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Abstract We establish the global existence and uniqueness of classical solutions to the

Cauchy problem for the 3-D compressible Navier-Stokes equations under the assumption

that the initial density ‖ρ0‖L∞ is appropriate small and 1 < γ < 6

5
. Here the initial density

could have vacuum and we do not require that the initial energy is small.
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1 Introduction

The time evolution of the density and the velocity of a general viscous isentropic compress-

ible fluid occupying a domain Ω ⊂ R3 is governed by the compressible Navier-Stokes equations⎧⎨⎩ ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u)− μ u− (μ+ λ)∇divu+∇P (ρ) = 0,
(1.1)

where ρ ≥ 0, u = (u1, u2, u3) and P = aργ (a > 0, γ > 1) are the fluid density, velocity

and pressure, respectively. The constant viscosity coefficients μ and λ satisfy the physical

restrictions

μ > 0, μ+
3

2
λ ≥ 0. (1.2)

Let Ω = R3. We look for the solutions, (ρ(x, t), u(x, t)), to the Cauchy problem for (1.1)

with the far field behavior:

u(x, t)→ 0, ρ(x, t)→ 0 as |x| → ∞, (1.3)
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and initial data,

(ρ, u)|t=0 = (ρ0, u0), x ∈ R
3. (1.4)

Much efforts were devoted to study the global existence and behavior of solutions to (1.1).

The one dimensional problem was studied extensively by many people, see [1–4]. For the multi-

dimensional case, the local existence and uniqueness of smooth solutions were known in [5,

6] in the absence of vacuum and in [7–12] for the case that the initial density need not be

positive and may vanish in an open sets. The global classical solutions were first obtained by

Matsumura-Nishida [11] for initial data close to a nonvacuum equilibrium in some Sobolev space

Hs. Later, Hoff [12, 13] studied the problem for discontinuous initial data. For the existence

of solutions for arbitrary data (the far field is vacuum, that is ρ̃ = 0), the major breakthough

is due to Lions [14] (see also Feireisl [15]), where he obtained the global existence of weak

solutions—defined as solutions with finite energy when the exponent γ is suitably large. The

main restriction on initial data is that the initial energy is finite, so that the density vanishes at

far fields, or even has compact support. However, little was known on the structure of such weak

solutions. Recently, Zhang [16, 17] studied the existence of global classical (weak) solutions in

R
n (n = 2, 3) with small initial energy, the initial density away from the vacuum and the viscous

coefficient λ depending density; Huang-Li-Xin [18] established the well-posedness of the global

classical solutions with nonnegative initial density under the assumption that the initial energy

is small. The proofs in [18] supplied a method to deal with the initial density having vacuum.

Deng-Zhang-Zhao [19] established the global existence and uniqueness of classical solutions to

the Cauchy problem for the isentropic compressible Navier-Stokes equations in the 3-D space

with general initial data which could be either vacuum or non-vacuum under the assumption

that the viscosity coefficient μ is large enough.

In this paper we are interested to study the global existence and uniqueness of classical

solutions to Cauchy problem (1.1) with general initial energy. Enlightening by [18], we obtain

the well-posedness of global classical solutions with general initial energy which is allowed to

be vanish, under the assumption that the initial density ‖ρ0‖L∞ is small enough and the index

γ satisfies 1 < γ < 6

5
. In proof, some ideals in [18] are used.

Before stating the main result, we explain the notations and conventions used throughout

this paper. We denote ∫
fdx =

∫
R3

fdx. (1.5)

For 1 < r <∞, we denote the standard homogeneous and inhomogeneous Sobolev spaces

as follows:⎧⎨⎩Lr = Lr(R3), Dk,r = {u ∈ L1
loc(R

3)| ‖∇ku‖Lr <∞}, ‖u‖Dk,r := ‖∇ku‖Lr ,

W k,r = Lr ∩Dk,r , Hk = W k,2, Dk = Dk,2, D1 = {u ∈ L6| ‖∇u‖L2 <∞}.
(1.6)

The initial energy is defined as follows:

C0 =

∫ (
1

2
ρ0|u0|2 +G(ρ0)

)
dx, (1.7)

where G denotes the potential energy density given by

G(ρ) := ρ

∫ ρ

0

P (s)

s2
ds. (1.8)
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It is easy to see

G(ρ) =
P

γ − 1
. (1.9)

Then the main result in this paper can be stated as follows:

Theorem 1.1 Assume that (1.2) holds. For given appropriate small positive numbers M

and not necessarily small positive numbers M1 and M2, suppose that the initial data (ρ0, u0)

satisfy

0 ≤ inf ρ0 ≤ supρ0 ≤M, ‖∇u0‖2L2 ≤M1, (1.10)

u0 ∈ D1 ∩D3, (ρ0, P (ρ0)) ∈ H3, (1.11)

and the compatibility condition

−μ u0 − (μ+ λ)∇divu0 +∇P (ρ0) = ρ0g (1.12)

for some g ∈ D1 with
∫
ρ0|g|2dx ≤M2. Then if

1 < γ <
6

5
, (1.13)

the Cauchy problem (1.1), (1.3)–(1.4) has a unique global classical solution (ρ, u) satisfying for

any 0 < τ < T <∞,

0 ≤ ρ(x, t) ≤ 2M, x ∈ R
3, t ≥ 0, (1.14)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(ρ, P (ρ)) ∈ C([0, T ] : H3),

u ∈ C([0, T ];D1 ∩D3) ∩ L2(0, T ;D4) ∩ L∞(τ, T ;D4),

ut ∈ L∞(0, T ;D1) ∩ L2(0, T ;D2) ∩ L∞(τ, T ;D2) ∩H1(τ, T ;D1),
√
ρut ∈ L∞(0, T ;L2),

(1.15)

and the following large-time behavior:

lim
t→∞

∫ (
|ρ|q + ρ1/2|u|4 + |∇u|2

)
(x, t)dx = 0 (1.16)

for all q ∈ (γ,∞).

Remark It is easy to show that the solution obtained in Theorem 1.1 is a classical

solution for positive time. Moreover, in Theorem 1.1 we have not require that the initial energy

is small.

The rest of the paper is organized as follows: In Section 2, we state some elementary

facts and inequalities which will be needed in later analysis. Section 3 is devoted to derive the

necessary a priori estimates on classical solutions which are needed to extend the local existence

of solution to all the time. Section 4 gives out the proof of main theorem.

2 Preliminaries

In this section, we will recall some known facts and elementary inequalities which will be

used frequently later.
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First, the following well-known Gagliardo-Nirenberg inequality will be used.

Lemma 2.1 For p ∈ [2, 6], q ∈ (1,∞) and r ∈ (3,∞), there exists some generic constant

C > 0 which may depend on q, r such that for f ∈ H1(R3) and g ∈ Lq(R3)∩D1,r(R3), we have

‖f‖Lp ≤ C‖f‖(6−p)/2p

L2 ‖∇f‖(3p−6)/2p

L2 , (2.1)

‖g‖C(R3) ≤ C‖g‖q(r−3)/(3r+q(r−3))

Lq ‖∇g‖3r/(3r+q(r−3))

Lr . (2.2)

Next, the following Zlotnik inequality will be used to get the uniform (in time) upper

bound of the density ρ.

Lemma 2.2 Let the function y satisfy

y′(t) = g(y) + b′(t) on [0, T ], y(0) = y0

with g ∈ C(R) and y, b ∈W 1,1(0, T ). If g(∞) = −∞ and

b(t2)− b(t1) ≤ N0 +N1(t2 − t1) (2.3)

for all 0 ≤ t1 < t2 ≤ T with some N0 ≥ 0 and N1 ≥ 0, then

y(t) ≤ max{y0, ζ̄}+N0 <∞ on [0, T ],

where ζ̄ is a constant such that

g(ζ) ≤ N1 for ζ ≥ ζ̄ . (2.4)

The following lemma is the local existence and uniqueness of classical solutions when the

initial density may not be positive and may vanish in an open set.

Lemma 2.3 [8] Assume that the initial data (ρ0, u0) with ρ0 ≥ 0 satisfy (1.10)–(1.12).

Then there exist a small time T∗ > 0 and a unique classical solution (ρ, u) to the Cauchy

problem (1.1), (1.3)–(1.4) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρ, P (ρ)) ∈ C([0, T∗];H
3),

u ∈ C([0, T∗];D
1 ∩D3) ∩ L2(0, T∗;D

4),

ut ∈ L∞(0, T∗;D
1) ∩ L2(0, T∗;D

2),
√
ρut ∈ L∞(0, T∗;L

2),
√
ρutt ∈ L2(0, T∗;L

2), t1/2u ∈ L∞(0, T∗;D
4),

t1/2√ρutt ∈ L∞(0, T∗;L
2), tut ∈ L∞(0, T∗;D

3),

tutt ∈ L∞(0, T∗;D
1) ∩ L2(0, T∗;D

2).

(2.5)

We now state some elementary estimates which follow from Gagliardo-Nirenberg inequali-

ties and the standard Lp-estimate for the following elliptic system derived from the momentum

equations in (1.1):

 F = div(ρu̇), μ w = ∇× (ρu̇), (2.6)

where

ḟ := ft + u · ∇f, F := (2μ+ λ)divu− P (ρ), w := ∇× u (2.7)

are the material derivative of f , the effective viscous flux and the vorticity respectively.
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Lemma 2.4 Let (ρ, u) be a smooth solutions of (1.1) and (1.3). Then there exists a

generic positive constant C, such that for any p ∈ [2, 6],

‖∇F‖Lp ≤ C‖ρu̇‖Lp , ‖∇w‖Lp ≤ C‖ρu̇‖Lp , (2.8)

‖F‖Lp ≤ C‖ρu̇‖
3p−6

2p

L2 (‖∇u‖L2 + ‖P (ρ)‖L2)
6−p

2p , (2.9)

‖w‖Lp ≤ C‖ρu̇‖
3p−6

2p

L2 ‖∇u‖
6−p

2p

L2 , (2.10)

‖∇u‖Lp ≤ C(‖F‖Lp + ‖w‖Lp + ‖P (ρ)‖Lp), (2.11)

‖∇u‖Lp ≤ C‖∇u‖
6−p

2p

L2 (‖ρu̇‖L2 + ‖P (ρ)‖L6)
3p−6

2p . (2.12)

Proof The standard Lp-estimate for the elliptic system (2.6) yields directly (2.8), which

together with (2.1) and (2.7) gives (2.9) and (2.10).

Note that − u = −∇divu+∇× w, which implies that

∇u = −∇(− )−1∇divu+∇(− )−1∇× w.

Thus the standard Lp-estimates shows that

‖∇u‖Lp ≤ C(‖divu‖Lp + ‖w‖Lp) ≤ C(‖F‖Lp + ‖w‖Lp + ‖P (ρ)‖Lp). (2.13)

That is, (2.11) holds.

By Hölder inequality, (2.2) and the second inequality of (2.8), one has

‖∇u‖Lp ≤ ‖∇u‖(6−p)/2p

L2 ‖∇u‖(3p−6)/2p

L6

≤ C‖∇u‖(6−p)/2p

L2 (‖F‖L6 + ‖w‖L6 + ‖P (ρ)‖L6)
(3p−6)/2p

L6

≤ C‖∇u‖(6−p)/2p

L2 (‖ρu̇‖L2 + ‖P (ρ)‖L6)(3p−6)/2p. (2.14)

This finishes the proof of Lemma. �

Finally, we state the following Beal-Kato-Majda type inequality, see [18, 20].

Lemma 2.5 For 3 < q < ∞, there is a constant C(q) such that the following estimate

holds for all ∇u ∈ L2(R3) ∩D1,q(R3),

‖∇u‖L∞(R3) ≤ C
(‖div u‖L∞(R3) + ‖w‖L∞(R3)

)
log

(
e + ‖∇2u‖Lq(R3)

)
+ C‖∇u‖L2(R3) + C.

(2.15)

3 A Priori Estimates

To extend the local classical solution to all time, in this section, we will establish necessary

a priori estimates for smooth solutions to the Cauchy problem (1.1), (1.3)–(1.4). Let T > 0 be

a fixed time and (ρ, u) be the smooth solution to (1.1), (1.3)–(1.4), on R3 × (0, T ] in the class

(2.5) with smooth initial data (ρ0, u0) satisfying (1.10)–(1.12). To estimate this solution, we

define

A1(T ) := sup
t∈[0,T ]

‖∇u‖2L2 +

∫ T

0

∫
ρ|u̇|2dxdt,

A2(T ) := sup
t∈[0,T ]

∫
ρ|u̇|2dx+

∫ T

0

∫
|∇u̇|2dxdt.
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We have the following key a priori estimates on (ρ, u).

Proposition 3.1 For given numbers M > 0, assume that (ρ0, u0) satisfy (1.10)–(1.12).

Then there exist positive constants K1, K2 depending only on C0, a, γ, M1 and M2, such that

if (ρ, u) is a smooth solution of (1.1), (1.3)–(1.4) on R3 × (0, T ] satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup

R3×[0,T ]

ρ ≤ 2M,

A1(T ) ≤ 2K1,

A2(T ) ≤ 2K2,

(3.1)

the following estimates hold

sup
R3×[0,T ]

ρ ≤ 7

4
M, A1(T ) ≤ K1, A2(T ) ≤ K2, (3.2)

provided 1 < γ < 6

5
and M small enough.

Proposition 3.1 is an easy consequence of the following Lemmas 3.2–3.4.

In the following, we will use the convention that C denotes a generic positive constant

depending on a, γ, C0, μ, λ, M1 and M2, and we write C(α) to emphasize that C depends on

α.

We start with the following standard energy estimate for (ρ, u) and preliminary L2 bounds

for ∇u and ρu̇.

Lemma 3.2 Let (ρ, u) be a smooth solution of (1.1), (1.3)–(1.4). Then there is a constant

C depending on a, C0, μ, λ such that

sup
0≤t≤T

∫ (
1

2
ρ|u|2 +G(ρ)

)
dx+

∫ T

0

∫ (
μ|∇u|2 + (λ + μ)(divu)2

)
dxdt ≤ C0, (3.3)

A1(T ) ≤ CM1 + CMγ + C

∫ T

0

∫
|∇u|3dxdt, (3.4)

and

A2(T ) ≤M2 + CM2γ + C

∫ T

0

∫
|∇u|4dxdt. (3.5)

Proof Multiplying the first equation of (1.1) by G′(ρ) and the second by uj and inte-

grating, applying the far field condition (1.3), one shows easily the energy inequality (3.3).

Multiplying (1.1)2 by u̇ then integrating the resulting equality over R3 leads to∫
ρ|u̇|2dx =

∫
(−u̇ · ∇P (ρ) + u̇ ·  u+ u̇ · ∇divu) dx :=

3∑
i=1

M ′
i . (3.6)

Using (1.1)1 and integrating by parts give

M ′
1 = −

∫
u̇ · ∇P (ρ)dx

=

∫
((divu)tP (ρ)− (u · ∇u) · ∇P ) dx

=

(∫
divuP (ρ)dx

)
t

+

∫
(P ′ρ(divu)2 − P (divu)2 + P∂iu

j∂ju
i)dx

≤
(∫

divuP (ρ)dx

)
t

+ CMγ‖∇u‖2L2. (3.7)
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Integration by parts implies

M ′
2 = μ

∫
u̇ ·  udx

= −μ
2

(‖∇u‖2L2

)
t
+ μ

∫
∂iu

j∂i(u
k∂ku

j)dx

≤ −μ
2

(‖∇u‖2L2

)
t
+ C

∫
|∇u|3dx, (3.8)

and similarly,

M ′
3 = (μ+ λ)

∫
u̇ · ∇divudx

= −μ+ λ

2

(‖divu‖2L2

)
t
− (μ+ λ)

∫
divudiv(u · ∇u)dx

≤ −μ+ λ

2

(‖divu‖2L2

)
t
+ C

∫
|∇u|3dx. (3.9)

Combining (3.6)–(3.9) leads to

B′(t) +

∫
ρ|u̇|2dx ≤ CMγ‖∇u‖2L2 + C

∫
|∇u|3dx, (3.10)

where

B(t) =
μ

2
‖∇u‖2L2 +

μ+ λ

2
‖divu‖2L2 −

∫
divuP (ρ)dx

≥ μ

4
‖∇u‖2L2 +

μ+ λ

2
‖divu‖2L2 − CMγC0. (3.11)

Integrating (3.10) over (0, T ), and using (3.3), one has

B(t) +

∫ T

0

∫
ρ|u̇|2dxdt ≤ B(0) + CMγC0 + C

∫ T

0

∫
|∇u|3dxdt

≤ CM1 + CMγ + C

∫ T

0

∫
|∇u|3dxdt, (3.12)

i.e., (3.4) holds.

Next, operating u̇j(∂/∂t+ div(u·)) to (1.1)j
2, summing with respect to j, and integrating

the resulting equation over R3, one obtains after integration by parts(
1

2

∫
ρ|u̇|2dx

)
t

= −
∫
u̇j (∂jPt + div(∂jPu)) dx+ μ

∫
u̇j

(
 uj

t + div(u uj)
)

dx

+(μ+ λ)

∫
u̇j (∂t∂jdivu+ div(u∂jdivu)) dx

:=
3∑

i=1

Ni. (3.13)

It follows from integration by parts and using equation (1.1)1 that

N1 = −
∫
u̇j (∂jPt + div(∂jPu)) dx

=

∫ (−P ′ρdivu∂ju̇
j + P∂k(∂j u̇

juk)− P∂j(∂ku̇
juk)

)
dx

≤ CMγ‖∇u‖L2‖∇u̇‖L2

≤ δμ‖∇u̇‖2L2 + CM2γ‖∇u‖2L2. (3.14)
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Integration by parts leads to

N2 = μ

∫
u̇j

(
 uj

t + div(u uj)
)

dx

= −μ
∫ (|∇u̇j |2 + ∂iu̇

j∂ku
k∂iu

j − ∂iu̇
j∂iu

k∂ku
j − ∂ku̇

j∂iu
k∂iu

j
)
dx

≤ −μ‖∇u̇‖2L2 + C

∫
|∇u|4dx. (3.15)

Similarly,

N3 = (μ+ λ)

∫
u̇j (∂t∂jdivu+ div(u∂jdivu)) dx

= (μ+ λ)‖divu̇‖2L2 + (μ+ λ)

∫
(divu̇∂iu

k∂ku
i − divu̇(divu)2 + ∂ku̇

j∂ju
kdivu)dx

≤ −(μ+ λ)‖divu̇‖2L2 + δ‖∇u̇‖2L2 + C(δ)

∫
|∇u|4dx. (3.16)

Substituting (3.14)–(3.16) into (3.13) shows that for δ suitably small, it holds that(∫
ρ|u̇|2dx

)
t

+ μ‖∇u̇‖2L2 + (μ+ λ)‖divu̇‖2L2 ≤ CM2γ‖∇u‖2L2 + C

∫
|∇u|4dx. (3.17)

Integrating (3.17) over (0, T ) gives∫
ρ|u̇|2dx+ μ

∫ T

0

‖∇u̇‖2L2dt+ (μ+ λ)

∫ T

0

‖divu̇‖2L2dt

≤ M2 + CM2γ + C

∫ T

0

∫
|∇u|4dxdt, (3.18)

where we have used the compatibility condition, which implies that
√
ρu̇(x, t = 0) =

√
ρ0g.

Thus one finishes the proof of this Lemma. �

The following lemma will give more accurate estimates with respect to A1(T ) and A2(T ).

Lemma 3.3 There exist positive constants K1 and K2 depending on C0, a, μ, λ, M1

and M2 such that, if (ρ, u) is a smooth solution of (1.1), (1.3)–(1.4) satisfying (3.1), then

A1(T ) ≤ K1, A2(T ) ≤ K2, (3.19)

provided M appropriate small.

Proof Using Hölder inequality and Young’s inequality, it follows from (3.3) and (3.4)

that

A1(T ) ≤ CM1 + CMγ + C

∫ T

0

∫
|∇u|3dxdt

≤ C + CM1 + CMγ + C

∫ T

0

∫
|∇u|4dxdt. (3.20)

Due to (2.11)∫ T

0

‖∇u‖4L4dt ≤ C

∫ T

0

‖F‖4L4dt+ C

∫ T

0

‖w‖4L4dt+ C

∫ T

0

‖P (ρ)‖4L4dt. (3.21)
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It follows from (2.9) that∫ T

0

‖F‖4L4dt ≤ C

∫ T

0

(‖∇u‖L2 + ‖P (ρ)‖L2)‖ρu̇‖3L2dt

≤ C

(∫ T

0

‖∇u‖2L2dt

)1/2(∫ T

0

‖ρu̇‖6L2dt

)1/2

+CM
3

2 sup
t∈[0,T ]

(‖P (ρ)‖L2‖√ρu̇‖L2)

∫ T

0

∫
ρ|u̇|2dxdt

≤ CM
3

2A
1

2

1 (T )A2(T ) + CM
γ+3

2 A1(T )A
1

2

2 (T ), (3.22)

duo to (2.10), (3.3) and Hölder inequality∫ T

0

‖w‖4L4dt ≤ C

∫ T

0

‖∇u‖L2‖ρu̇‖3L2dt ≤ CM
3

2A
1

2

1 (T )A2(T ). (3.23)

To estimate the third term on the right side of (3.21), one deduces from (1.1)1 that P (ρ)

satisfies

(P (ρ))t + u · ∇(P (ρ)) + γP (ρ)divu = 0. (3.24)

Multiplying (3.24) by 3(P (ρ))2 and integrating the resulting equality over R3, one gets after

using divu = 1

2μ+λ
(F + P (ρ)) that

3γ − 1

2μ+ λ
‖P (ρ)‖4L4 = −

(∫
(P (ρ))3dx

)
t

− 3γ − 1

2μ+ λ

∫
(P (ρ))3Fdx

≤ −
(∫

(P (ρ))3dx

)
t

+
δ(3γ − 1)

2μ+ λ
‖P (ρ)‖4L4 +

C(δ)

2μ+ λ
‖F‖4L4. (3.25)

Integrating (3.25) over (0, T ), and choosing δ suitably small, one may arrive at∫ T

0

‖P (ρ)‖4L4dt ≤ CM2γ + C

∫ T

0

‖F‖4L4dt. (3.26)

Therefore, collecting (3.21)–(3.23) and (3.26) shows that∫ T

0

∫
|∇u|4dxdt ≤ CM2γ + CM

3

2A
1

2

1 (T )A2(T ) + CM
γ+3

2 A1(T )A
1

2

2 (T ). (3.27)

Combining (3.27) and (3.20) leads to

A1(T ) ≤ C + CM1 + CMγ + CM2γ + CM
3

2A
1

2

1 (T )A2(T ) + CM
γ+3

2 A1(T )A
1

2

2 (T )

≤ K1

2
+ CM

3

2K
1

2

1 K2 + CM
γ+3

2 K1K
1

2

2 , (3.28)

where

K1 ≥ 2(C + CM1 + CMγ + CM2γ).

On the other hand, combining (3.5) and (3.27) gives

A2(T ) ≤ M2 + CM2γ + CM
3

2A
1

2

1 (T )A2(T ) + CM
γ+3

2 A1(T )A
1

2

2 (T )

≤ K2

2
+ CM

3

2K
1

2

1 K2 + CM
γ+3

2 K1K
1

2

2 , (3.29)
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where

K2 ≥ 2(M2 + CM2γ).

Hence if 0 < M ≤ M̄ := min
{
1,

( K
1

2

1

4CK2

) 2

3 ,
(

1

4CK
1

2

1

) 2

3 ,
(

1

4CK
1

2

2

) 2

γ+3 ,
( K

1

2

2

4CK1

) 2

γ+3

}
, (3.19) holds. �

We now proceed to derive a uniform (in time) upper bound for the density.

Lemma 3.4 If (ρ, u) is a smooth solution of (1.1), (1.3)–(1.4) as in Lemma 3.3, then

sup
t∈[0,T ]

‖ρ‖L∞ ≤ 7M

4
, (3.30)

provided 1 < γ < 6

5
and M appropriate small.

Proof Rewrite the equation of the mass conservation (1.1)1 as

Dtρ = g(ρ) + b′(t), (3.31)

where

Dtρ := ρt + u · ∇ρ, g(ρ) := − aργ+1

2μ+ λ
, b(t) := − 1

2μ+ λ

∫ t

0

ρFds. (3.32)

For all 0 ≤ t1 ≤ t2 ≤ T , one deduces from Lemma 2.1, (3.19), (3.3) and (2.8) that

|b(t2)− b(t1)| ≤ CM

2μ+ λ

∫ t2

t1

‖F (·, t)‖L∞ds

≤ aMγ+1

2μ+ λ
(t2 − t1) +

C

M
5

3
γ−1

∫ T

0

‖F (·, t)‖8/3

L∞ds

≤ aMγ+1

2μ+ λ
(t2 − t1) +

C

M
5

3
γ−1

∫ T

0

‖F (·, t)‖2/3

L2 ‖∇F (·, t)‖2L6ds

≤ aMγ+1

2μ+ λ
(t2 − t1) +

C

M
5

3
γ−3

sup
t∈[0,T ]

(‖∇u‖2/3

L2 + ‖P (ρ)‖2/3

L2 )

∫ T

0

‖∇u̇‖2L2dt

≤ aMγ+1

2μ+ λ
(t2 − t1) +

C

M
5

3
γ−3

A
1

3

1 (T )A2(T ) +
C

M
4

3
γ−3

A2(T )

≤ aMγ+1

2μ+ λ
(t2 − t1) +

C

M
5

3
γ−3

K
1

3

1 K2 +
C

M
4

3
γ−3

K2

≤ aMγ+1

2μ+ λ
(t2 − t1) +

C1

M
5

3
γ−3

+
C2

M
4

3
γ−3

. (3.33)

Therefore, one can choose N1 and N0 in (2.3) as

N1 =
aMγ+1

2μ+ λ
, N0 =

C1

M
5

3
γ−3

+
C2

M
4

3
γ−3

.

Note that

g(ζ) ≤ − aζγ+1

2μ+ λ
≤ −N1 = −aM

γ+1

2μ+ λ
for all ζ ≥M.

So one can set ζ̄ = M in (2.4). Lemma 2.2 and (3.32) thus yield that

sup
t∈[0,T ]

‖ρ‖L∞ ≤ max{ρ0,M}+N0 ≤M +
C1

M
5

3
γ−3

+
C2

M
4

3
γ−3

≤ 7M

4
, (3.34)
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provided

max

{(
8C1

3

) 1

5

3
γ−2

,

(
8C2

3

) 1

4

3
γ−2

}
≤M ≤ M̄, if 1 < γ <

6

5
, (3.35)

which completes the proof of this lemma. �

Holding these lemmas on hand, we can deal with the higher order estimates of the solutions

which are needed to guarantee the extension of the local classical solution to be a global one.

Since the proofs of these lemmas are similar to those in [18], we give out the proofs in Appendix

of the paper.

Hereafter, we will always assume that γ, M satisfy (3.35) and the constant C may depend

on

T, ‖ρ 1

2

0 g‖L2 , ‖∇g‖L2, ‖∇u0‖H2 , ‖ρ0‖H3 , ‖P (ρ0)‖H3 ,

besides μ, λ, C0, a, γ, M1 and M2.

Lemma 3.5 The following estimates hold

sup
t∈[0,T ]

∫
ρ|ut|2dx+

∫ T

0

∫
|∇ut|2dxdt ≤ C, (3.36)

sup
t∈[0,T ]

(‖ρ‖H2 + ‖P (ρ)‖H2) ≤ C. (3.37)

Lemma 3.6 The following estimates hold:

sup
t∈[0,T ]

(‖ρt‖H1 + ‖Pt‖H1) +

∫ T

0

(‖ρtt‖2H1 + ‖Ptt‖2H1)dt ≤ C, (3.38)

sup
t∈[0,T ]

∫
|∇ut|2dx+

∫ T

0

∫
ρu2

ttdxdt ≤ C. (3.39)

Lemma 3.7 It holds that

sup
t∈[0,T ]

(‖ρ‖H3 + ‖P (ρ)‖H3) ≤ C, (3.40)

sup
t∈[0,T ]

(‖∇ut‖L2 + ‖∇u‖H2) +

∫ T

0

(‖∇u‖2H3 + ‖∇ut‖2H1)dt ≤ C. (3.41)

Lemma 3.8 For any τ ∈ (0, T ), there exists some positive constant C(τ) such that

sup
t∈[τ,T ]

(‖∇ut‖H1 + ‖∇4u‖L2) +

∫ T

τ

∫
|∇utt|2dxdt ≤ C(τ). (3.42)

4 Proof of Theorem 1.1

With all the a priori estimates in Section 3, we now prove the main result of this paper.

Proof of Theorem 1.1 By virtue of Lemma 2.3, there exists a T∗ > 0 such that the

Cauchy problem (1.1), (1.3)–(1.4) has a unique classical solution (ρ, u) on (0, T∗]. We will use

the a priori estimates, Proposition 3.1 and Lemmas 3.7 and 3.8, to extend the local classical

solution (ρ, u) to all the time.
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First, since

A1(0) ≤M1, A2(0) ≤M2, ρ0 ≤ 2M,

there exists a T1 ∈ (0, T∗] such that (3.1) holds for T = T1.

Set

T ∗ = sup{T | (3.1) holds}. (4.1)

Then T ∗ ≥ T1 > 0. Hence, for any 0 < τ < T ≤ T ∗ with T finite, it follows from Lemmas 3.7

and 3.8 that

∇ut, ∇3u ∈ C([τ, T ];L2 ∩ L4), ∇u, ∇2u ∈ C([τ, T ];L2 ∩ C(R3)), (4.2)

where we have used the standard embedding

L∞(τ, T ;H1) ∩H1(τ, T ;H−1) ↪→ C([τ, T ];Lq) for any q ∈ [2, 6).

Due to (3.36), (3.39) and (3.42), one can get∫ T

τ

‖(ρ|ut|2)t‖L1dt

≤
∫ T

τ

(‖ρt|ut|2‖L1 + 2‖ρut · utt‖L1)dt

≤ C

∫ T

τ

(‖ρ|divu||ut|2‖L1 + ‖|u||∇ρ||ut|2‖L1 + ‖ρ1/2ut‖L2‖‖ρ1/2utt‖L2)dt

≤ C

∫ T

τ

(‖ρ|ut|2‖L1‖∇u‖L∞ + ‖u‖L6‖∇ρ‖L2‖ut‖2L6 + ‖ρ1/2utt‖L2)dt ≤ C,

which yields

ρ1/2ut ∈ C([τ, T ];L2).

This, together with (4.2), gives

ρ1/2u̇, ∇u̇ ∈ C([τ, T ];L2). (4.3)

Next, we claim that

T ∗ =∞. (4.4)

Otherwise, T ∗ <∞. Then by Proposition 3.1, (3.2) holds for T = T ∗. It follows from Lemmas

3.7, 3.8 and (4.3) that (ρ(x, T ∗), u(x, T ∗)) satisfies (1.11) and (1.12) with g(x) = u̇(x, T ∗),

x ∈ R3. Lemma 2.3 implies that there exists T ∗∗ > T ∗, such that (3.1) holds for T = T ∗∗,

which contradicts (4.1). Hence, (4.4) holds. Lemmas 2.3, 3.7–3.8 and (4.2) thus show that

(ρ, u) is in fact the unique classical solution defined on (0, T ] for any 0 < T < T ∗ =∞.

The proof of (1.16) is similar to that in [18]. �
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Appendix The Proofs for Higher Derivatives

In this appendix, we first give out some basic estimates for the solution (ρ, u) before giving

out the proof of Lemmas 3.5–3.8.

Lemma A.1 The following estimates hold

sup
t∈[0,T ]

(‖∇ρ‖L2∩L6 + ‖∇u‖H1) +

∫ T

0

‖∇u‖L∞dt ≤ C. (A.1)

Proof For 2 ≤ p ≤ 6, |∇ρ|p satisfies

(|∇ρ|p)t + div(|∇ρ|pu) + (p− 1)|∇ρ|pdivu

+p|∇ρ|p−2(∇ρ)t∇u(∇ρ) + pρ|∇ρ|p−2∇ρ · ∇divu = 0. (A.2)
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Thus,

∂t‖∇ρ‖Lp ≤ C(1 + ‖u‖L∞)‖∇ρ‖Lp + C‖∇2u‖Lp

≤ C(1 + ‖u‖L∞)‖∇ρ‖Lp + C‖ρu̇‖Lp , (A.3)

due to

‖∇2u‖Lp ≤ C(‖ρu̇‖Lp + ‖∇P (ρ)‖Lp), (A.4)

which follows from the standard Lp-estimate for the following elliptic system:

μ u+ (μ+ λ)∇divu = ρu̇+∇P (ρ).

It follows from Lemma 2.5 and (A.4) that

‖∇u‖L∞ ≤ C(‖divu‖L∞ + ‖w‖L∞) log(e+ ‖∇2u‖L6) + C‖∇u‖L2 + C

≤ C(‖divu‖L∞ + ‖w‖L∞) log(e+ ‖u̇‖L6 + ‖∇P (ρ)‖L6) + C

≤ C(‖divu‖L∞ + ‖w‖L∞) log(e+ ‖u̇‖L6)

+C(‖divu‖L∞ + ‖w‖L∞) log(e+ ‖ρ‖L6) + C. (A.5)

Set

f(t) := e+ ‖∇ρ‖L6, g(t) := 1 + (‖divu‖L∞ + ‖w‖L∞) log(e+ ‖u̇‖L6) + ‖∇u̇‖L2.

Combining (A.5) with (A.3) and setting p = 6 in (A.3), one gets

f ′(t) ≤ Cg(t)f(t) + Cg(t)f(t) ln f(t) + Cg(t),

which yields

(ln f(t))′ ≤ Cg(t) + Cg(t) ln f(t), (A.6)

due to f(t) > 1. Note that (2.5), Lemma 2.1 and Lemma 3.4 imply∫ T

0

g(t)dt ≤
∫ T

0

(‖divu‖2L∞ + ‖w‖2L∞)dt+ C

≤
∫ T

0

(
1

2μ+ λ
‖F‖2L∞ +

1

2μ+ λ
‖P (ρ)− P (ρ̃)‖2L∞ + ‖w‖2L∞

)
dt+ C

≤
∫ T

0

(‖F‖2L∞ + ‖w‖2L∞)dt+ C

≤
∫ T

0

(‖F‖2L2 + ‖∇F‖2L6 + ‖w‖2L2 + ‖∇w‖2L6)dt+ C

≤ C

∫ T

0

‖∇u̇‖2L2dt+ C

≤ C, (A.7)

which, together with (A.6) and Gronwall’s inequality, shows that

sup
0≤t≤T

f(t) ≤ C. (A.8)
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Consequently,

sup
0≤t≤T

‖∇ρ‖L6 ≤ C. (A.9)

As a consequence of (A.5), (A.7) and (A.9), one obtain∫ T

0

‖∇u‖L∞dt ≤ C. (A.10)

Next, taking p = 2 in (A.3), one gets by using (A.10) and Gronwall’s inequality that

sup
0≤t≤T

‖∇ρ‖L2 ≤ C,

which, together with (A.4), (A.9) and (A.10), gives (A.1). The proof of this lemma is completed.

�

Proof of Lemma 3.5 Estimate (3.36) follows directly from the following simple facts:∫
ρ|ut|2dx ≤

∫
ρ|u̇|2dx+

∫
ρ|u · ∇u|2dx

≤ C + C‖√ρu‖L2‖u‖L6‖∇u‖2L6

≤ C + C‖√ρu‖L2‖u‖L6(‖ρu̇‖L2 + ‖P (ρ)‖L6)2

≤ C, (A.11)

and

‖∇ut‖2L2 ≤ ‖∇u̇‖2L2 + ‖∇(u · ∇u)‖2L2

≤ ‖∇u̇‖2L2 + C(‖u‖2L∞‖∇2u‖2L2 + ‖u‖4L4)

≤ ‖∇u̇‖2L2 + C‖u‖2L∞‖∇2u‖2L2 + C‖∇2u‖2L2(‖ρu̇‖L2 + ‖P (ρ)‖L6)3

≤ ‖∇u̇‖2L2 + C‖∇u‖1/2

L2 ‖∇u‖3/2

L6 ‖∇2u‖2L2 + C

≤ ‖∇u̇‖2L2 + C. (A.12)

Next, we prove (3.37). Note that P satisfies

Pt + u · ∇P + γPdivu = 0, (A.13)

which, together with (1.1)1 and a simple computation, yields that

d

dt
(‖∇2P‖2L2 + ‖∇2ρ‖2L2)

≤ C(1 + ‖∇u‖L∞)(‖∇2P‖2L2 + ‖∇2ρ‖2L2) + C‖F‖2H2 + C‖w‖2H2 + C, (A.14)

where we have used the following simple fact:

‖∇u‖Hm ≤ C(‖divu‖Hm + ‖w‖Hm)

≤ C(‖F‖Hm + ‖P (ρ)‖Hm + ‖w‖Hm) for m = 1, 2. (A.15)

Noticing that F and w satisfy (2.6), we get by the standard L2-estimate for elliptic system,

together with (A.1), that

‖F‖H2 + ‖w‖H2 ≤ C(‖F‖L2 + ‖∇(ρu̇)‖L2 + ‖w‖L2 + ‖ρu̇‖L2)

≤ C(1 + ‖F‖L2 + ‖∇(ρu̇)‖L2 + ‖∇u̇‖L2)

≤ C(1 + ‖∇ρ‖L3‖u̇‖L6 + ‖∇u̇‖L2)

≤ C(1 + ‖∇u̇‖L2), (A.16)
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which, together with (A.14), Lemma A.1, and Gronwall’s inequality, gives directly

sup
t∈[0,T ]

(‖∇2P‖L2 + ‖∇2ρ‖L2) ≤ C.

Thus the proof of this lemma is completed. �

Proof of Lemma 3.6 We first prove (3.38). One deduce from (A.13) and (A.1) that

‖Pt‖L2 ≤ C‖u‖L∞‖∇P‖L2 + ‖∇u‖L2 ≤ C. (A.17)

Differentiating (A.13) yields

∇Pt + u · ∇∇P +∇u · ∇P + γ∇Pdivu+ γP∇divu = 0.

Hence, by (A.1) and (3.36), one gets

‖∇Pt‖L2 ≤ C(‖u‖L∞‖∇2P‖L2 + ‖∇u‖L3‖∇P‖L6 + ‖∇2u‖L2) ≤ C. (A.18)

The combination of (A.17) with (A.18) implies

sup
0≤t≤T

‖Pt‖H1 ≤ C. (A.19)

Note that Ptt satisfies

Ptt + γPtdivu+ γPdivut + ut · ∇P + u · ∇Pt = 0. (A.20)

Thus, one gets from (A.20), (A.19), (A.1) and (3.36) that∫ T

0

‖Ptt‖2L2dt ≤ C

∫ T

0

(‖Pt‖L6‖∇u‖L3 + ‖∇ut‖L2 + ‖ut‖L6‖∇P‖L3 + ‖∇Pt‖L2)2dt

≤ C. (A.21)

One can hand ρt and ρtt similarly. Thus (3.38) holds.

Next, we prove (3.39). Differentiating (1.1)2 with respect to t, then multiplying the result-

ing equation by utt, one gets after integration by parts that

d

dt

1

2

∫ (
μ|∇ut|2 + (μ+ λ)(divut)

2
)
dx+

∫
ρu2

ttdx

=
d

dt

(
−1

2

∫
ρt|ut|2dx−

∫
ρtu · ∇u · utdx+

∫
Ptdivutdx

)
+

1

2

∫
ρtt|ut|2dx+

∫
(ρtu · ∇u)t · utdx−

∫
ρut · ∇u · uttdx

−
∫
ρu · ∇ut · uttdx−

∫
Pttdivutdx

:=
d

dt
I0 +

5∑
i=1

Ii. (A.22)

It follows (1.1)1, (A.1), (3.38) and (3.36) that

|I0| =
∣∣∣∣− 1

2

∫
ρt|ut|2dx−

∫
ρtu · ∇u · utdx+

∫
Ptdivutdx

∣∣∣∣
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≤ C

∣∣∣∣ ∫ div(ρu)|ut|2dx
∣∣∣∣ + C‖ρt‖L3‖u · ∇u‖L2‖ut‖L6 + C‖Pt‖L2‖∇ut‖L2

≤ C

∫
ρ|u||ut||∇ut|dx+ C‖∇ut‖L2

≤ C‖u‖L6‖ρ1/2ut‖1/2

L2 ‖ut‖1/2

L6 ‖∇ut‖L2 + C‖∇ut‖L2

≤ δ‖∇ut‖2L2 + C(δ), (A.23)

2|I1| =
∣∣∣∣ ∫ ρtt|ut|2dx

∣∣∣∣ =

∣∣∣∣ ∫ (ρtu+ ρut) · ∇|ut|2dx
∣∣∣∣

≤ C
(
‖ρt‖L3‖u‖L∞ + ‖ρ1/2ut‖1/2

L2 ‖ut‖1/2

L6

)
‖ut‖L6‖∇ut‖L2

≤ C‖ρt‖L3‖u‖L∞‖∇ut‖2L2 + ‖ρ1/2ut‖1/2

L2 ‖∇ut‖5/2

L2

≤ C
(
‖∇ut‖2L2 + ‖∇ut‖5/2

L2

)
≤ C‖∇ut‖4L2 + C, (A.24)

and

|I2| =
∣∣∣∣ ∫ (ρtu · ∇u)t · utdx

∣∣∣∣
=

∣∣∣∣ ∫ (ρttu · ∇u · ut + ρtut · ∇u · ut + ρtu · ∇ut · ut)dx

∣∣∣∣
≤ C(‖ρtt‖L2‖u · ∇u‖L3‖ut‖L6 + ‖ρt‖L2‖|ut|2‖L3‖∇u‖L6

+‖ρt‖L3‖u‖L∞‖∇ut‖L2‖ut‖L6)

≤ C(‖ρtt‖2L2 + ‖∇ut‖2L2). (A.25)

Cauchy’s inequality gives

|I3|+ |I4| =
∣∣∣∣ ∫ ρut · ∇u · uttdx

∣∣∣∣ +

∣∣∣∣ ∫ ρu · ∇ut · uttdx

∣∣∣∣
≤ C‖ρ1/2utt‖L2(‖ut‖L6‖∇u‖L3 + ‖u‖L∞‖∇ut‖L2)

≤ δ‖ρ1/2utt‖2L2 + C(δ)‖∇ut‖2L2, (A.26)

and

|I5| =
∣∣∣∣ ∫ Pttdivutdx

∣∣∣∣ ≤ C‖Ptt‖L2‖divut‖L2 ≤ C‖Ptt‖2L2 + ‖∇ut‖2L2. (A.27)

Due to the regularity of the local solution (2.5), t∇ut ∈ C([0, T∗];L
2). Thus

‖∇ut(·, T∗/2)‖L2 ≤ 2

T∗

‖t∇ut‖L∞(0,T∗;L2) ≤ C, (A.28)

where C may also depend on ‖∇g‖L2.

Collecting all estimates (A.23)–(A.28), one deduces from (A.22), (3.38), (3.36) and Gron-

wall’s inequality that

sup
T∗/2≤t≤T

‖∇ut‖L2 +

∫ T

T∗/2

∫
ρu2

ttdxdt ≤ C. (A.29)
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On the other hand, (2.5) gives

sup
0≤t≤T∗/2

‖∇ut‖L2 +

∫ T∗/2

0

∫
ρu2

ttdxdt ≤ C. (A.30)

The combination of (A.29) with (A.30) gives (3.39). This completes the proof of this lemma.

�

Proof of Lemma 3.7 It follows from (3.39) and (A.1) that

‖∇(ρu̇)‖L2 ≤ ‖|∇ρ||ut|‖L2 + ‖ρ∇ut‖L2 + ‖ρ|u||∇u|‖L2‖ρ|∇u|2‖L2 + ‖ρ|u||∇2u|‖L2

≤ ‖∇ρ‖L3‖ut‖L6 + C(‖∇ut‖L2 + ‖∇ρ‖L3‖u‖L∞‖∇u‖L6

+‖∇u‖L3‖∇u‖L6 + ‖u‖L∞‖∇2u‖L2)

≤ C, (A.31)

thus

sup
0≤t≤T

‖ρu̇‖H1 ≤ C. (A.32)

The standard H1-estimate for elliptic system gives

‖∇2u‖H1 ≤ C‖μ u+ (μ+ λ)∇divu‖H1 = C‖ρu̇+∇P‖H1

≤ C(‖ρu̇‖H1 + ‖∇P‖H1) ≤ C, (A.33)

due to (1.1)2, (A.32) and (3.37). As a consequence of (A.1) and (A.33), one has

sup
0≤t≤T

‖∇u‖H2 ≤ C. (A.34)

Therefore, the standard L2-estimate for elliptic system, (A.1), and Lemma 3.6 gives that

‖∇2ut‖L2 ≤ C‖μ ut + (μ+ λ)∇divut‖L2

= C‖ρtut + ρutt + ρtu · ∇u+ ρut · ∇u+ ρu · ∇ut +∇Pt‖L2

≤ C(‖ρutt‖L2 + ‖ρt‖L3‖ut‖L6 + ‖ρt‖L3‖u‖L∞‖∇u‖L6

+‖ut‖L6‖∇u‖L3 + ‖u‖L∞‖∇ut‖L2 + ‖∇Pt‖L2)

≤ C‖ρutt‖L2 + C, (A.35)

which, together with (3.39), implies ∫ T

0

‖∇ut‖2H1dt ≤ C. (A.36)

Applying the standard H2-estimate for elliptic system again leads to

‖∇2u‖H2 ≤ C‖μ u+ (μ+ λ)∇divu‖H2 ≤ C(‖ρu̇‖H2 + ‖∇P‖H2)

≤ C(1 + ‖∇ut‖H1 + ‖∇3P‖L2), (A.37)

where one has used (A.32) and the following simple facts:

‖∇2(ρut)‖L2 ≤ C(‖|∇2ρ||ut|‖L2 + ‖|∇ρ||∇ut|‖L2 + ‖∇2u‖L2)

≤ C(‖∇2ρ‖L2‖∇ut‖H1 + ‖|∇ρ‖L3‖∇ut‖L6 + ‖∇2ut‖L2)

≤ C + C‖∇ut‖H1 , (A.38)
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and

‖∇2(ρu · ∇u)‖L2 ≤ C(‖∇2(ρu)||∇u|‖L2 + ‖|∇(ρu)||∇2u|‖L2 + ‖∇3u‖L2)

≤ C(1 + ‖∇2(ρu)‖L2‖∇u‖H2 + ‖∇(ρu)‖L3‖∇2u‖L6)

≤ C(1 + ‖∇2ρ‖L2‖u‖L∞ + ‖|∇ρ‖L6‖∇u‖L3 + ‖∇2u‖L2)

≤ C, (A.39)

due to (3.37) and (A.34). By using (A.34), (A.37) and (3.37), one may get

(‖∇3P‖2L2)t ≤ C(‖|∇3u||∇P |‖L2 + ‖|∇2u||∇2P |‖L2 + ‖|∇u||∇3P |‖L2 + ‖∇4u‖L2)‖∇3P‖L2

≤ C(‖∇3u‖L2‖∇P‖H2 + ‖∇2u‖L3‖∇2P‖L6 + ‖∇u‖L∞‖∇3P‖L2)‖∇3P‖L2

+C(1 + ‖∇2ut‖L2 + ‖∇3P‖L2)‖∇3P‖L2

≤ C + C‖∇2ut‖2H1 + C‖∇3P‖2L2, (A.40)

which, together with Gronwall’s inequality and (A.36), yields that

sup
0≤t≤T

‖∇3P‖L2 ≤ C. (A.41)

Collecting all these estimates (A.34)–(A.36) and (3.37) shows that

sup
0≤t≤T

‖P (ρ)‖H3 +

∫ T

0

‖∇u‖2H3dt ≤ C. (A.42)

It is easy to check similar arguments work for ρ arguments work for ρ by using (A.42). Hence,

sup
0≤t≤T

‖ρ‖H3 ≤ C. (A.43)

Combining (A.42) and (A.43) shows (3.40). Estimate (3.41) thus follows from (3.39), (A.34),

(A.36) and (A.41). Hence the proof of this lemma is completed. �

Proof of Lemma 3.8 Differentiate (1.1)2 with respect to t to get

ρuttt + ρu · ∇utt − μ utt − (μ+ λ)∇divutt

= div(ρu)tut + 2div(ρu)utt − 2(ρu)t · ∇ut − (ρttu+ 2ρtut) · ∇u− ρutt · ∇u−∇Ptt. (A.44)

Multiplying (A.44) by utt and then integrating the resulting equation over R3, one gets after

integration by parts that

1

2

d

dt

∫
ρ|utt|2dx+

∫ (
μ|∇utt|2 + (μ+ λ)(divutt)

2
)
dx

= −4

∫
ui

ttρu · ∇ui
ttdx−

∫
(ρu)t · (∇(ut · utt) + 2∇ut · utt) dx

−
∫

(ρttu+ 2ρtut) · ∇u · uttdx−
∫
ρutt · ∇u · uttdx +

∫
Pttdivuttdx

:=

5∑
i=1

Ji. (A.45)

We now estimate each Ji (i = 1, · · · , 5) as follows:
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Hölder’s inequality gives

|J1| ≤ C‖ρ1/2utt‖L2‖∇utt‖L2‖u‖L∞ ≤ δ‖∇utt‖2L2 + C(δ)‖ρ1/2utt‖2L2 . (A.46)

It follows from (3.36), (3.38), (3.39) and (A.1) that

|J2| ≤ C(‖ρut‖L3 + ‖ρtu‖L3)(‖utt‖L6‖∇ut‖L2 + ‖∇utt‖L2‖ut‖L6)

≤ C(‖ρ1/2ut‖1/2

L2 ‖ut‖1/2

L6 + ‖ρt‖L6‖ρ‖L6)‖∇utt‖L2

≤ C‖∇utt‖2L2 + C, (A.47)

|J3| ≤ C(‖ρtt‖L3‖u‖L∞‖∇u‖L3 + ‖ρt‖L6‖ut‖L6‖∇u‖L2)‖utt‖L6)

≤ δ‖∇utt‖2L2 + C(δ)‖ρtt‖2L2 , (A.48)

and

|J4|+ |J5| ≤ C‖ρutt‖L2‖∇u‖L3‖utt‖L6 + ‖Ptt‖L2‖∇utt‖L2

≤ δ‖∇utt‖2L2 + C(δ)‖ρ1/2utt‖2L2 + C(δ)‖Ptt‖2L2 . (A.49)

For any τ ∈ (0, T∗), since t1/2√ρutt ∈ L∞(0, T∗;L
2) by (2.5), there exists some t0 ∈ (τ/2, τ)

such that ∫
ρ|utt|2dx(t0) ≤ 1

t0
‖t1/2√ρutt‖2L∞(0,T∗;L2) ≤ C(τ). (A.50)

Substituting (A.46)–(A.49) into (A.45) and choosing δ suitably small, one obtains by using

(3.38), (A.50) and Gronwall’s inequality that

sup
t0≤t≤T

∫
ρ|utt|2dx+

∫ T

t0

|∇utt|2dxdt ≤ C(τ), (A.51)

which, together with (A.35) and (3.39), yields that

sup
τ≤t≤T

‖∇ut‖H1 +

∫ T

τ

|∇utt|2dxdt ≤ C(τ), (A.52)

due to t0 < τ . Now, (3.42) follows from (A.37), (A.52) and (3.40). We finish the proof of this

lemma. �




