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1 Introduction

The time evolution of the density and the velocity of a general viscous isentropic compress-
ible fluid occupying a domain Q C R? is governed by the compressible Navier-Stokes equations

Pt + le(pU) = 07

(1.1)
(pu)e + div(pu @ u) — pAu — (p + A\)Vdivu + VP(p) = 0,

where p > 0, u = (u!,u?,u®) and P = ap” (a > 0,7 > 1) are the fluid density, velocity
and pressure, respectively. The constant viscosity coefficients p and A satisfy the physical
restrictions
3
>0, ,u+§/\20. (1.2)

Let Q = R3. We look for the solutions, (p(z,t),u(z,t)), to the Cauchy problem for (1.1)
with the far field behavior:

u(z,t) — 0, p(z,t) — 0 as |z] — oo, (1.3)
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and initial data,
(pau)|t:0 = (p07u0)7 S Rg' (14)

Much efforts were devoted to study the global existence and behavior of solutions to (1.1).
The one dimensional problem was studied extensively by many people, see [1-4]. For the multi-
dimensional case, the local existence and uniqueness of smooth solutions were known in [5,
6] in the absence of vacuum and in [7-12] for the case that the initial density need not be
positive and may vanish in an open sets. The global classical solutions were first obtained by
Matsumura-Nishida [11] for initial data close to a nonvacuum equilibrium in some Sobolev space
H#. Later, Hoff [12, 13] studied the problem for discontinuous initial data. For the existence
of solutions for arbitrary data (the far field is vacuum, that is p = 0), the major breakthough
is due to Lions [14] (see also Feireisl [15]), where he obtained the global existence of weak
solutions—defined as solutions with finite energy when the exponent ~ is suitably large. The
main restriction on initial data is that the initial energy is finite, so that the density vanishes at
far fields, or even has compact support. However, little was known on the structure of such weak
solutions. Recently, Zhang [16, 17] studied the existence of global classical (weak) solutions in
R™ (n = 2,3) with small initial energy, the initial density away from the vacuum and the viscous
coefficient A depending density; Huang-Li-Xin [18] established the well-posedness of the global
classical solutions with nonnegative initial density under the assumption that the initial energy
is small. The proofs in [18] supplied a method to deal with the initial density having vacuum.
Deng-Zhang-Zhao [19] established the global existence and uniqueness of classical solutions to
the Cauchy problem for the isentropic compressible Navier-Stokes equations in the 3-D space
with general initial data which could be either vacuum or non-vacuum under the assumption
that the viscosity coefficient p is large enough.

In this paper we are interested to study the global existence and uniqueness of classical
solutions to Cauchy problem (1.1) with general initial energy. Enlightening by [18], we obtain
the well-posedness of global classical solutions with general initial energy which is allowed to
be vanish, under the assumption that the initial density ||po||z~ is small enough and the index
~ satisfies 1 < v < g . In proof, some ideals in [18] are used.

Before stating the main result, we explain the notations and conventions used throughout

/fdx:/RS fdz. (1.5)

For 1 < r < 0o, we denote the standard homogeneous and inhomogeneous Sobolev spaces

this paper. We denote

as follows:
L7 = L'(R?), DM = {u € LL(BY)| [V ullor < o0}, [[ullper = [IV¥ull1r,

(1.6)
Wk = [rn DR HY = Wk2, DF = DF2 D! = {u € LY ||Vul|p2 < oo}

The initial energy is defined as follows:

Co = / (;P0|U0|2 + G(Po)) da, (1.7)

where G denotes the potential energy density given by

G(p) := p/op P(QS) ds. (1.8)

S
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It is easy to see
P
Gp)=——-:. 1.9
=" (19)
Then the main result in this paper can be stated as follows:
Theorem 1.1 Assume that (1.2) holds. For given appropriate small positive numbers M
and not necessarily small positive numbers M; and Ma, suppose that the initial data (pg,uo)

satisty
0 <infpy < suppy < M, ||Vug| 7. < My, (1.10)
up € D* N D3 (po, P(po)) € H?, (1.11)
and the compatibility condition
—ulug — (1 + A)Vdivug + VP(po) = pog (1.12)

for some g € D' with [ po|g|*dz < Ms. Then if
6
l<y< 5 (1.13)

the Cauchy problem (1.1), (1.3)—(1.4) has a unique global classical solution (p, u) satisfying for
any 0 < 7 <7T < o0,
0 < p(z,t) <2M, z € R t >0, (1.14)

and
(p, P(p)) € C([0,T] : H?),

u € C([0,T); D* N D?) N L?(0,T; D*) N L>(7,T; D),

(1.15)
ug € L*°(0,T; DYYN L%(0,T; D?) N L (7, T; D?*) N H*(7,T; DY),
Vpur € L>=(0,T;L?),
and the following large-time behavior:
tlim / (|p|q + 2 ul* + |Vu|2) (z,t)dx =0 (1.16)

for all ¢ € (v, 00).

Remark It is easy to show that the solution obtained in Theorem 1.1 is a classical
solution for positive time. Moreover, in Theorem 1.1 we have not require that the initial energy
is small.

The rest of the paper is organized as follows: In Section 2, we state some elementary
facts and inequalities which will be needed in later analysis. Section 3 is devoted to derive the
necessary a priori estimates on classical solutions which are needed to extend the local existence
of solution to all the time. Section 4 gives out the proof of main theorem.

2 Preliminaries

In this section, we will recall some known facts and elementary inequalities which will be

used frequently later.
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First, the following well-known Gagliardo-Nirenberg inequality will be used.
Lemma 2.1 For p € [2,6], ¢ € (1,00) and r € (3,00), there exists some generic constant
C > 0 which may depend on ¢, r such that for f € H'(R3) and g € L4(R3) N D" (R3), we have

1flLe < CIFINS P22 w ) 0020, (2.1)
lgllcms)y < Cllgl|al =2/ Grtar=30) g g)or/Grtatr=3)) (2.2)

Next, the following Zlotnik inequality will be used to get the uniform (in time) upper
bound of the density p.
Lemma 2.2 Let the function y satisfy

y'(t) = g(y) +b'(t) on [0,T], y(0) =4°
with g € C(R) and y, b € WH1(0,T). If g(00) = —oo and
b(t2) = b(t1) < No + Ni(t2 —t1) (2.3)
for all 0 < t; < t5 < T with some Ny > 0 and N1 > 0, then
y(t) < max{y°,{} 4+ Ny < o0 on [0, 7],
where ( is a constant such that
9(¢) < Ny for ¢>(. (2.4)

The following lemma is the local existence and uniqueness of classical solutions when the
initial density may not be positive and may vanish in an open set.

Lemma 2.3 [8] Assume that the initial data (pg,up) with py > 0 satisfy (1.10)—(1.12).
Then there exist a small time 7, > 0 and a unique classical solution (p,u) to the Cauchy
problem (1.1), (1.3)—(1.4) such that

(p, P(p)) € C([0,T2]; H?),

u € C([0,T.]; D' N D3) N L*(0,T; D*),

uy € L>(0,T%; D*) N L*(0,Ty; D?), /pus € L>=(0,Ty; L?),
VPuw € L2(0,Ty; L?), t'/2u € L>=(0,Ty; DY),

12 Jpuge € L>=(0,T; L?), tuy € L>=(0,Ty; D?),

tuy € L>°(0,Ty; DY) N L2(0,Ty; D?).

We now state some elementary estimates which follow from Gagliardo-Nirenberg inequali-
ties and the standard LP-estimate for the following elliptic system derived from the momentum
equations in (1.1):

AF =div(pu), plw =V x (pi), (2.6)

where
f=fi+u-Vf, F:=2u+Ndivu — P(p), w:=V x u (2.7)

are the material derivative of f, the effective viscous flux and the vorticity respectively.
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Lemma 2.4 Let (p,u) be a smooth solutions of (1.1) and (1.3). Then there exists a

generic positive constant C, such that for any p € [2,6],

IVFl|lLe < CllpilLe,  [Vwllze < Cllpil| e, (2.8)
[EllLe < Cllpill 2" (IVullz2 + [1P(p)]22) >, (2.9)
3p—6 6—p
lwllze < Cllpufl 2" [IVull 3, (2.10)
IVullze < C(|Fl[zr + [[wl[ze + [P(p)lLr), (2.11)
S 3p—6
IVulle < Cl[Vull gz ([pllL> + [[P(p)llze) = - (2.12)

Proof The standard LP-estimate for the elliptic system (2.6) yields directly (2.8), which
together with (2.1) and (2.7) gives (2.9) and (2.10).
Note that —Au = —Vdivu + V x w, which implies that
Vu = —V(=A)"'Vdivu + V(=A) "'V x w.
Thus the standard LP-estimates shows that
IVullrr < C(l|divul[re + [lw]|zr) < CFl|ze + [wllze + [1P(0)]Lr)- (2.13)

That is, (2.11) holds.
By Hélder inequality, (2.2) and the second inequality of (2.8), one has

6— 2 3p—6)/2
IVull e < [|Vul| %P2 Wu)| GP=072P

6— 2 3p—6)/2
< O[Vu)| S22 (|| F|| o + [w]| s + || P(p)] o) o7 ~072P
< C|Vull'SP2 (|| pi] 2 + | P(p)]| o) =27, (2.14)
This finishes the proof of Lemma. o

Finally, we state the following Beal-Kato-Majda type inequality, see [18, 20].
Lemma 2.5 For 3 < ¢ < oo, there is a constant C(q) such that the following estimate
holds for all Vu € L*(R3) N DY9(R3),

[Vul Lo @s) < C ([div ull Lo sy + wll Lo vs)) Tog (€ + [ Vul| Logs)) + ClIVul L2®s) + C.
(2.15)

3 A Priori Estimates

To extend the local classical solution to all time, in this section, we will establish necessary
a priori estimates for smooth solutions to the Cauchy problem (1.1), (1.3)—(1.4). Let T' > 0 be
a fixed time and (p,u) be the smooth solution to (1.1), (1.3)—(1.4), on R3 x (0,7] in the class
(2.5) with smooth initial data (pg,uo) satisfying (1.10)—(1.12). To estimate this solution, we
define

=
5
[

T
sup HVu||2L2+/ /p|a|2dxdt,
0

te]0,7)

T
Ay(T) := sup /p|u|2dx+/ /|Vu|2dxdt.
0

te]0,7)
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We have the following key a priori estimates on (p,u).

Proposition 3.1 For given numbers M > 0, assume that (po,uo) satisfy (1.10)—(1.12).
Then there exist positive constants K7, K5 depending only on Cy, a, v, M; and Ms, such that
if (p,u) is a smooth solution of (1.1), (1.3)-(1.4) on R? x (0, T] satisfying

sup p < 2M,
R3 %[0,
A(T) < 2K, (3.1)
As(T) < 2K,
the following estimates hold
7
sup  p S *M, Al(T) S Kl, AQ(T) S KQ, (32)

R3x[0,T] 4

provided 1 < v < g and M small enough.

Proposition 3.1 is an easy consequence of the following Lemmas 3.2-3.4.

In the following, we will use the convention that C' denotes a generic positive constant
depending on a, v, Co, i, A, M7 and Mo, and we write C'(«) to emphasize that C' depends on
.

We start with the following standard energy estimate for (p, u) and preliminary L? bounds
for Vu and p.

Lemma 3.2 Let (p, u) be a smooth solution of (1.1), (1.3)—(1.4). Then there is a constant
C depending on a, Cy, u, A such that

1 T
sup / (—p|u|2 + G(p)) dx + / / (u|Vu|2 + A+ u)(divu)Q) dzdt < Cy, (3.3)
0<t<T 2 0
T
A (T)<CM, +CMY +C / / |Vu>dadt, (3.4)
0
and .
Ay(T) < My + CM* 4+ C / / |Vu|tdzdt. (3.5)
0

Proof Multiplying the first equation of (1.1) by G’(p) and the second by u/ and inte-
grating, applying the far field condition (1.3), one shows easily the energy inequality (3.3).
Multiplying (1.1)y by % then integrating the resulting equality over R? leads to

3
/p|1l|2dx = /(—u -VP(p)+u-Au+ - Vdivu)de := Z M. (3.6)

=1

Using (1.1); and integrating by parts give
M| = —/11 -VP(p)dx
= /((divu)tP(p) — (u-Vu)-VP)dz
— ( / divuP(p)d:L‘) + / (P’ p(divu)? — P(divu)? + Poju? 0;u’)dx
t

< ( / divuP(p)dz) +OM |V, (3.7)
t
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Integration by parts implies

Mé:,u/ll-Aud:c

L (I9ul2.), +u/auﬂa kB )z

I/\
wlt wl

(IVull2.), +C/|Vu| de, (3.8)
and similarly,

M= (u+ ) [ @ Vdivude

= ,u—;— (IIdival|7), — (u+ )\)/divudiv(u -Vu)dz

< - “* (divul2.), +C/|Vu|3d:v (3.9)
Combining (3.6)—(3.9) leads to

B'(t) + /p|u|2dx < CMY||Vul|2z + O/ |Vuldz, (3.10)

where
+A L .
B(t) = ﬁ||Vu||%2 + M—HleUH%Q - /dlvuP(p)d:E

+
> Lullf + E2 divullf. — CMCo. (3.11)

Integrating (3.10) over (0,7), and using (3.3), one has
T T
+/ /p|u|2dxdt < B(0)+CMWCO+C/ /|Vu|3dxdt
0 0

T
< CM; +CM" + O/ /|Vu|3dxdt, (3.12)
0

i.e., (3.4) holds.
Next, operating @/ (9/dt + div(u-)) to (1.1)}, summing with respect to j, and integrating

the resulting equation over R3, one obtains after integration by parts
1 . . . .
(2 /p|1l|2da:> = —/uﬂ (0P, + div(0;Pu)) dx —l—,u/iﬂ (Aui —I—div(uAuJ)) dz
t

+(p+N) / W (9;0;divu + div(udjdivu)) dz

3
-y (3.13)
i=1
It follows from integration by parts and using equation (1.1); that
N1 = —/’(lj (@-Pt +d1V(a]P’u)) dx
= / (=P’ pdivud;i + PO (007 u”) — PO, (0 ur)) da

< OMY||Vul ([ Vi 2
< op||Vi||32 + CM||Vul|3.. (3.14)
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Integration by parts leads to

N,

u/aj (Aui + div(uAuj)) dz

—1 / (V! |2 + 0y OpuF 07 — 0507 Ok ! — O? 9u™ 007 ) da

IN

|Vl + c/ Vul*da. (3.15)
Similarly,
N3y =(p+A) /ui (0,0;divu + div(ud;divu)) dz

= (p+ A)||diva]|Fs + (u+ N) /(divd@iuk[)kui — diva(divu)? 4 9pi? 0jutdivu)dz

IN

—(p+ N)||dive| 72 + 8| Va2 + C(8) / |Vu|*dz. (3.16)
Substituting (3.14)—(3.16) into (3.13) shows that for § suitably small, it holds that
(/ p|a|2d:v> 4 pl| Va2 + (4 V|| diva||2. < CM>Y | Vaul/2. + c/ |Vu|*dz. (3.17)
t

Integrating (3.17) over (0,7) gives

T T
/p|u|2dw+u/ ||Vu||2L2dt+(u+)\)/ [|diva|2 .dt
0 0
T
< M2+OM27+O/ /|Vu|4da:dt, (3.18)
0

where we have used the compatibility condition, which implies that /pi(z,t = 0) = {/pog.
Thus one finishes the proof of this Lemma. O
The following lemma will give more accurate estimates with respect to A;(7T") and As(T).
Lemma 3.3 There exist positive constants K7 and Ko depending on Cy, a, u, A\, M
and My such that, if (p,u) is a smooth solution of (1.1), (1.3)—(1.4) satisfying (3.1), then

A(T) < Ky, Ax(T) < Ko, (3.19)
provided M appropriate small.
Proof Using Holder inequality and Young’s inequality, it follows from (3.3) and (3.4)
that
T
A(T) < CMy +CM" + O/ /|Vu|3dxdt
0

T
<C+CM+CM" + C/ / |Vu|*dzdt. (3.20)
0

Due to (2.11)

T T T T
[ivuba<c [phac [ elbasc [ pelta @2
0 0 0 0
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It follows from (2.9) that

T T
/O |Flldt < C / (I9ullz2 + 1P| =)l it

T 1/2 T 1/2
< c(/ ||Vu||§2dt) (/ |pu|6L2dt>
0 0

T
oMt sup (IP()||allv/pille) / / plif?dzdt
te[0,7] 0
< OMBA? (T)As(T) + CM % Ay (T) A3 (T), (3.22)

duo to (2.10), (3.3) and Holder inequality
T T .
[ lelisde < [ IVulialonlade < €33 a3 2)a0(T). (3.23)
0 0

To estimate the third term on the right side of (3.21), one deduces from (1.1); that P(p)
satisfies
(P(p))e +u-V(P(p)) +yP(p)divu = 0. (3.24)

Multiplying (3.24) by 3(P(p))? and integrating the resulting equality over R®, one gets after

using divu = ﬁ(F + P(p)) that

3yv—1 3v—1
Pl =~ ([(erar) -3 [ire)pre

<= ([reoras) + 250 =P + o Py IFI (25)

Integrating (3.25) over (0,7), and choosing ¢ suitably small, one may arrive at

T T
/0 |P(p)||14dt < CM* + O/O | |7 4dt. (3.26)

Therefore, collecting (3.21)—(3.23) and (3.26) shows that

T 1 5 1
/ / (Vu|*dzdt < CM? + CM3 AZ (T)A5(T) + CM ™" Ay (T) A2 (T). (3.27)
0
Combining (3.27) and (3.20) leads to
AL(T) < C+ OM; + CM”Y + CM?® + CM3 A? (T)Ay(T) + CM 5" A, (T) A3 (T)

K . L
<5 OM3K Ky + CM™3 K\ K2 (3.28)

where
Ky >2(C+CM, +CM"” + CM™).
On the other hand, combining (3.5) and (3.27) gives

V43

Aa(T) < My + M + CMEAF (T)A(T) + OMF 4y (1) A5 (T)

K s L
<+ OM3K? Ky + CM™¥ K\ K2 (3.29)
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where
Ky > 2(My + CM?).

. . : K2 N2, 1 \% o, 1 \+%5 [ KP \+33
HencelfO<M§M:=mln{17(40K2) ,(4CK1%) ,(4CK2%) ,(4CK1) },(3.19) holds. O

We now proceed to derive a uniform (in time) upper bound for the density.
Lemma 3.4 If (p,u) is a smooth solution of (1.1), (1.3)—(1.4) as in Lemma 3.3, then

M
sup [lplz < - (3.30)
te[0,T]

provided 1 < vy < g and M appropriate small.
Proof Rewrite the equation of the mass conservation (1.1); as

Dip=g(p) +0'(t), (3.31)
where
D v a’ L[k (3.32)
= . = — t) .= — . .
0 :=pe+u-Vp, g(p) TSN (t) 2#+A/Op s

For all 0 < ¢; <ty < T, one deduces from Lemma 2.1, (3.19), (3.3) and (2.8) that

CM [t

b(te) — b(t1)] < F(-,t)||p~d
) bie)] < 55 [ IFC s
CLMV-’_l O T 8/3
< (ta—t — F(,t)]|f<d
<Gt e [Pl s
(IMV-’_l C T 2/3
< (g — - : T
<Grrt—t+ e [ IPCOIEIVRCOlEds
aM C 2/3 a3y [
< ty—t1) + —5—= \Y% P Vi||7-dt
< Suya e =0+ s s (Il + 1P [ IVl
aM 1 C 1 C
<22 (4 — T A3 -
ST (to —t1) + M%v—sAl (T)Ax(T) + M%V_?)AQ(T)
aMH C 1
< — —— K3 —
< 2/L+/\(t2 t1)+M%V—3K1 K2+M%7_3K2
(IMV-’_l Cl Cg
< — — . .
<5 (ta —t1) + = (3.33)
Therefore, one can choose N7 and Ny in (2.3) as
M+ C C
o CNp=— 42
20+ A M37=3  M3Y3
Note that ) )
a¢’t aM+
9(¢) < Uit A= 1 2+ A or all ¢ >

So one can set ( = M in (2.4). Lemma 2.2 and (3.32) thus yield that

C’1 CQ M
~ < M} +No<M+ — < =2 3.34
tes[%%]lelL < max{po, M}+No < M+ g+ g < ) (3.34)
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((8)(9)"
max = | =

- } <M< M, (3.35)
which completes the proof of this lemma.

Holding these lemmas on hand, we can deal with the higher order estimates of the solutions

6
ifl<y<—,
1 y 5

which are needed to guarantee the extension of the local classical solution to be a global one.
of the paper.

O
Since the proofs of these lemmas are similar to those in [18], we give out the proofs in Appendix
on

Hereafter, we will always assume that v, M satisfy (3.35) and the constant C' may depend
1

T, llpg gliz; IVgllez, Vuollaz, leollas: [P(po)llms,
besides u, A, Co, a, v, My and Mos.

Lemma 3.5 The following estimates hold

sup

T
/p|ut|2dx+/ /|Vut|2d:vdt§ C,
t€(0,T7] 0

(3.36)
sup (|lpllg2 + [P(p)la2) < C
te[0,7)
Lemma 3.6 The following estimates hold:

(3.37)
T
sup ([lpellar + 1 Pellz) +/ (lpeellFrr + 1 Peel 7 )dt < €, (3.38)
te[0,7) 0
T
sup /|Vut|2dx+/ /puftd:cdt <C. (3.39)
te[0,T] 0
Lemma 3.7 It holds that
sup ([lpllms + 1P(p)llms) < C, (3.40)
t€[0,T]
T
sup ](HvutHL2 + [IVull2) +/ (IVullzs + [IVuel|3)dt < C. (3.41)
telo, 0
Lemma 3.8 For any 7 € (0,T), there exists some positive constant C(7) such that
T
sup (||Vaue| g + |Vl z2) +/ /|Vutt|2dacdt < CO(7).
te(r,T) T
4 Proof of Theorem 1.1

(3.42)

With all the a priori estimates in Section 3, we now prove the main result of this paper.

Proof of Theorem 1.1 By virtue of Lemma 2.3, there exists a T, > 0 such that the
Cauchy problem (1.1), (1.3)—(1.4) has a unique classical solution (p,u) on (0, 7T%]. We will use
solution (p,u) to all the time.

the a priori estimates, Proposition 3.1 and Lemmas 3.7 and 3.8, to extend the local classical
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First, since
A1(0) < My, A2(0) < Mz, po < 2M,

there exists a Ty € (0, T,] such that (3.1) holds for T' = Tj.
Set
T* =sup{T| (3.1) holds}. (4.1)

Then 7% > T; > 0. Hence, for any 0 < 7 < T < T* with T finite, it follows from Lemmas 3.7
and 3.8 that

Vug, V3u € C([r,T); L* N L*), Vu, V?u € C([r,T]; L*> N C(R3)), (4.2)
where we have used the standard embedding
L®(r, T; HYY N HY (7, T; H) — O([r, T); LY) for any q € [2,6).

Due to (3.36), (3.39) and (3.42), one can get

T
1(plue]*)ell 2t

T

< [ Ulpelwe Pl or + 2l pug - weel| 1) dt

/
/

T
= 0/ (lpldivelfuel*[ 1 + [l Vol fue [l 2 + [|0" 2l 210" Puee 12 )t
T

T
< C/ (lplue | pallVullpoe + [lull Lol Voll 2 luel 7o + llp" 2wl z2)dt < C,
which yields
p'?uy € C([r,T); L?).
This, together with (4.2), gives

p'/?0, Vu e C([r,T); L?). (4.3)

Next, we claim that
T = co. (4.4)

Otherwise, T* < co. Then by Proposition 3.1, (3.2) holds for T'= T™*. Tt follows from Lemmas
3.7, 3.8 and (4.3) that (p(z,T™),u(x,T*)) satisfies (1.11) and (1.12) with g(z) = u(z,T"),
r € R%. Lemma 2.3 implies that there exists 7** > T*, such that (3.1) holds for T = T**,
which contradicts (4.1). Hence, (4.4) holds. Lemmas 2.3, 3.7-3.8 and (4.2) thus show that
(p,u) is in fact the unique classical solution defined on (0,7 for any 0 < T' < T* = oo.

The proof of (1.16) is similar to that in [18]. m|
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Appendix The Proofs for Higher Derivatives

In this appendix, we first give out some basic estimates for the solution (p, u) before giving

out the proof of Lemmas 3.5-3.8.

Lemma A.1 The following estimates hold

T
sup ([ Vollzzaze + [[Vul| 1) +/ [Vul[pedt < C. (A1)
te[0,7) 0
Proof For 2 <p <6, |[Vpl? satisfies

(IVpl?)e + div(|Vp[u) + (p — 1)[Vp|’divu

+p|VplP (V) Vu(Vp) + pp|Vpl?*Vp - Vdivu = 0. (A.2)
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Thus,

OelVpllLe < CL+ lullL=)Vpllze + CV2ul| o
S O+ lullL=)lIVpllze + Cllpil| e,

due to

IV2ullze < C(llpil e + IV P(p)l|zv),

which follows from the standard LP-estimate for the following elliptic system:

Set

pAu~+ (@ + N)Vdivu = pi + VP(p).
It follows from Lemma 2.5 and (A.4) that

IVullzee < C(lldivullze + [[w]re)log(e + [ V?ullze) + Cl[Vul 2 + C
< CO([[divulze + lwllz~) log(e + [[df Lo + IV P(p)l|ze) + C
< O([[divul| e + [lwl| ) log(e + [ o)
+C([divul| > + [[wl[ =) log(e + [lpllLs) + C.

F(t) = e+ [V

Combining (A.5) with (A.3) and setting p = 6 in (A.3), one gets

f'(t) < Cg(®)f(t) + Cg(t) () In f(t) + Cy(t),

which yields

(In f(£))" < Cyg(t) + Cg(t) In f (1),

due to f(t) > 1. Note that (2.5), Lemma 2.1 and Lemma 3.4 imply

T T
/g@ws/umwﬁw+mﬁwa+o
0 0

(A.5)

o, 9(t) := 1+ ([[divul| Lo + [Jw]|L<)log(e + [[al| o) + [|Vil[ 2.

T
1 1 N
</ ( |Fﬁm+———MWﬂ—mmﬁm+nm%)w+c

20+ A 2+ A
T
sAumﬁm+wmaw+c

26+ w32 + |[Vw||36)dt + C

T
sAumﬁrwvm

T

< c/ Vi3 .dt + C
0

<G,

which, together with (A.6) and Gronwall’s inequality, shows that

sup f(t) <C.
0<i<T

(A7)

(A.8)
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Consequently,
sup [|[Vpllps < C. (A.9)
0<t<T

As a consequence of (A.5), (A.7) and (A.9), one obtain

T
/ | Vul|p=dt < C. (A.10)
0
Next, taking p = 2 in (A.3), one gets by using (A.10) and Gronwall’s inequality that
sup |[|Vplr2 < C,
0<t<T

which, together with (A.4), (A.9) and (A.10), gives (A.1). The proof of this lemma is completed.
O

Proof of Lemma 3.5 Estimate (3.36) follows directly from the following simple facts:

/p|ut|2dx < /p|u|2dx+/p|u-Vu|2d:C

< C+Cllvpull gz l[ul e | VullZe
< C+Cllv/pullpz[ull s (lptl 2 + [ P(p)l o)
<C, (A.11)

2

and
IVudl22 < [Val2s + [V (u- Vu)||2,
< Val3a + Clull o« 92ull22 + [lullfs)
< Vil2s + Cllul3 e [V2ul 22 + ClIV2ull 2 (llpill 2 + |P()]
< IVal2a + CIVul 2 IVull 3 [V2ul 22 + C
< || Va|3. +C. (A.12)

£o)?

Next, we prove (3.37). Note that P satisfies
Py +u-VP+yPdivu =0, (A.13)
which, together with (1.1); and a simple computation, yields that
VPl +19%132)
< COL+[[VullL=)(IV P72 + [IV2lZ2) + ClIF Il + Cllwllze + C, (A.14)
where we have used the following simple fact:

[Vul zm < C(l|divullgm + [[w][zm)
< C(|F[lgm + [1P(p)|em + llwl|gm) for m =1,2. (A.15)

Noticing that F' and w satisfy (2.6), we get by the standard L2-estimate for elliptic system,
together with (A.1), that

[El a2 + wllae <
<

[Fll> + [IV(pi)l L2 + [[wl[z> + [pi =)

L+ [[Fllzz + V(o) 2 + (| Vil 2)

L+ ([Vpllzsllall e + [Vl 22)

1+ [Vl L2), (A.16)

<

Q9aQq

<
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which, together with (A.14), Lemma A.1, and Gronwall’s inequality, gives directly

sup (V2P| 2 + V30l 12) < C.
t€[0,T]

Thus the proof of this lemma is completed. o
Proof of Lemma 3.6 We first prove (3.38). One deduce from (A.13) and (A.1) that

[1Pell 2 < Cllullp< VP2 + [[Vull L2 < C. (A.17)
Differentiating (A.13) yields
VP;+u-VVP+ Vu-VP +~yVPdivu +yPVdivu = 0.

Hence, by (A.1) and (3.36), one gets

IVR e < Cllull V2Pl + [Vl o VPl o + [V2ull2) < C. (A18)
The combination of (A.17) with (A.18) implies
sup ||Pllgr < C. (A.19)
0<t<T
Note that P;; satisfies
Py + yPydivu + yPdivuy + uy - VP +u - VP, = 0. (A.20)

Thus, one gets from (A.20), (A.19), (A.1) and (3.36) that

T T
| WPaliadt < € [P Isel Vallzs + IVl -+ s [V Pl + [V P22
0 0
<c. (A.21)

One can hand p; and py similarly. Thus (3.38) holds.
Next, we prove (3.39). Differentiating (1.1)s with respect to ¢, then multiplying the result-

ing equation by wu, one gets after integration by parts that

d1
a2 / (] Vus|* + (1 + M) (divar)”) da + / puda

d 1
=4 (—2/pt|ut|2dx — /ptu . Vu-utd:C—I—/Ptdivutd:v)

1
+§ /ptt|ut|2d:c + /(ptu V) - upde — /put -Vu - uyde

— /pu -Vuy - upde — /Pttdivutd:v
d 5
= —1 I;. A.22
Qo =+ ; ( )
It follows (1.1)1, (A.1), (3.38) and (3.36) that

2

1
[To| = ' - = /pt|ut|2d:c - /ptu -Vu - udr + /Ptdivutd:c
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< O’/div(pu)|ut|2dx

+ Cllpellwsllu - Vaull g2 lluel[ Lo + Cll Pl 2 [V | 2

< [ plullul|Vudds + € Tl

< Cllull go | 2| 2 el 16 Vel 2 + O V|| 2
< 8[| Vuel|72 + C(9), (A.23)

N ‘/(pt““LP“t) -V |ue|*da

2|Il| = ‘/ptt|ut|2dx
< C (Ilpellzsllulzoe + 10 2uall 5 uell 767 lell o | Vel 2
< Clipdlaslull = [ Vuellza + 10" sl 15| Ve 357
< C (IVudllis + IVl 727)
< C|Vull}s +C, (A.24)

and

|I2] = ‘/(ptu V) - ugde

= ‘/(pttu-Vu%Lt + peug - Vu - ug + pru - Vug - ug)da

< Cllpeellellu - Vullpslluellze + loell 2 e[l e [Vl e
Hllpellallull e [ Vuel| L2 [lut]| 2o )
< Clllpulze + IVuelze). (A.25)

Cauchy’s inequality gives

I3+ L] = ]/pu V- ugyde

+ ‘ /pu . Vut "utthJ

< Cllp" Punl| 2 (l[uel o | Vull 1o + ull o= | Vel 2)
< 8llp" Punl|Ze + CO)IVuel| 72, (A.26)

and

|I5| = '/PttdiVUtd{E S CHPttHL?”diVUtHL? S CHPtt”%Z + HVutH%g (A27)

Due to the regularity of the local solution (2.5), tVu; € C([0,T.]; L?). Thus
2
[Vue(-, T /2) [ 22 < thVUtHLw(o,T*;N) <C, (A.28)

where C' may also depend on ||[Vyg|| 2.
Collecting all estimates (A.23)—(A.28), one deduces from (A.22), (3.38), (3.36) and Gron-
wall’s inequality that

T
sup ||V 2 —|—/ /puftdajdt < C. (A.29)
T. /2<t<T T, /2
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On the other hand, (2.5) gives

T./2
sup ||V 2 +/ /puftd:vdt <C. (A.30)
0<t<T./2 0

The combination of (A.29) with (A.30) gives (3.39). This completes the proof of this lemma.

O
Proof of Lemma 3.7 It follows from (3.39) and (A.1) that
IV(pa)llez < 11Vplluelllz2 + 1pVuel 2 + [l plul Vulll 22 | ol V| 22 + | plul [V 2ul]| 2
< [IVpllwslluelzs + CUIVuellLz + Vol s ull L [ Vul| Lo
HIVal 2| Vul| o + [full 2 [ VZul| 12)
<C, (A.31)
thus
sup ||pt| g < C. (A.32)
0<t<T
The standard H'-estimate for elliptic system gives
V2ul g1 < Clludu+ (u+ N)Vdivul g = C|lptit + VP|| g1
< C(llptl|gr + VP pr) < C, (A.33)
due to (1.1)2, (A.32) and (3.37). As a consequence of (A.1) and (A.33), one has
sup ||Vul|lg2 < C. (A.34)
0<t<T
Therefore, the standard L2-estimate for elliptic system, (A.1), and Lemma 3.6 gives that
[V2us| 2 < Of|pAug + (p+ N)Vdivug|| 2
= Cllprut + puse + pru - Vu + puy - Vu+ pu - Vug + V|| 2
< Clllpuelle + llpell e llwel Lo + lpell e llull e [ Vull o
Flluellpol[Vullzs + llull oo [Vuell L2 + VPl £2)
< Cllpuwelr= + C, (A.35)
which, together with (3.39), implies
T
/ Vel dt < C. (A.36)
0
Applying the standard H?-estimate for elliptic system again leads to
V2l = < Cllpdu+ (u+ N Vdivu| gz < O(|pill a2 + [V Pl #2)
< CL+ [Vl + V2P| 12), (A.37)

where one has used (A.32) and the following simple facts:

IV*(pus) 22 < CUIVZplluell 22 + Vol V|2 + [ V?ul| 2)
< IVl IVl + 11V pllo [ Vel o + 1V 22)
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and

IV2(pu - V)| 2 < C([V2(pu)|[Vull| 2 + [V (pu)[[V2ul[ 2 + [[VPu] £2)
< COA+ V2 (pu) |l L2 [ Vull g2 + [V (o) || 5] VPl o)
<O+ [IV2pll 2 llull e + Vol ol Vul s + [Vl £2)
<c, (A.39)

due to (3.37) and (A.34). By using (A.34), (A.37) and (3.37), one may get
(IV2PIZ2)e < CUNVPullV Pl 2 + V2l V2P| 22 + [Vl V2P| 2 + [V ul| 12) [ V2P| 2
< C(IVPull 2V Pl gz + [ V2ull 1ol V2Pl o + V]| oo [V P 2) [ V2Pl 2
+O(1+ [ V?ue 2 + [V Pll2) [ VPP 12
< C+ C||\V3us|3 + C||VPP|[3o, (A.40)

which, together with Gronwall’s inequality and (A.36), yields that

sup ||V3P| 2 <C. (A.41)
0<t<T

Collecting all these estimates (A.34)—(A.36) and (3.37) shows that

T
swp [P@)s + [ [Vulfpde <. (A42)
0<t<T 0

It is easy to check similar arguments work for p arguments work for p by using (A.42). Hence,

sup [lollss < C. (A.43)
0<t<T

Combining (A.42) and (A.43) shows (3.40). Estimate (3.41) thus follows from (3.39), (A.34),
(A.36) and (A.41). Hence the proof of this lemma is completed. O
Proof of Lemma 3.8 Differentiate (1.1)2 with respect to t to get

PUts + PU - Vutt — /J,A’U/tt - (M + )\)VdiV’U/tt
= div(pu)rus + 2div(pu)uy — 2(pu)s - Vur — (prew + 2prus) - Vu — pug - Vu — V Py, (Al44)
Multiplying (A.44) by us and then integrating the resulting equation over R?, one gets after
integration by parts that
1d
2dt
= —4/uitpu -V, dr — /(pu)t (V(ur - ug) +2Vuy - ugg) do

/p|utt|2dx + / (M|Vutt|2 +(n+ )\)(diVUtt)2) dx

— /(pttu + 2ppuy) - Vu - ugdae — /putt -Vu - uydr + /Pttdivuttdx
5
=> Ji (A.45)
i=1

We now estimate each J; (i =1,---,5) as follows:



2160 ACTA MATHEMATICA SCIENTIA Vol.32 Ser.B

Hoélder’s inequality gives
1] < Cllp" Pl 2| Vuw| p2llull o < 81| Vuge] 72 + C(8) 10" |7 (A.46)
It follows from (3.36), (3.38), (3.39) and (A.1) that

[J2| < C(llpue|ls + || peull s ) (Jweel Lo [| Vel 2 + [Vl L2 |[we] 2o )
< C(Ilp" 2uell 32 el 16 + loel colloll o) | Vatee | 2
< C||Vuul?: + C, (A.47)

|Ja] < C(llpeellsllull Lol VullLs + [l pell Lo llwell Lo | V| p2) 1w || o)
< 8| Vul|32 + C(6)llpeelli (A.48)

and

|Ja| +[J5| < Cllpueel| 2|Vl pslluel Lo + [| Pecll L2 [| V] 2
< 6[|Vugll3 2 + CO)1p" *ueelF2 + C(8) || Prel|F - (A.49)
For any 7 € (0,T%), since t'/2,/puy, € L>(0,T,; L?) by (2.5), there exists some to € (1/2,7)

such that )
/P|Utt|2dx(t0) < %Htlm\/ﬁutt”%w(o,ﬂ;m) < C(7). (A.50)

Substituting (A.46)—(A.49) into (A.45) and choosing ¢ suitably small, one obtains by using
(3.38), (A.50) and Gronwall’s inequality that

T
sup /p|utt|2dx+/ |Vug|*dedt < C(1), (A.51)
to<t<T o

which, together with (A.35) and (3.39), yields that
T
sup || V|| g —|—/ |V |*dzdt < O(1), (A.52)
r<t<T -

due to tg < 7. Now, (3.42) follows from (A.37), (A.52) and (3.40). We finish the proof of this

lemma. O





