α1(xb1 − xb0) + α2(xb3 − xb0),

ym1 − yb0 = α1(yb1 − yb0) + α2(yb3 − yb0)
(3.5)

with nonnegative α1, α2, which depend only on (xm1 , ym1) and the geometry. We then define

ũh(xm1 , ym1 , t) ≡ uh(xm1 , ym1 , t) − u
(0)

0 (t), (3.6)

�u(xm1 , ym1 , t) ≡ α1(u
(0)

1 (t) − u
(0)

0 (t)) + α2(u
(0)

3 (t) − u
(0)

0 (t)), (3.7)

Fig. 2 The limiting diagram
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where u
(0)
l (t) denotes the cell average on �l (l = 0,1,2,3).

Using the TVB modified minmod function [25] defined as

m̃(a1, a2) =
⎧⎨
⎩

a1 if |a1| ≤ M|�0|,{
s min(|a1|, |a2|) if s = sign(a1) = sign(a2)

0 otherwise
otherwise

(3.8)

where M > 0 is the TVB constant whose choice is problem dependent, we can compute the
quantity

ũmod = m̃(ũh(xm1 , ym1 , t), γ�u(xm1 , ym1 , t)) (3.9)

with γ > 1 (we take γ = 1.5 in our numerical tests). If ũmod �= ũh(xm1 , ym1 , t), �0 is marked
as a “troubled cell” for further reconstruction. This procedure is repeated for the other two
edges of �0 as well. Since the HWENO reconstruction maintains high order accuracy in the
troubled cells, it is less crucial to choose an accurate M .

The other indicator is the usage of the shock detect technique adopted in [14], we termed
it as KXRCF indicator. We divide the boundary of the target cell �0 into two parts: ∂�+

0
and ∂�−

0 , where the flow is into (v · n < 0) and out of (v · n > 0) �0 respectively. Then the
target cell �0 is identified as “troubled cells” when

| ∫
∂�−

0
(uh(x, y, t)|�0 − uh(x, y, t)|�i

)ds|
h

k+1
2 |∂�−

0 | · ‖uh(x, y, t)|�0‖
> 1, (3.10)

where h is the radius of the circumscribed circle in �0, �i is neighbor of �0 on side of
∂�−

0 .
For the troubled cells, we reconstruct the polynomial solutions while retaining their cell

averages. In other words, we reconstruct the degrees of freedom u
(l)

0 (t), l = 1, . . . ,K and
retain only the cell average u

(0)

0 (t).
For the k = 1 case, we summarize the procedure to reconstruct the first order moments

u
(1)

0 (t) and u
(2)

0 (t) in the troubled cell �0 using the HWENO reconstruction procedure. For
the simplicity, we rewrite u(∗)(t) to be u(∗) if it will not cause confusion.

Step 3.1.1. We select the big stencil as S = {�0,�1,�2,�3}. Then we construct polyno-
mial P (x, y) to approximate u by requiring that it has the same cell average as u(0) on the
target cell �0, and matches the cell averages of u(0), u(1) or u(2) on the other triangles in the
set S \ {�0} in a least square sense.

Step 3.1.2. We then construct six linear polynomials qi(x, y), i = 1, . . . ,6, satisfying:

1

|��|
∫

��

qi(x, y)dxdy = u
(0)
� , (3.11)

1∫
��x

(v
(�x )

1 (x, y))2dxdy

∫
��x

qi(x, y)v
(�x )

1 (x, y)dxdy = u
(1)
�x

, (3.12)

1∫
��y

(v
(�y )

2 (x, y))2dxdy

∫
��y

qi(x, y)v
(�y )

2 (x, y)dxdy = u
(2)
�y

. (3.13)

For

i = 1, � = 0,1,2; i = 2, � = 0,2,3;
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i = 3, � = 0,3,1; i = 4, � = 0, �x = 1, �y = 1;
i = 5, � = 0, �x = 2, �y = 2; i = 6, � = 0, �x = 3, �y = 3.

Step 3.1.3. We find the combination coefficients, also called linear weights, denoted by
γ

(l)

1 , . . . , γ
(l)

6 , l = 1,2, satisfying:

∫
�0

P (x, y)v
(0)
l (x, y)dxdy =

6∑
i=1

γ
(l)
i

∫
�0

qi(x, y)v
(0)
l (x, y)dxdy,

l = 1,2. (3.14)

The linear weights are achieved by asking for

min

(
6∑

i=1

(γ
(l)
i )2

)
, l = 1,2. (3.15)

By doing so, we can get the linear weights uniquely but can not maintain them positively
all the time, we can use the methods that produced in [12, 24] to overcome this drawback.

Step 3.1.4. We compute the smoothness indicators, denote by βi , i = 1, . . . ,6, for the
smaller stencils Si , i = 1, . . . ,6, which measure how smooth the functions qi(x, y), i =
1, . . . ,6 are in the target cell �0. The smaller these smoothness indicators, the smoother the
functions are in the target cell. We use the same recipe for the smoothness indicators as in
[12, 13]:

βi =
k∑

|�|=1

|�0||�|−1
∫

�0

(
∂ |�|

∂x�1∂y�2
qi(x, y)

)2

dxdy (3.16)

where � = (�1, �2).
Step 3.1.5. We compute the non-linear weights based on the smoothness indicators:

ωi = ω̄i∑6
�=1 ω̄�

, ω̄� = γ�

(ε + β�)2
. (3.17)

Here ε is a small positive number to avoid the denominator to become zero. We take ε =
10−6 in our computation.

The moments of the reconstructed polynomial are then given by:

u
(l)

0 (t) = 1∫
�0

(v
(0)
l (x, y))2dxdy

6∑
i=1

ω
(l)
i

∫
�0

qi(x, y)v
(0)
l (x, y)dxdy,

l = 1,2. (3.18)

For the k = 2 case, the procedure to reconstruct the first and second order moments
u

(1)

0 (t), u
(2)

0 (t), u
(3)

0 (t), u
(4)

0 (t) and u
(5)

0 (t) in the troubled cell �0 is analogous to that for the
k = 1 case. The troubled cell and its neighboring cells are shown in Fig. 2.

Step 3.2.1. We select the big stencil as S = {�0,�1,�2,�3, �11,�12,�21, �22,
�31, �32}. Then we construct polynomial Q(x,y) to approximate u by requiring that it
has the same cell average as u(0) on the target cell �0 and matches the cell averages of u(0),
u(1) or u(2) on the other triangles in the set S \ {�0} in a least square sense.
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Fig. 3 Burgers equation. Sample
mesh. The mesh points on the
boundary are uniformly
distributed with cell length
h = 4/10

Table 1 ut + ( u2

2 )x + ( u2

2 )y = 0. u(x, y,0) = 0.5 + sin(π(x + y)/2). Periodic boundary conditions in both

directions. t = 0.5/π . L1 and L∞ errors. HWENO schemes

h HWENO3 HWENO4

L1 error order L∞ error order L1 error order L∞ error order

4/10 1.67E–2 7.73E–2 1.64E–3 9.10E–3

4/20 3.61E–3 2.21 2.04E–2 1.92 1.51E–4 3.44 1.57E–3 2.53

4/40 5.39E–4 2.74 3.18E–3 2.68 1.19E–5 3.67 1.64E–4 3.26

4/80 7.33E–5 2.88 4.62E–4 2.78 7.87E–7 3.92 1.03E–5 3.98

4/160 9.83E–6 2.90 6.89E–5 2.74 5.05E–8 3.96 7.96E–7 3.71

Step 3.2.2. We can then construct quadratic polynomials qi(x, y), i = 1, . . . ,9, which
satisfy the following conditions:

1

|��|
∫

��

qi(x, y)dxdy = u
(0)
� , (3.19)

1∫
��x

(v
(�x )

1 (x, y))2dxdy

∫
��x

qi(x, y)v
(�x )

1 (x, y)dxdy = u
(1)
�x

, (3.20)

1∫
��y

(v
(�y )

2 (x, y))2dxdy

∫
��y

qi(x, y)v
(�y )

2 (x, y)dxdy = u
(2)
�y

. (3.21)



306 J Sci Comput (2009) 39: 293–321

Table 2 ut + ( u2

2 )x + ( u2

2 )y = 0. u(x, y,0) = 0.5 + sin(π(x + y)/2). Periodic boundary conditions in

both directions. t = 0.5/π . L1 and L∞ errors. RKDG with the HWENO limiter (TVB indicator, constant
M = 0.01) compared to RKDG without limiter

h DG with HWENO limiter DG without limiter

L1 error order L∞ error order L1 error order L∞ error order

P 1 4/10 5.77E–2 7.30E–1 2.41E–2 2.56E–1

4/20 1.45E–2 1.99 2.55E–1 1.51 6.07E–3 1.99 7.54E–2 1.77

4/40 3.57E–3 2.02 6.40E–2 2.00 1.53E–3 1.98 2.14E–2 1.81

P 2 4/80 8.80E–4 2.02 1.83E–2 1.80 3.91E–4 1.97 5.71E–3 1.91

4/160 1.74E–4 2.34 4.24E–3 2.12 9.87E–5 1.99 1.55E–3 1.88

4/10 5.61E–3 1.03E–1 1.70E–3 5.28E–2

4/20 4.99E–4 3.49 9.15E–3 3.49 2.45E–4 2.79 8.19E–3 2.69

4/40 5.69E–5 3.13 1.56E–3 2.55 3.17E–5 2.95 1.55E–3 2.39

4/80 6.88E–6 3.05 2.37E–4 2.71 4.01E–6 2.98 2.37E–4 2.71

4/160 8.59E–7 3.00 3.20E–5 2.89 5.03E–7 3.00 3.20E–5 2.89

Table 3 ut + ( u2

2 )x + ( u2

2 )y = 0. u(x, y,0) = 0.5 + sin(π(x + y)/2). Periodic boundary conditions in both
directions. t = 0.5/π . Time (seconds)

HWENO3 HWENO4 DG with HWENO limiter DG without limiter

649 854 P 1 562 P 1 198

P 2 697 P 2 356

Fig. 4 2D-Euler equations.
Sample mesh. The mesh points
on the boundary are uniformly
distributed with cell length
h = 2/10
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Table 4 2D-Euler equations: initial data ρ(x, y,0) = 1 + 0.2 sin(π(x + y)), u(x, y,0) = 0.7, v(x, y,0) =
0.3, and p(x, y,0) = 1. Periodic boundary conditions in both directions. t = 2.0. L1 and L∞ errors. HWENO
schemes

h HWENO3 HWENO4

L1 error order L∞ error order L1 error order L∞ error order

2/10 3.84E–2 7.18E–2 6.28E–3 1.32E–2

2/20 6.39E–3 2.59 1.23E–2 2.54 2.53E–4 4.63 6.49E–4 4.35

2/40 8.17E–4 2.97 1.88E–3 2.71 8.44E–6 4.90 2.44E–5 4.73

2/80 9.07E–5 3.17 2.17E–4 3.12 3.06E–7 4.78 9.67E–7 4.66

2/160 1.02E–5 3.15 3.59E–5 2.60 1.58E–8 4.28 5.45E–8 4.15

Table 5 2D-Euler equations: initial data ρ(x, y,0) = 1 + 0.2 sin(π(x + y)), u(x, y,0) = 0.7, v(x, y,0) =
0.3, and p(x, y,0) = 1. Periodic boundary conditions in both directions. t = 2.0. L1 and L∞ errors. RKDG
with the HWENO limiter (TVB indicator, constant M = 0.01) compared to RKDG without limiter

h DG with HWENO limiter DG without limiter

L1 error order L∞ error order L1 error order L∞ error order

P 1 2/10 5.29E–2 1.11E–1 4.39E–3 2.23E–2

2/20 2.31E–2 1.19 6.07E–2 0.88 1.03E–3 2.08 5.42E–3 2.04

2/40 7.63E–3 1.60 2.31E–2 1.39 2.54E–4 2.02 1.29E–3 2.06

2/80 2.02E–3 1.91 7.89E–3 1.55 6.38E–5 1.99 3.27E–4 1.98

2/160 3.83E–4 2.40 2.48E–3 1.67 1.62E–5 1.97 8.48E–5 1.95

P 2 2/10 2.30E–3 1.33E–2 4.48E–4 5.94E–3

2/20 3.29E–4 2.81 1.69E–3 2.98 6.17E–5 2.86 1.14E–3 2.38

2/40 4.45E–5 2.89 2.78E–4 2.60 7.05E–6 3.12 1.94E–4 2.56

2/80 5.51E–6 3.01 4.17E–5 2.74 7.76E–7 3.18 2.87E–5 2.76

2/160 6.95E–7 2.99 5.17E–6 3.00 1.10E–7 2.81 3.62E–6 2.99

Table 6 2D-Euler equations: initial data ρ(x, y,0) = 1 + 0.2 sin(π(x + y)), u(x, y,0) = 0.7, v(x, y,0) =
0.3, and p(x, y,0) = 1. Periodic boundary conditions in both directions. t = 2.0. Time (seconds)

HWENO3 HWENO4 DG with HWENO limiter DG without limiter

43890 122118 P 1 42085 P 1 12024

P 2 113475 P 2 40527

Table 7 Double Mach refection
problem. The maximum and
average percentages of troubled
cells subject to the HWENO
limiting

Double Mach refection problem. Troubled cells

Indicator type TVB, M = 100 KXRCF

P 1 maximum percentage 8.56 2.73

average percentage 2.87 2.04

P 2 maximum percentage 10.11 4.12

average percentage 4.20 3.01
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Fig. 5 Burgers’ equation. t = 1.5/π . The surface of the solution. Left: second order (k = 1); right: third
order (k = 2) RKDG with the HWENO limiter. Top: TVB indicator, constant M = 0.01; bottom: KXRCF
indicator. The mesh points on the boundary are uniformly distributed with cell length h = 4/80

Fig. 6 Double Mach refection problem. Sample mesh. The mesh points on the boundary are uniformly
distributed with cell length h = 1/10

For

i = 1, � = 0,1,11,12,3,32; i = 2, � = 0,1,11,12,2,21;
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Fig. 7 Double Mach refection problem. 30 equally spaced density contours from 1.5 to 22.7. Left: second
order (k = 1); right: third order (k = 2) RKDG with the HWENO limiter. Top: TVB indicator, constant
M = 100; middle: KXRCF indicator; bottom: left: HWENO3 scheme, right: HWENO4 scheme. The mesh
points on the boundary are uniformly distributed with cell length h = 1/300

Table 8 Forward step problem.
The maximum and average
percentages of troubled cells
subject to the HWENO limiting

Forward step problem. Troubled cells

Indicator type TVB, M = 100 KXRCF

P 1 maximum percentage 3.13 3.26

average percentage 2.27 1.19

P 2 maximum percentage 4.56 5.09

average percentage 3.75 3.18

i = 3, � = 0,2,21,22,1,12; i = 4, � = 0,2,21,22,3,31;
i = 5, � = 0,3,31,32,2,22; i = 6, � = 0,3,31,32,1,11;
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Fig. 8 Double Mach refection problem. Zoom-in pictures around the Mach stem. 30 equally spaced density
contours from 1.5 to 22.7. Left: second order (k = 1); right: third order (k = 2) RKDG with the HWENO lim-
iter. Top: TVB indicator, constant M = 100; middle: KXRCF indicator; bottom: left: HWENO3 scheme, right:
HWENO4 scheme. The mesh points on the boundary are uniformly distributed with cell length h = 1/30

i = 7, � = 0,1,11,12, �x = 1, �y = 1;
i = 8, � = 0,2,21,22, �x = 2, �y = 2;
i = 9, � = 0,3,31,32, �x = 3, �y = 3.

The remaining steps are the same as those for the k = 1 case. Finally, the moments of the
reconstructed polynomial are given by:

u
(l)

0 (t) = 1∫
�0

(v
(0)
l (x, y))2dxdy

9∑
i=1

ω
(l)
i

∫
�0

qi(x, y)v
(0)
l (x, y)dxdy,

l = 1,2,3,4,5. (3.22)



J Sci Comput (2009) 39: 293–321 311

Fig. 9 Double Mach refection problem. Troubled cells. Circles denote triangles which are identified as
“troubled cells” subject to the HWENO limiting at the final computational step. Left: second order (k = 1);
right: third order (k = 2) RKDG with the HWENO limiter. Top: TVB indicator, constant M = 100; bottom:
KXRCF indicator. The mesh points on the boundary are uniformly distributed with cell length h = 1/300

Fig. 10 Forward step problem. Sample mesh. The mesh points on the boundary are uniformly distributed
with cell length h = 1/20

4 Numerical Results

In this section we provide numerical results to demonstrate the performance of the HWENO
schemes and as limiters for the RKDG methods on unstructured meshes described in Sect. 2
and Sect. 3.

We first test the accuracy of the schemes in two dimensional problems.
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Fig. 11 Forward step problem. 30 equally spaced density contours from 0.32 to 6.15. Second order (k = 1)
RKDG with the HWENO limiter. Top: TVB indicator, constant M = 100; middle: KXRCF indicator; bottom:
HWENO3 scheme. The mesh points on the boundary are uniformly distributed with cell length h = 1/160

Example 1 We solve the following nonlinear scalar Burgers’ equation in two dimensions:

ut +
(

u2

2

)
x

+
(

u2

2

)
y

= 0 (4.1)

with the initial condition u(x, y,0) = 0.5 + sin(π(x + y)/2) and periodic boundary condi-
tions in both directions. We compute the solution up to t = 0.5/π , when the solution is still
smooth. For this test case the mesh we used is shown in Fig. 3. The errors and numerical
orders of accuracy for HWENO schemes are shown in Table 1 and for the RKDG method
with the HWENO limiter comparing with the original RKDG method without limiter are
shown in Table 2 and the computing time in Table 3 with the PC environment of Microsoft
Windows 2000, 4 CPU 2.6 GHz, 1 GB RAM. We can see that the HWENO schemes and
RKDG methods can keep the designed order of accuracy.
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Fig. 12 Forward step problem. 30 equally spaced density contours from 0.32 to 6.15. Third order (k = 2)
RKDG with the HWENO limiter. Top: TVB indicator, constant M = 100; middle: KXRCF indicator; bottom:
HWENO4 scheme. The mesh points on the boundary are uniformly distributed with cell length h = 1/160

Example 2 We solve the Euler equations

∂

∂t

⎛
⎜⎜⎝

ρ

ρu

ρv

E

⎞
⎟⎟⎠ + ∂

∂x

⎛
⎜⎜⎝

ρu

ρu2 + p

ρuv

u(E + p)

⎞
⎟⎟⎠ + ∂

∂y

⎛
⎜⎜⎝

ρv

ρuv

ρv2 + p

v(E + p)

⎞
⎟⎟⎠ = 0 (4.2)

in which ρ is the density, u is the x-direction velocity, v is the y-direction velocity, E

is the total energy, and p = E
γ−1 − 1

2ρ(u2 + v2) is the pressure, with γ = 1.4. The ini-
tial conditions are: ρ(x, y,0) = 1 + 0.2 sin(π(x + y)), u(x, y,0) = 0.7, v(x, y,0) = 0.3,
p(x, y,0) = 1. Periodic boundary conditions are applied in both directions. The exact solu-
tion is ρ(x, y, t) = 1 + 0.2 sin(π(x + y − t)). We compute the solution up to t = 2. For this
test case the mesh we used is shown in Fig. 4. The errors and numerical orders of accuracy
for HWENO schemes are shown in Table 4 and for the RKDG method with the HWENO
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Fig. 13 Forward step problem. Troubled cells. Circles denote triangles which are identified as “troubled
cells” subject to the HWENO limiting at the final computational step. Second order (k = 1) RKDG with the
HWENO limiter. Top: TVB indicator, constant M = 100; bottom: KXRCF indicator. The mesh points on the
boundary are uniformly distributed with cell length h = 1/160

Fig. 14 Forward step problem. Troubled cells. Circles denote triangles which are identified as “troubled
cells” subject to the HWENO limiting at the final computational step. Third order (k = 2) RKDG with the
HWENO limiter. Top: TVB indicator, constant M = 100; bottom: KXRCF indicator. The mesh points on the
boundary are uniformly distributed with cell length h = 1/160
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Fig. 15 NACA0012 airfoil mesh zoom in

Table 9 NACA0012 airfoil
problem. The maximum and
average percentages of troubled
cells subject to the HWENO
limiting

M∞ = 0.8, angle of attack α = 1.25◦

Indicator type TVB, M = 100 KXRCF

P 1 maximum percentage 8.60 13.8

average percentage 4.61 6.38

P 2 maximum percentage 14.5 13.2

average percentage 4.66 6.14

M∞ = 0.85, angle of attack α = 1◦

Indicator type TVB, M = 100 KXRCF

P 1 maximum percentage 12.7 14.4

average percentage 4.90 7.74

P 2 maximum percentage 14.7 13.5

average percentage 7.95 7.13

limiter comparing with the original RKDG method without limiter are shown in Table 5 and
the computing time in Table 6 with the PC environment of Microsoft Windows 2000, 4 CPU
2.6 GHz, 1 GB RAM. Similar to the previous example, we can see that these schemes again
keep the designed order of accuracy.

Remark From these examples, we can see the TVB indicator needs
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Fig. 16 NACA0012 airfoil. Mach number. M∞ = 0.8, angle of attack α = 1.25◦ , 30 equally spaced Mach
number contours from 0.172 to 1.325. Left: second order (k = 1); right: third order (k = 2) RKDG with the
HWENO limiter. Top: TVB indicator, constant M = 100; bottom: KXRCF indicator

We now test the performance of the HWENO schemes and the RKDG methods with the
HWENO limiters for problems containing shocks.

Example 3 We solve the same nonlinear Burgers’ equation (4.1) with the same initial con-
dition u(x, y,0) = 0.5 + sin(π(x + y)/2), except that we plot the results at t = 1.5/π when
a shock has already appeared in the solution. The solutions are shown in Fig. 5. We can see
that the schemes give non-oscillatory shock transitions for this problem.

Example 4 Double Mach reflection problem. This model problem is originally from [29].
We solve the Euler equations (4.2) in a computational domain of a tube which contains
a wedge (30◦). The shock moves with a Mach number of 10, the undisturbed air ahead
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Fig. 17 NACA0012 airfoil. Mach number. M∞ = 0.85, angle of attack α = 1◦ , 30 equally spaced Mach
number contours from 0.158 to 1.357. Left: second order (k = 1); right: third order (k = 2) RKDG with the
HWENO limiter. Top: TVB indicator, constant M = 100; bottom: KXRCF indicator

the shock has a density of 1.4 and a pressure of 1 and the left hand side of the shock has
a density of 8, velocity of 8.25 and pressure of 116.5. The results are shown at t = 0.2.
Two different orders of accuracy for the RKDG with HWENO limiters, k = 1 and k = 2
(second and third order) and the HWENO schemes are used in the numerical experiments.
In Table 7 we document the percentage of cells declared to be “troubled cells” for different
orders of accuracy. A mesh coarser than what is used in the actual computation is shown in
Fig. 6. The simulation results on the mesh with different orders of accuracy, the “zoomed-in”
pictures around the double Mach stem to show more details and associated “troubled cells”
distribution at finial computational step are shown in Fig. 7, Fig. 8 and Fig. 9 respectively.
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Fig. 18 NACA0012 airfoil. Pressure distribution. M∞ = 0.8, angle of attack α = 1.25◦ . Left: second order
(k = 1); right: third order (k = 2) RKDG with the HWENO limiter. Top: TVB indicator, constant M = 100;
bottom: KXRCF indicator

Example 5 A Mach 3 wind tunnel with a step. This model problem is also originally from
[29]. The setup of the problem is as follows. The wind tunnel is 1 length unit wide and
3 length units long. The step is 0.2 length units high and is located 0.6 length units from
the left-hand end of the tunnel. The problem is initialized by a right-going Mach 3 flow.
Reflective boundary conditions are applied along the wall of the tunnel and inflow/outflow
boundary conditions are applied at the entrance/exit. At the corner of the step, there is a
singularity. However we do not modify our schemes or refine the mesh near the corner, in
order to test the performance of our schemes for such singularity. The results are shown at
t = 4. In Table 8 we document the percentage of cells declared to be “troubled cells” for
different orders of accuracy to identify troubled cells. We present the triangulation of the
whole region [0,3] × [0,1] in Fig. 10. And in Fig. 11 and Fig. 12, we show 30 equally
spaced density contours from 0.32 to 6.15 computed by the second and third order RKDG
schemes with the HWENO limiters and HWENO schemes. We can clearly observe that
the third order scheme gives better resolution than the second order scheme, especially for
the resolution of the physical instability and roll-up of the contact line. Then associated
“troubled cells” distribution at the final computational step are shown in Fig. 13 and Fig. 14.
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Fig. 19 NACA0012 airfoil. Pressure distribution. M∞ = 0.85, angle of attack α = 1◦ . Left: second order
(k = 1); right: third order (k = 2) RKDG with the HWENO limiter. Top: TVB indicator, constant M = 100;
bottom: KXRCF indicator

Example 6 We consider inviscid Euler transonic flow past a single NACA0012 airfoil con-
figuration with Mach number M∞ = 0.8, angle of attack α = 1.25◦ and with M∞ = 0.85,
angle of attack α = 1◦. The computational domain is [−15,15]× [−15,15]. The mesh used
in the computation is shown in Fig. 15, consisting of 9340 elements with the maximum di-
ameter of the circumcircle being 1.4188 and the minimum diameter being 0.0031 near the
airfoil. And we use curved cells near the airfoil for computing. The second and third order
RKDG scheme with the HWENO limiter are used in the numerical experiments. In Table 9
we document the percentage of cells declared to be “troubled cells” for different orders of
accuracy to identify troubled cells. We can see that only a small percentage of cells are de-
clared as “troubled cells”. Mach number and pressure distributions are shown in Fig. 16,
Fig. 17, Fig. 18 and Fig. 19 respectively. We can see that the third order scheme has better
resolution than the second order one.

to choose the parameter M which depends on the solution of the problem. For scalar
problems it is possible to estimate M by the initial condition; but, it is more difficult to
estimate M for the system case. It is hard to accumulate M properly. And the KXRCF
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indicator is based on a strong super-convergence at the outflow boundary of each element
in smooth regions for the RKDG method to detect discontinuities and to lower the order of
accuracy in the approximation there to avoid spurious oscillations near such discontinuities.
This indicator does not need to define parameter M and can detect strong shocks well.

5 Concluding Remarks

We have developed a class of finite volume high order Hermite WENO schemes. And then
use HWENO reconstructions as limiters for the RKDG methods to solve hyperbolic conser-
vation laws on unstructured meshes. The main idea is to first identify troubled cells subject
to the HWENO limiting, then reconstruct the polynomial solution inside the troubled cells
by the HWENO reconstruction using the cell averages and cell derivative averages of neigh-
boring cells, while maintaining the original cell averages of the troubled cells. Numerical
results are provided to show that the method is stable, accurate, and robust in maintaining
accuracy.
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