FAST PRECONDITIONERS FOR TOTAL VARIATION DEBLURRING WITH ANTIREFLECTIVE BOUNDARY CONDITIONS*

ZHENG-JIAN BAI ${ }^{\dagger}$, MARCO DONATELLI ${ }^{\ddagger}$, AND STEFANO SERRA-CAPIZZANO ${ }^{\ddagger}$

Abstract

In recent works several authors have proposed the use of precise boundary conditions (BCs) for blurring models, and they proved that the resulting choice (Neumann or reflective, antireflective) leads to fast algorithms both for deblurring and for detecting the regularization parameters in presence of noise. When considering a symmetric point spread function, the crucial fact is that such BCs are related to fast trigonometric transforms. In this paper we combine the use of precise BCs with the total variation (TV) approach in order to preserve the jumps of the given signal (edges of the given image) as much as possible. We consider a classic fixed point method with a preconditioned Krylov method (usually the conjugate gradient method) for the inner iteration. Based on fast trigonometric transforms, we propose some preconditioning strategies that are suitable for reflective and antireflective BCs. A theoretical analysis motivates the choice of our preconditioners, and an extensive numerical experimentation is reported and critically discussed. Numerical tests show that the TV regularization with antireflective BCs implies not only a reduced analytical error, but also a lower computational cost of the whole restoration procedure over the other BCs.

Key words. Sine algebra of type I ($\boldsymbol{\tau}$ algebra), reflective and antireflective BCs, total variation, preconditioning

AMS subject classifications. 65F10, 65F15, 65 Y 20
DOI. 10.1137/100816213

1. Introduction. We are concerned with specific linear algebra/matrix theory aspects of the vast field of inverse problems [17], [18] which model the blurring of signals and images (two-dimensional (2D) or $d \mathrm{D}$ with $d \geq 3$). Here the goal is to reconstruct the real object from its blurred and noisy version, and this goal is a classical one in astronomical imaging, medical imaging, geosciences, etc. [5].

The blurring model is assumed to be space-invariant; i.e., the point spread function (PSF) is represented by a specific bivariate function $h(x-y)$ for some univariate function $h(\cdot)$ [19]. According to the linear models described in the literature [17], the observed signal or image v and the original signal or image u are described by

$$
\begin{equation*}
v(x)=\mathcal{H} u(x)+\eta(x):=\int_{\Omega} h(x-s) u(s) d s+\eta(x), \quad x \in \Omega, \tag{1.1}
\end{equation*}
$$

where the kernel h is the PSF and η denotes the noise. The problem (1.1) is ill-posed since the operator \mathcal{H} is compact [17]. Therefore, the approximation/discretization matrix of \mathcal{H} is usually increasingly ill-conditioned when the number n of pixels becomes large. In addition, the size of the subspace associated with small eigenvalues, which

[^0]substantially intersects the high frequencies, is large and proportional to the size of the matrix. Thus, we cannot directly solve $\mathcal{H} u=d$, since the small perturbations, represented by the noise η with important high frequency components due to its probabilistic nature, would be amplified unacceptably.

To remedy the essential ill-conditioning of problem (1.1), one may employ regularization methods. The total variation (TV) regularization approach is a good choice for restoring edges of the original signals [24]. Rudin, Osher, and Fatemi [24] gave the TV functional in the form

$$
\begin{equation*}
J_{\mathrm{TV}}(u):=\int_{\Omega}|\nabla u| d x, \tag{1.2}
\end{equation*}
$$

where | $\cdot \mid$ denotes the $L 1$-norm. We note that the $L 1$-norm | $\cdot \mid$ is not differentiable at zero. To avoid the nondifferentiability, Acar and Vogel [1] considered the following minimization problem:

$$
\begin{equation*}
\min _{u}\|\mathcal{H} u-v\|_{L^{2}(\Omega)}+\alpha \int_{\Omega} \sqrt{|\nabla u|^{2}+\beta^{2}} d x, \tag{1.3}
\end{equation*}
$$

where α, β are positive parameters. Notice that the penalty term $\int_{\Omega} \sqrt{|\nabla u|^{2}+\beta^{2}} d x$ converges to $J_{\mathrm{TV}}(u)$ as $\beta \rightarrow 0$. In other words, the penalty term is a differentiable regularized version of $J_{\mathrm{TV}}(u)$. The corresponding Euler-Lagrange equation for (1.3) is given by

$$
\begin{equation*}
g(u):=\mathcal{H}^{*}(\mathcal{H} u-v)-\alpha \mathcal{L}_{u}(v)=0 \tag{1.4}
\end{equation*}
$$

under the zero Neumann boundary conditions, where \mathcal{H}^{*} is the adjoint of \mathcal{H} and $\mathcal{L}_{u}(y):=-\nabla \cdot\left(1 / \sqrt{|\nabla u|^{2}+\beta^{2}} \nabla y\right)$ is the differential operator appearing in (1.4) and comes from the regularized penalty term. The lagged diffusivity fixed point (FP) iteration is given by

$$
\begin{equation*}
A_{u^{k}} u^{k+1} \equiv\left(H^{*} H+\alpha L\left(u^{k}\right)\right) u^{k+1}=H^{*} v, \quad k=0,1, \ldots, \tag{1.5}
\end{equation*}
$$

where H and $L\left(u^{k}\right)$ denote the discretization matrix of \mathcal{H} and $\mathcal{L}_{u^{k}}$, respectively, which was proposed by Vogel and Oman [32] for solving (1.4). One may solve (1.5) by the preconditioned conjugate gradient (PCG) method [16, Algorithm 10.3.1].

In [7] the authors proposed a cosine preconditioner when H is a Toeplitz matrix, i.e., in the case of zero-Dirichlet boundary conditions (BCs). However, the choice of such BCs induces remarkable pathologies in the quality of the restored images, which should be avoided or at least minimized. In reality, using classical BCs such as periodic or zeroDirichlet may imply, when the background is not uniformly black, disturbing Gibbs phenomena called ringing effects [19], [21], [26].

The novelty of this paper is represented by the choice of appropriate BCs, in order to reduce the ringing effects, and in the related matrix/numerical analysis. The latter will affect the algebraic expression of H, while for $L\left(u^{k}\right)$ the choice of BCs in the EulerLagrange equation for (1.4) seems to impose Neumann BCs. In this context, the idea is to combine the application of antireflective BCs, already studied for their precision with plain regularization methods like Tikhonov and Landweber [2], [11], [12], [23], [26], [28], with the more sophisticated TV regularization. In other words, the first aim
consists of checking how to reduce the ringing effects and the oversmoothing of the edges simultaneously. Next, we want to study the use of preconditioners based on innovative fast transforms in the setting of Krylov methods when the real problem is modeled by a symmetric PSF. The final goal is to combine the precision of the reconstruction with highly efficient numerical procedures. We study some preconditioning techniques and give the theoretical explanations of different proposals. An effective preconditioner for reflective BCs is inspired by the work in [7], while, for the antireflective BCs, we propose a new sine preconditioner for the linear system (1.5) and explore the reblurring approach introduced in [13]. Numerical results confirm the effectiveness of the proposed preconditioners and the superiority of the antireflective BCs over the reflective BCs. Indeed, antireflective BCs not only provide better restorations as expected (see [12], [26]), but also require a lower computational cost, because our approach converges faster for small α and a more precise model requires less regularization, i.e., a smaller α.

Recently, further TV algorithms have been proposed, and the analysis has shown that these algorithms could be in general more efficient than the FP algorithm (1.5) (see [10], [14], [20], [22], [33]). Some of them are mainly suitable for denoising problems. In addition many other methods depend on the solution of very similar linear systems. For instance, the fast total variation deblurring (FTVd) algorithm in [33] is an alternating minimization algorithm, which is computationally efficient since only three fast Fourier transforms (FFTs) are required per iteration, when the periodic BCs are imposed. In [33] the authors observe that dozens of total inner iterations are enough in order to compute a good reconstruction having a quality of the same level as that obtained via lagged diffusivity with Dirichlet BCs. Our proposal requires four fast transforms for each inner iteration, and the numerical results in section 5.2 show that only few outer and inner iterations (around one hundred total inner iterations) are necessary to converge. Therefore, the total number of fast transforms is usually larger (a factor around ten) than FTVd, but a better restoration given by the more accurate BCs model is obtained. However, the combination of antireflective BCs with the FTVd method should be better investigated in future work. A direct application of antireflective BCs to the FTVd method implies the solution of a linear system similar to (1.5), and the preconditioning strategies proposed in this paper could be again useful.

The paper is organized as follows. In section 2 we consider reflective and antireflective BCs. In section 3 we define some optimal preconditioners for signal and image deblurring with reflective and antireflective BCs. In section 4 some spectral features of the proposed preconditioners are discussed. Section 5 is concerned with the numerical tests for checking the real efficiency of the considered preconditioners and the quality of the restorations. Finally, in section 6 we draw conclusions.
2. Boundary conditions. We start by introducing the one-dimensional (1D) deblurring problem. Consider the original signal $\tilde{u}=\left(\ldots, u_{-m+1}, \ldots, u_{0}, u_{1}, \ldots, u_{n}\right.$, $\left.u_{n+1}, \ldots, u_{n+m}, \ldots\right)^{T}$ and the normalized PSF given by $h=\left(\ldots, 0,0, h_{-m}, h_{-m+1}, \ldots\right.$, $\left.h_{0}, \ldots, h_{m-1}, h_{m}, 0,0, \ldots\right)^{T}$ with the usual normalization $\sum_{j=-m}^{m} h_{j}=1$, which preserves the global intensity and therefore represents an average. The deblurring problem is to recover the vector $u=\left(u_{1}, \ldots, u_{n}\right)^{T}$ given the PSF h and a blurred signal $v=\left(v_{1}, \ldots, v_{n}\right)^{T}$ of finite length. The blurred signal v is the convolution of h and \tilde{u}, and consequently it is such that

$$
v=\left[\begin{array}{cccccccccc}
h_{m} & \cdots & h_{0} & \cdots & h_{-m} & & & & & \tag{2.1}\\
& h_{m} & & h_{0} & & h_{-m} & & & 0 & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots & & & \\
& & & \ddots & \ddots & \ddots & \ddots & \ddots & & \\
& 0 & & & h_{m} & & h_{0} & & h_{-m} & \\
& & & & & h_{m} & \cdots & h_{0} & \cdots & h_{-m}
\end{array}\right]\left(\begin{array}{c}
u_{-m+1} \\
u_{-m+2} \\
\vdots \\
u_{0} \\
u \\
u_{n+1} \\
\vdots \\
u_{n+m-1} \\
u_{n+m}
\end{array}\right) .
$$

Thus the blurred signal v is determined not only by u, but also by $\left(u_{-m+1}, \ldots, u_{0}\right)^{T}$ and $\left(u_{n+1}, \ldots, u_{n+m}\right)^{T}$, and the linear system (2.1) is underdetermined. To overcome this, we make certain assumptions (called BCs) on the unknown boundary data u_{-m+1}, \ldots, u_{0} and u_{n+1}, \ldots, u_{n+m} in such a way that the number of unknowns equals the number of equations.

For the zero-Dirichlet BCs, we assume that the data outside u are zero; i.e., we set $u_{1-j}=u_{n+j}=0$ for $j=1, \ldots, m$. Then, (2.1) becomes $A u=v$, where A is Toeplitz. For the periodic BCs , we assume that the signal u is extended by periodicity. More precisely, we set $u_{1-j}=u_{n-j+1}$ and $u_{n+j}=u_{j}$ for $j=1, \ldots, m$. It follows that (2.1) becomes $A u=v$, where A is circulant and hence it can be diagonalized by the discrete Fourier transform (DFT) (see [19]).

For the Neumann or reflective BCs, we assume that the data outside u are a reflection of the data inside u. Discretization of the Neumann BCs can be centered at a meshpoint or a midpoint; different choices do not affect the approximation error but only the structure of the matrix. More in detail, the eigenvectors are related to different discrete cosine transforms [29]. In this paper we use only the midpoint discretization that leads to the standard discrete cosine transform of type II (DCT-2) previously considered in [21]. Therefore, we set $u_{1-j}=u_{j}$ and $u_{n+j}=u_{n+1-j}$ for all $j=1, \ldots, m$ in (2.1). Thus (2.1) becomes $A u=v$, where A is neither Toeplitz nor circulant but a special n-by- n Toeplitz-plus-Hankel matrix that is diagonalized by the discrete cosine transform provided that the blurring function h is symmetric; i.e., $h_{j}=h_{-j}$ for all j. It follows that the above system can be solved by using three fast cosine transforms (FCTs) in $O(n \log n)$ operations [21]. This approach is computationally interesting since the FCT requires only real operations and is about twice as fast as the FFT. We note that the reflection ensures the continuity of the signal and the error is linear in the discretization step (the linear error can be easily seen by applying a Taylor expansion [21]). Therefore, we usually observe a reduction of the boundary artifacts with respect to zero-Dirichlet and periodic BCs.

For the antireflective BCs, we assume that the data outside u are an antireflection of the data inside u. According to the terminology employed in [29], we perform a midpoint antireflection as for the Neumann BCs. More precisely, if x is a point outside the domain and x^{*} is the closest boundary point, then we have $x=x^{*}-\delta x$, and the quantity $u(x)$ is approximated by $u\left(x^{*}\right)-\left(u\left(x^{*}+\delta x\right)-u\left(x^{*}\right)\right)$. Consequently, we set

$$
\begin{align*}
& u_{1-j}=u_{1}-\left(u_{j+1}-u_{1}\right)=2 u_{1}-u_{j+1} \quad \text { for all } j=1, \ldots, m, \\
& u_{n+j}=u_{n}-\left(u_{n-j}-u_{n}\right)=2 u_{n}-u_{n-j} \quad \text { for all } j=1, \ldots, m \tag{2.2}
\end{align*}
$$

in (2.1). By a Taylor expansion, the antireflection (2.2) ensures a C^{1} continuity of the signal, and the error is quadratic in the discretization step [26]. Usually, the boundary artifacts are also reduced with respect to reflective BCs.

Imposing the antireflection (2.2), (2.1) becomes $A u=v$, where A is a Toeplitz-plusHankel plus a rank-2 correction matrix, where the correction is placed at the first and the last column. Furthermore, in [2] the authors proved that if h is symmetric, then $A=T_{n} \Lambda T_{n}^{-1}$ with

$$
T_{n}=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{2.3}\\
p & S_{n-2} & J p \\
0 & 0 & 1
\end{array}\right], \quad T_{n}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-S_{n-2} p & S_{n-2} & -S_{n-2} J p \\
0 & 0 & 1
\end{array}\right]
$$

where J is the flip matrix, S_{n-2} is the sine transform matrix of order $n-2$, and $p_{j}=1-j /(n-1)$ so that the first column vector is exactly the sampling of the function $1-x$ on the grid $j /(n-1)$ for $j=0, \ldots, n-1$. Finally, Λ is a diagonal matrix given by suitable samplings of the function

$$
\begin{equation*}
\hat{h}(y)=\sum h_{j} \exp (\mathrm{i} j y) \tag{2.4}
\end{equation*}
$$

which is the symbol of the PSF. That is,

$$
\begin{equation*}
\Lambda=\operatorname{diag}_{j=1, \ldots, n}\left(\hat{h}\left(y_{j}\right)\right), \quad S_{m}=\sqrt{\frac{2}{m+1}}\left(\sin \left(\frac{j i \pi}{m+1}\right)\right)_{i, j=1}^{m} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{j}=\frac{(j-1) \pi}{n-1} \quad \text { for } j=1, \ldots, n-1, \quad \text { and } \quad y_{n}=0 \tag{2.6}
\end{equation*}
$$

As a consequence, a generic system $A u=v$ can be solved within $O(n \log n)$ real operations by resorting to the application of three fast sine transforms (FSTs) (refer to [26]), where each FST is computationally as cheap as a generic FCT. There is a suggestive functional interpretation of the transform T_{n} : it can be functionally interpreted as a linear combination of sine functions and of linear polynomials (whose use is exactly required for imposing the C^{1} continuity at the borders). This intuition becomes evident in the expression of T_{n}. Indeed, the j th row of T_{n} is given by

$$
\begin{equation*}
\left(1-\frac{y_{j}}{\pi}, \sin \left(y_{j}\right), \ldots, \sin \left((n-2) y_{j}\right), \frac{y_{j}}{\pi}\right) \cdot \operatorname{diag}\left(1, \sqrt{\frac{2}{n-1}} I_{n-2}, 1\right) \tag{2.7}
\end{equation*}
$$

where y_{j} is defined in (2.6) for $j=1, \ldots, n$ and it is a suitable gridding of $[0, \pi]$.
Now, we introduce the 2D case. For the Neumann or reflective BCs, the blurring matrix is a block Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel blocks and can be diagonalized by the 2D FCTs, which are tensor products of 1D FCTs, in $O\left(n^{2} \log n\right)$ operations provided that h is quadrantally symmetric; i.e., $h_{i, j}=h_{-i, j}=$ $h_{i,-j}=h_{-i,-j}$ (refer to [21]).

For the antireflective BCs, a point outside the domain is antireflected to the closest boundary point first in one direction and then in the other direction. In particular, we set

$$
\begin{aligned}
u_{1-j, \phi} & =2 u_{1, \phi}-u_{j+1, \phi}, \quad u_{n+j, \phi}=2 u_{n, \phi}-u_{n-j, \phi} \quad \text { for } 1 \leq j \leq m, 1 \leq \phi \leq n \\
u_{\psi, 1-j,} & =2 u_{\psi, 1}-u_{\psi, j+1}, \quad u_{\psi, n+j}=2 u_{\psi, n}-u_{\psi, n-j} \quad \text { for } 1 \leq j \leq m, 1 \leq \psi \leq n
\end{aligned}
$$

When both indices lie outside the range $\{1, \ldots, n\}$ (this happens close to the 4 corners of the given image), we set

$$
\begin{aligned}
u_{1-i, 1-j} & =4 u_{1,1}-2 u_{1, j+1}-2 u_{i+1,1}+u_{i+1, j+1}, \\
u_{1-i, n+j} & =4 u_{1, n}-2 u_{1, n-j}-2 u_{i+1, n}+u_{i+1, n-j}, \\
u_{n+i, 1-j} & =4 u_{n, 1}-2 u_{n, j+1}-2 u_{n-i, 1}+u_{n-i, j+1}, \\
u_{n+i, n+j} & =4 u_{n, n}-2 u_{n, n-j}-2 u_{n-i, n}+u_{n-i, n-j}
\end{aligned}
$$

for $1 \leq i, j \leq m$. If the blurring function (PSF) h is quadrantally symmetric, then the blurring matrix is a block Toeplitz-plus-Hankel-plus-2-rank-correction matrix with Toeplitz-plus-Hankel-plus-2-rank-correction blocks and can be diagonalized by the 2D antireflective transforms, which are tensor products of 1D antireflective transforms T_{n} in $O\left(n^{2} \log n\right)$ real operations; see, for instance, [2]. In the following we will assume a symmetric (quadrantally symmetric in 2D) PSF since reflective and antireflective BCs can be diagonalized by fast transforms only in such a case. However, in the nonsymmetric case, even if the blurring matrix cannot be diagonalized by fast transforms, the matrix-vector product can be done again in $O\left(n^{2} \log n\right)$ by FFTs. Moreover, many practical blurs have symmetry like the celebrated Gaussian blur, widely used in several contexts.
3. Optimal preconditioners with different boundary conditions. The optimal preconditioner for a matrix A aims to find an approximation that minimizes $\|B-A\|_{F}$ over all B in a set of matrices for the Frobenius matrix norm $\|\cdot\|_{F}$: the typical set of matrices is formed by considering an algebra of matrices that are simultaneously diagonalized by a given unitary transform. The main novelty in our context is represented by the fact that the antireflective matrices with symmetric PSFs form a commutative algebra associated with a nonunitary transform. The antireflective algebra poses nontrivial difficulties that are treated in the remainder of the paper. The optimal circulant preconditioner was originally given in [9]. The optimal sine transform preconditioner was presented in [8]. The optimal cosine transform preconditioner was provided in [6]. In this section, we construct the optimal reflective BCs preconditioner and the optimal antireflective BCs preconditioner for (1.5) and the optimal reblurring preconditioner for the reblurring equation (3.8) below instead of (1.5). Some of these preconditioning techniques are inspired from the idea proposed in $[6],[7]$ for zero-Dirichlet BCs.
3.1. One-dimensional problems. For the 1D problems, we assume a symmetric and normalized PSF.
3.1.1. The reflective boundary condition. Suppose that we impose the reflective BCs on H and the zero Neumann BCs on $L\left(u^{k}\right)$. In this case, we propose the following reflective BCs preconditioners for (1.5). Let C_{n} be the n-dimensional discrete cosine transform with entries

$$
\left[C_{n}\right]_{i, j}=\sqrt{\frac{2-\delta_{j 1}}{n}} \cos \left(\frac{(2 i-1)(j-1) \pi}{2 n}\right), \quad i, j=1, \ldots, n,
$$

where $\delta_{i j}$ is the Kronecker delta. The matrix C_{n} is orthogonal; i.e., $C_{n} C_{n}^{T}=I$. Moreover, for any n-vector w, the matrix-vector product $C_{n} w$ can be computed within $O(n \log n)$ real operations by the FCT.

For an n-by- n matrix A, the optimal cosine transform preconditioner is

$$
c(A)=\underset{B \in \mathcal{C}}{\arg \min }\|B-A\|_{F},
$$

where $\mathcal{C}=\left\{C_{n}^{T} \Lambda C_{n}: \Lambda\right.$ is a real n-by- n diagonal matrix $\}$. The operator $c(\cdot)$ is linear, preserves positive definiteness, and compresses every unitarily invariant norm. For the specific cosine algebra and a general convergence theory based on the Korovkin theorems, we refer to [7], [25].

As in [7] for Dirichlet BCs, the optimal cosine transform preconditioner (i.e., the optimal reflective BCs preconditioner) for (1.5) can be defined as

$$
\begin{equation*}
R=H^{*} H+\alpha c\left(L\left(u^{k}\right)\right) \tag{3.1}
\end{equation*}
$$

We note that $R=c\left(A_{u^{k}}\right)$ since $H^{*}=H \in \mathcal{C}$. Spectral properties of the preconditioner will be discussed in section 4 . Here, we only note that $c\left(L\left(u^{k}\right)\right)$ is not an optimal preconditioner for $L\left(u^{k}\right)$ if the coefficient $\left(|\nabla u|^{2}+\beta^{2}\right)^{-1 / 2}$ has large variation. In such case a diagonal scaling is necessary to obtain an effective preconditioner like $\operatorname{diag}\left(L\left(u^{k}\right)\right)^{1 / 2} c\left(L\left(u^{k}\right)\right) \operatorname{diag}\left(L\left(u^{k}\right)\right)^{1 / 2}$, where $\operatorname{diag}\left(L\left(u^{k}\right)\right)$ is the diagonal matrix whose diagonal entries are the same as that of $L\left(u^{k}\right)$ [27]. We note that the coefficient matrix in (1.5) is the sum of two operators. To avoid the possibly large fluctuation in the coefficient of the operator in (1.5), we define a scaled reflective BCs preconditioner for (1.5) by $D_{R}=D^{\frac{1}{2}} R D^{\frac{1}{2}}$, where R is given in (3.1) and

$$
\begin{equation*}
D \equiv I+\alpha \operatorname{diag}\left(L\left(u^{k}\right)\right) \tag{3.2}
\end{equation*}
$$

A further possibility is to employ a diagonal scaling for (1.5). As in [7], we consider the scaled equation

$$
\begin{equation*}
\tilde{A}_{u^{k}} \tilde{u}^{k+1} \equiv\left(\tilde{H}^{*} \tilde{H}+\alpha \tilde{L}\left(u^{k}\right)\right) \tilde{u}^{k+1}=\tilde{H}^{*} v, \tag{3.3}
\end{equation*}
$$

where $\tilde{H}=H D^{-1 / 2}, \tilde{L}\left(u^{k}\right)=D^{-1 / 2} L\left(u^{k}\right) D^{-1 / 2}$, and $\tilde{u}^{k}=D^{1 / 2} u^{k}$. Then we propose an unscaled reflective BCs preconditioner for (3.3) by $R_{D}=\hat{H}^{*} \hat{H}+\alpha c\left(\tilde{L}\left(u^{k}\right)\right)$, where $\hat{H}=H_{\tilde{L}}^{c}\left(D^{-1 / 2}\right)$. If Λ_{H}, Λ_{D}, and $\Lambda_{\tilde{L}}$ denote the eigenvalue matrices of $H, c\left(D^{-1 / 2}\right)$, and $c\left(\tilde{L}\left(u^{k}\right)\right)$, respectively, then R_{D} can be written as

$$
R_{D}=C_{n}^{T}\left(\Lambda_{H}^{*} \Lambda_{H} \Lambda_{D}^{*} \Lambda_{D}+\alpha \Lambda_{\tilde{L}}\right) C_{n} .
$$

3.1.2. The antireflective boundary condition. Under antireflective BCs for H and the zero Neumann BCs or antireflective BCs for $L\left(u^{k}\right)$, we construct the antireflective BCs preconditioners for (1.5) and then propose a preconditioned reblurring method. Let S_{n} be the n-dimensional discrete sine transform of type I with entries as in (2.5). Then S_{n} is orthogonal and symmetric; i.e., $S_{n}^{T}=S_{n}$ and $S_{n}^{2}=I$. Moreover, for any n-dimensional vector w, the matrix-vector product $S_{n} w$ can be computed in $O(n \log n)$ real operations by the FST. Let $\sigma(z):=\left(z_{2}, \ldots, z_{n}, 0\right)^{T}$ with $z=$ $\left(z_{1}, \ldots, z_{n}\right)^{T}$. Let $\mathcal{T}(z)$ be the n-by- n symmetric Toeplitz matrix whose first column is z and $\mathcal{H}(z, J z)$ be the n-by- n Hankel matrix whose first and last column are z and $J z$, respectively. It was shown that for any $B \in \tau$, there exists $z=\left(z_{1}, \ldots, z_{n}\right)^{T} \in \mathbb{R}^{n}$ such that [8] $B=\mathcal{T}(z)-\mathcal{H}\left(\sigma^{2}(z), J \sigma^{2}(z)\right)$. For an n-by- n matrix A, the optimal sine preconditioner is

$$
\begin{equation*}
s(A)=\underset{B \in \tau}{\arg \min }\|B-A\|_{F}, \tag{3.4}
\end{equation*}
$$

where $\tau:=\left\{S_{n} \Lambda S_{n}: \Lambda\right.$ is a real diagonal matrix of order $\left.n\right\}$. The construction of $s(A)$ requires only $O\left(n^{2}\right)$ operations for a general matrix A and $O(n)$ operations for a banded matrix A. Furthermore, $s(\cdot)$ is linear, preserves positive definiteness, and compresses any unitarily invariant norm (see [8], [25]).

Now, we define an optimal sine transform based preconditioner (i.e., the so-called antireflective BCs preconditioner) for (1.5) by

$$
\begin{equation*}
M=\hat{s}(H)^{*} \hat{s}(H)+\alpha \hat{s}\left(L\left(u^{k}\right)\right) \tag{3.5}
\end{equation*}
$$

in the sense that, for any n-by- n matrix $A, \hat{s}(A)$ is given by

$$
\begin{equation*}
\hat{s}(A)=\underset{B \in \hat{\tau}}{\arg \min }\|B-A\|_{F}, \tag{3.6}
\end{equation*}
$$

where $\hat{\tau}=\left\{\hat{S}_{n} \Lambda \hat{S}_{n}: \Lambda\right.$ is a real diagonal matrix of order n and $\left.\hat{S}_{n}=\operatorname{diag}\left(1, S_{n-2}, 1\right)\right\}$.
Proposition 3.1. Given an $n-b y-n$ matrix A, we have

$$
\hat{s}(A)=\left[\begin{array}{ccc}
A(1,1) & 0 & 0 \\
0 & s(A(2: n-1,2: n-1)) & 0 \\
0 & 0 & A(n, n)
\end{array}\right]
$$

where $\hat{s}(\cdot)$ and $s(\cdot)$ are defined in (3.6) and (3.4), respectively, and $A(2: n-1,2: n-1)$ is the submatrix of A corresponding to rows indexed from 2 to $n-1$ and columns from 2 to $n-1$.

Proof. By unitary invariance of the Frobenius norm (\hat{S}_{n} is unitary), we find $\left\|A-\hat{S}_{n} \Lambda \hat{S}_{n}\right\|_{F}=\left\|\hat{S}_{n} A \hat{S}_{n}-\Lambda\right\|_{F}$, where Λ is a diagonal matrix. To conclude the proof, it is enough to observe that

$$
\operatorname{diag}\left(\hat{S}_{n} A \hat{S}_{n}\right)=\left[\begin{array}{ccc}
A(1,1) & 0 & 0 \\
0 & \operatorname{diag}\left(S_{n-2} A(2: n-1,2: n-1) S_{n-2}\right) & 0 \\
0 & 0 & A(n, n)
\end{array}\right]
$$

and that $s(A)=S_{n} \operatorname{diag}\left(S_{n} A S_{n}\right) S_{n}$.
To reduce the potential fluctuations in the coefficient of the elliptic operator in (1.5), we define a scaled antireflective BCs preconditioner for (1.5) by $D_{M}=D^{\frac{1}{2}} M D^{\frac{1}{2}}$, where M is defined in (3.5) and D is given in (3.2). Similarly, for the scaled equation in the form of (3.3), we give the unscaled antireflective BCs preconditioner by $M_{D}=$ $\hat{H}^{*} \hat{H}+\alpha \hat{s}\left(\tilde{L}\left(u^{k}\right)\right)$, where $\hat{H}=\hat{s}(H) \hat{s}\left(D^{-1 / 2}\right)$. If Λ_{H}, Λ_{D}, and $\Lambda_{\tilde{L}}$ denote the eigenvalue matrices of $\hat{s}(H), \hat{s}\left(D^{-1 / 2}\right)$, and $\hat{s}\left(\tilde{L}\left(u^{k}\right)\right)$, respectively, then M_{D} can be written as

$$
M_{D}=\hat{S}_{n}\left(\Lambda_{H}^{*} \Lambda_{H} \Lambda_{D}^{*} \Lambda_{D}+\alpha \Lambda_{\tilde{L}}\right) \hat{S}_{n}
$$

Next, we consider the preconditioned reblurring method. Let

$$
\begin{equation*}
\mathcal{A} R=\left\{T_{n} \Lambda T_{n}^{-1}: \Lambda \text { is a real diagonal matrix of order } n\right\} \tag{3.7}
\end{equation*}
$$

where T_{n} and T_{n}^{-1} are defined in (2.3). Unfortunately, $H \in \mathcal{A} R$ but $H^{*} \notin \mathcal{A} R$. However, in [12], it was proposed to use a reblurring approach, i.e., to replace H^{*} with H^{\prime}, where H^{\prime} is the matrix obtained by imposing antireflective BCs to the PSF rotated by 180 degrees. Since the PSF is assumed to be symmetric, $H^{\prime}=H$ [13]. Therefore, instead of (1.5), one may solve the equation

$$
\begin{equation*}
A_{u^{k}}^{\prime} u^{k+1} \equiv\left(H^{\prime} H+\alpha L\left(u^{k}\right)\right) u^{k+1}=H^{\prime} v, \quad k=0,1, \ldots, \tag{3.8}
\end{equation*}
$$

by the preconditioned BICGSTAB or PBiCGstab method [31] since $A_{u^{k}}^{\prime}$ is not symmetric. In this case, a reblurring preconditioner for (3.8) is given by

$$
\begin{equation*}
P=H^{\prime} H+\alpha \operatorname{ar}\left(L\left(u^{k}\right)\right) \tag{3.9}
\end{equation*}
$$

Here, for any n-by- n matrix $A, \operatorname{ar}(A)$ is defined by

$$
\operatorname{ar}(A):=\left[\begin{array}{ccccc}
z_{1}+2 \sum_{k=2}^{n-2} z_{k} & 0 & \cdots & 0 & 0 \\
z_{2}+2 \sum_{k=3}^{n-2} z_{k} & & & 0 \\
\vdots & s(A(2: n-1,2: n-1)) & & z_{n-3}+2 z_{n-2} \\
z_{n-3}+2 z_{n-2} & & & \vdots \\
z_{n-2} & & & \\
0 & 0 & \cdots & 0 & z_{1}+2 \sum_{k=2}^{n-2} z_{k}
\end{array}\right],
$$

where $z=\left(z_{1}, z_{2}, \ldots, z_{n-2}\right)^{T}$ is such that $s(A(2: n-1,2: n-1))=\mathcal{T}(z)-\mathcal{H}\left(\sigma^{2}(z)\right.$, $\left.J \sigma^{2}(z)\right)$. We need only form $s(A(2: n-1,2: n-1))$ for computing $\operatorname{ar}(A)$.

We note that $\operatorname{ar}(A)$ belongs to the algebra $\mathcal{A} R$ defined in (3.7), ${ }^{1}$ where Λ is defined as in (2.5). Therefore, a linear system $A u=v$ can be solved within $O(n \log n)$ real operations by using three FSTs.

To reduce the potential fluctuations in the coefficient of the elliptic operator in (3.8), we define a scaled reblurring preconditioner for (3.8) as follows: $D_{P}=D^{1 / 2} P D^{1 / 2}$, where P is defined in (3.9) and D is given in (3.2). For the scaled system

$$
\begin{equation*}
\tilde{A}_{u^{k}}^{\prime} \tilde{u}^{k+1} \equiv\left(\tilde{H}^{\prime} \tilde{H}+\alpha \tilde{L}\left(u^{k}\right)\right) \tilde{u}^{k+1}=\tilde{H}^{\prime} v \tag{3.10}
\end{equation*}
$$

the unscaled reblurring preconditioned is defined by

$$
P_{D}=\operatorname{ar}\left(D^{-1 / 2}\right) H^{\prime} H \operatorname{ar}\left(D^{-1 / 2}\right)+\alpha \operatorname{ar}\left(\tilde{L}\left(u^{k}\right)\right) .
$$

If Λ_{H}, Λ_{D}, and $\Lambda_{\tilde{L}}$ denote the eigenvalue matrices of $H, \operatorname{ar}\left(D^{-1 / 2}\right)$, and $\operatorname{ar}\left(\tilde{L}\left(u^{k}\right)\right)$, respectively, then P_{D} can be written as

$$
P_{D}=T_{n}\left(\Lambda_{H}^{*} \Lambda_{H} \Lambda_{D}^{*} \Lambda_{D}+\alpha \Lambda_{L}\right) T_{n}^{-1}
$$

A further possibility is the use of antireflective BCs for $L\left(u^{k}\right)$. This implies that the coefficient matrix in (3.8) is closer to the preconditioner. Consequently, a faster convergence and a lower global cost have to be expected. This case is in fact considered in the numerics.

We comment on the cost of constructing unscaled preconditioners X_{D}, $X \in\{R, M, P\}$ and of each PCG/PBiCGstab iteration. We note that $L\left(u^{k}\right)$ is a banded matrix. Therefore, computing $c\left(L\left(u^{k}\right)\right), \hat{s}\left(L\left(u^{k}\right)\right)$, and $\operatorname{ar}\left(L\left(u^{k}\right)\right)$ needs only $O(n)$ operations [6], [8]. At each PCG/PBiCGstab iteration, we need to calculate the matrix-vector product $\tilde{A}_{u^{k}} w$ and $\tilde{A}_{u^{k}}^{\prime} w$ and solve the system $X_{D} y=b$. The vector multiplication

[^1]$D^{-1 / 2} w$ can be computed in $O(n)$ operations since $D^{-1 / 2}$ is a diagonal matrix. $L\left(u^{k}\right) w$ can be done in $O(n)$ operations. For $H \in \mathcal{C}$ or $H \in \mathcal{A} R, H w, H^{*} H w$, and $H^{\prime} H w$ can be calculated in $O(n \log n)$ operations by two FCTs or FSTs plus computations of lower orders. The system $X_{D} y=b$ can also be solved in $O(n \log n)$ operations. Therefore, the total cost of each PCG/PBiCGstab iteration is bounded by $O(n \log n)$, mainly due to four fast trigonometric transforms.
3.2. Two-dimensional problems. We can extend the results in subsection 3.1 to image deblurring problems with different BCs. In the 2D case, we assume that the PSF is quadrantally symmetric and normalized.

Let us consider the three algebras $\mathcal{C}, \hat{\tau}$, and $\mathcal{A} R$ introduced in section 3.1 together, and so we fix $t \in\{c, \hat{s}, a r\}$. For an n^{2}-by- n^{2} matrix A in the form of

$$
A=\left[\begin{array}{cccc}
A_{1,1} & A_{1,2} & \cdots & A_{1, n} \tag{3.11}\\
A_{2,1} & A_{2,2} & \cdots & A_{2, n} \\
\vdots & \ddots & \ddots & \vdots \\
A_{n, 1} & A_{n, 2} & \cdots & A_{n, n}
\end{array}\right]
$$

where $A_{i, j}$ are n-by- n matrices, as defined in [7], the level- 1 transform preconditioner $t_{1}(A)$ is given by

$$
t_{1}(A)=\left[\begin{array}{cccc}
t\left(A_{1,1}\right) & t\left(A_{1,2}\right) & \cdots & t\left(A_{1, n}\right) \\
t\left(A_{2,1}\right) & t\left(A_{2,2}\right) & \cdots & t\left(A_{2, n}\right) \\
\vdots & \ddots & \ddots & \vdots \\
t\left(A_{n, 1}\right) & t\left(A_{n, 2}\right) & \cdots & t\left(A_{n, n}\right)
\end{array}\right]
$$

and then the level-2 transform preconditioner is

$$
\begin{equation*}
t_{2}(A)=Q t_{1}\left(Q^{T} t_{1}(A) Q\right) Q^{T} \tag{3.12}
\end{equation*}
$$

where Q is the permutation matrix that satisfies $\left[Q^{T} A Q\right]_{i, j ; k, l}=[A]_{k, l ; i, j}$ for $1 \leq i, j \leq n$ and $1 \leq k, l \leq n$; i.e., the (i, j) th entry of the (k, l) th block of A is permuted to the (k, l) th entry of the (i, j) th block. The expression of the level- 2 preconditioner in (3.12) is a classical result for $t=c$, while for $t \in\{\hat{s}, a r\}$ the same proof technique of Theorem 3.3 in [21] can be applied.

When one imposes the reflective BCs on H and the zero Neumann BCs on $L\left(u^{k}\right)$, the blurring matrix H is a block Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel blocks, which can be diagonalized by the 2D FCTs in $O\left(n^{2} \log n\right)$ operations [21]. For the 2D linear equation (1.5), using the fact that $c_{2}(H)=H$, we define the following optimal reflective BCs preconditioner:

$$
\begin{equation*}
R=H^{*} H+\alpha c_{2}\left(L\left(u^{k}\right)\right) . \tag{3.13}
\end{equation*}
$$

To eliminate the possibility of large variations in the coefficient of the elliptic operator in (1.5), we employ the same strategy as in section 3.1 by the diagonal scaling. Therefore, the scaled reflective BCs preconditioner is given by $D_{R}=D^{\frac{1}{2}} R D^{\frac{1}{2}}$, where R is defined in (3.13) and D is given in (3.2). Similarly, for the scaled system in (3.3), the unscaled reflective BCs preconditioner is given by $R_{D}=\hat{H}^{*} \hat{H}+\alpha c_{2}\left(\tilde{L}\left(u^{k}\right)\right)$, where
$\hat{H}=H c_{2}\left(D^{-1 / 2}\right)$ Let Λ_{H}, Λ_{D}, and $\Lambda_{\tilde{L}}$ denote the eigenvalue matrices of $H, c_{2}\left(D^{-1 / 2}\right)$, and $c_{2}\left(\tilde{L}\left(u^{k}\right)\right)$, respectively. Then R_{D} can be written as

$$
R_{D}=\left(C_{n} \otimes C_{n}\right)^{T}\left(\Lambda_{H}^{*} \Lambda_{H} \Lambda_{D}^{*} \Lambda_{D}+\alpha \Lambda_{\tilde{L}}\right)\left(C_{n} \otimes C_{n}\right)
$$

and hence it is easily inverted by employing few FCTs in $O\left(n^{2} \log n\right)$ operations.
Next, we assume the antireflective BCs for H and the Neumann BCs for $L\left(u^{k}\right)$. Then, we design the sine-based transform preconditioner for (1.5) by

$$
M=\hat{s}_{2}(H)^{*} \hat{s}_{2}(H)+\alpha \hat{s}_{2}\left(L\left(u^{k}\right)\right)
$$

By employing the diagonal scaling, we define the scaled antireflective BCs preconditioner $D_{M}=D^{1 / 2} M_{\tilde{L}} D^{1 / 2}$ for (1.5) and the unscaled antireflective BCs preconditioner $M_{D}=\hat{H}^{*} \hat{H}+\alpha c_{2}\left(\tilde{L}\left(u^{k}\right)\right)$, where $\hat{H}=\hat{s}_{2}(H) \hat{s}_{2}\left(D^{-1 / 2}\right)$ for the scaled 2D system (3.3). Let Λ_{H}, Λ_{D}, and $\Lambda_{\tilde{L}}$ denote the eigenvalue matrices of $H, \hat{s}_{2}\left(D^{-1 / 2}\right)$, and $\hat{s}_{2}\left(\tilde{L}\left(u^{k}\right)\right)$, respectively. Then M_{D} takes the form

$$
M_{D}=\left(\hat{S}_{n} \otimes \hat{S}_{n}\right)\left(\Lambda_{H}^{*} \Lambda_{H} \Lambda_{D}^{*} \Lambda_{D}+\alpha \Lambda_{\tilde{L}}\right)\left(\hat{S}_{n} \otimes \hat{S}_{n}\right)
$$

which is computationally attractive via FSTs since any matrix operation can be done within $O\left(n^{2} \log n\right)$ operations.

Finally, we design the reblurring preconditioner $a r_{2}\left(A_{u^{k}}^{\prime}\right)$ for (3.8) assuming the antireflective BCs for H and the Neumann BCs or the antireflective BCs for $L\left(u^{k}\right)$. Since H is the antireflective BCs matrix, we define a reblurring preconditioner for (3.8) as $P=H^{\prime} H+\alpha a r_{2}\left(L\left(u^{k}\right)\right)$. Also, we propose the scaled reblurring preconditioner $D_{P}=$ $D^{1 / 2} P D^{1 / 2}$ for (3.8) and the unscaled reblurring preconditioner $P_{D}=\hat{H}^{\prime} \hat{H}+$ $\alpha \operatorname{ar}_{2}\left(\tilde{L}\left(u^{k}\right)\right)$ for the 2D scaled linear system (3.10), where $\hat{H}=H \cdot a r_{2}\left(D^{-1 / 2}\right)$. Let Λ_{H}, Λ_{D}, and $\Lambda_{\tilde{L}}$ denote the eigenvalue matrices of $H, a r_{2}\left(D^{-1 / 2}\right)$, and $a r_{2}\left(\tilde{L}\left(u^{k}\right)\right)$, respectively. Then, the 2 D preconditioner P_{D} can be written as

$$
P_{D}=\left(T_{n} \otimes T_{n}\right)\left(\Lambda_{H}^{*} \Lambda_{H} \Lambda_{D}^{*} \Lambda_{D}+\alpha \Lambda_{\tilde{L}}\right)\left(T_{n} \otimes T_{n}\right)^{-1}
$$

Again, these 2D preconditioners show interesting computational features since the associated linear systems can be solved within $O\left(n^{2} \log n\right)$ operations.
4. Asymptotic spectral analysis of the preconditioned sequences. To study the effectiveness of the proposed preconditioners, we need the clustering analysis of the spectrum. Also, localization of eigenvalues is of interest when solving (3.3) via PCG or (3.10) by PBiCGstab [4]. Here is a useful definition [27] for sequences of matrices $\left\{A_{n}\right\}$, where A_{n} has size d_{n}, n positive integer, and $d_{k}>d_{q}$ if $k>q$.

Definition 4.1. A matrix sequence $\left\{A_{n}\right\}$ is said to be distributed (in the sense of the eigenvalues) as the pair (θ, G), or has the distribution function θ if, for any $\mathcal{F} \in C_{0}(\mathbb{C})$, the following limit relation holds:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} F\left(\lambda_{j}\left(A_{n}\right)\right)=\frac{1}{\mu(G)} \int_{G} F(\theta(t)) d t, \quad t=\left(t_{1}, \ldots, t_{d}\right), \tag{4.1}
\end{equation*}
$$

where $\left\{\lambda_{j}\left(A_{n}\right)\right\}_{j=1}^{n}$ denote the eigenvalues of A_{n} and $\mu(\cdot)$ is the standard Lebesgue measure. In that case we write $\left\{A_{n}\right\} \sim_{\lambda}(\theta, G)$.

An interesting consequence of (4.1) is that $\left\{A_{n}\right\} \sim_{\lambda}(\theta, G)$ implies that most of the eigenvalues are contained within any ϵ-neighborhood of the essential range of θ. That is, the range of θ is a cluster for the spectrum of $\left\{A_{n}\right\}$.

The main observation is that all the matrices considered so far are low-rank perturbations of Toeplitz matrices or can be viewed as extracted from generalized locally Toeplitz (GLT) sequences (see [27] and references therein and the seminal work [30]). We note that every GLT sequence has a symbol and this symbol is the spectral distribution function. Furthermore, the class of GLT sequences is an algebra of matrixsequences. Hence, when making linear combinations, products, or inverses (when the symbol does not vanish on sets of positive measure), the result is a new GLT sequence whose symbol can be obtained via the same operations on the original symbols. Therefore, the preconditioned matrices can be seen again as extracted from a GLT sequence whose symbol is the ratio of the symbols: here the numerator is the symbol of the original matrix sequence and the denominator is the symbol of the preconditioning sequence.

In this section, according to Definition 4.1 and since we are interested in asymptotic estimates, we are forced to indicate explicitly the parameter n, which uniquely defines the size of the associated matrix. First, we discuss in detail the case of reflective BCs. When considering $B_{n}=L\left(u^{k}\right)$, it is known that [27]

$$
\begin{gathered}
\left\{B_{n}\right\} \sim_{\lambda}(a(x) w(t), G), \quad G=\Omega \times[0,2 \pi]^{d}, \\
a(x)=\frac{1}{\sqrt{|\nabla x|^{2}+\beta^{2}}} \quad w(t)=\sum_{i=1}^{d}\left(2-2 \cos \left(t_{i}\right)\right) .
\end{gathered}
$$

On the other hand, $c\left(B_{n}\right) \sim_{\lambda}(\bar{a} w(t), G)$, where \bar{a} is a constant and in fact it is the mean of the function $a(x): \bar{a}=\frac{1}{\mu(\Omega)} \int_{\Omega} a(x) d x$. The sequence $\left\{c\left(B_{n}\right)^{-1} B_{n}\right\}$ is clustered at one only if the sequence $\left\{B_{n}-c\left(B_{n}\right)\right\}$ is clustered at zero. Since $\left\{B_{n}-c\left(B_{n}\right)\right\} \sim_{\lambda}((a(x)-\bar{a}) w(t), G)$, the optimal cosine preconditioner is effective only if the function $a(x)$ has no large variation. To obtain a clustering preconditioner, a diagonal scaling has to be introduced. The preconditioner $\operatorname{diag}\left(B_{n}\right)^{1 / 2} c\left(B_{n}\right) \operatorname{diag}\left(B_{n}\right)^{1 / 2}$ is such that $\left\{\operatorname{diag}\left(B_{n}\right)^{1 / 2} c\left(B_{n}\right) \operatorname{diag}\left(B_{n}\right)^{1 / 2}\right\} \sim_{\lambda}(a(x) w(t), G)$ due to the algebra structure of GLT sequences. Hence, the preconditioned sequence is clustered at one.

In our case, the coefficient matrix $A_{n}=H^{*} H+\alpha L\left(u^{k}\right)$ is the sum of an integral approximate operator and an approximate elliptic differential operator. We note that $\left\{A_{n}\right\} \sim_{\lambda}\left(|\hat{h}(t)|^{2}+\alpha a(x) w(t), G\right)$, where \hat{h} is the symbol of the PSF defined in (2.4) for the 1D case and similarly can be defined for $d>1$ (the entries of the PSF are the Fourier coefficients of \hat{h}). An effective preconditioner has to consider both terms that constitute the matrix A_{n}. This is the aim of the preconditioner R_{n} defined in (3.1) and (3.13) for the 1D and 2D case, respectively. We have $\left\{R_{n}\right\} \sim_{\lambda}\left(|\hat{h}(t)|^{2}+\alpha \bar{a} w(t), G\right)$ and so $\left\{A_{n}-R_{n}\right\} \sim_{\lambda}((a(x)-\bar{a}) \alpha w(t), G)$. In this case, we cannot apply a diagonal scaling to $c\left(L\left(u^{k}\right)\right)$ because otherwise we lose the computational efficiency; the matrix $H^{*} H+$ $\alpha \operatorname{diag}\left(L\left(u^{k}\right)\right)^{1 / 2} c\left(L\left(u^{k}\right)\right) \operatorname{diag}\left(L\left(u^{k}\right)\right)^{1 / 2}$ cannot be diagonalized by discrete cosine transforms. Therefore, we have to apply to R_{n} a diagonal scaling that should act like $\operatorname{diag}\left(L\left(u^{k}\right)\right)^{1 / 2}$ on $c\left(L\left(u^{k}\right)\right)$, while it should not affect the term $H^{*} H$.

Unfortunately, since we have a diagonal scaling, we cannot apply the diagonal scaling only to a term of the sum. To balance the contribution of the two terms, the diagonal scaling is defined by the matrix D (defined in (3.2)), which leads to the scaled preconditioner D_{R}. We have $\left\{\left(D_{R}\right)_{n}\right\} \sim_{\lambda}\left((1+\alpha a(x))\left(|\hat{h}(t)|^{2}+\alpha w(t)\right), G\right)$, and hence
the preconditioned sequence is not clustered at one, even if for values of α used in the considered applications it shows an optimal behavior (see Figure 5.2).

We recall that the clustering is a useful property, but it is not strictly necessary for the optimality of the related preconditioned Krylov method: for instance, in the Hermitian positive definite case and when dealing with the PCG iterations, the spectral equivalence is sufficient. Since $D_{R}^{-1} A_{n}$ is similar to $R^{-1} \tilde{A}_{n}$, with $\tilde{A}_{n}=D^{-1 / 2} A_{n} D^{-1 / 2}$, the use of the scaled preconditioner D_{R} to the linear system (1.5) is equivalent to applying the preconditioner R to the scaled linear system (3.3). However, the scaled preconditioner D_{R} is more effective than R for large values of α (see numerical results in section 5).

Remark 4.2. For small values of α, i.e., when little regularization is required, the three preconditioners R, D_{R}, and R_{D} have a similar behavior. Moreover, when α goes to zero, the effectiveness of the proposed preconditioners increases because the preconditioners and the original coefficient matrix A_{n} all tend to $H^{*} H$.

To conclude this section, we note that in the case of antireflective BCs, similar considerations can be done. The main difference is when we consider the reblurring strategy. However, using the results in [15], the nonsymmetric case can be considered as well, since the antisymmetric part has trace norm (sum of all singular values) bounded by a pure constant independent of n. Therefore the spectral distribution is governed by the symmetric part, which is dominant as discussed in section 3.3 of [3].
5. Numerical tests. We solve problem (1.4) by the FP method (1.5) with the operator \mathcal{H} approximated by using different BCs and with the operator \mathcal{L}_{u} imposed by zero Neumann BCs or antireflective BCs. The algorithm was implemented in MATLAB 7.10 and run on a PC Intel Pentium IV of 3.00 GHZ CPU. We shall show the effectiveness of the proposed preconditioners for signal/image deblurring and also give a comparison of the quality of the restored signals/images with different BCs.

In our test, we choose initial guess $u^{0}=v$ for the FP algorithm. We shall solve (1.5) by the PCG method when the Neumann BCs are imposed on $L\left(u^{k}\right)$ and solve (1.5) by the PBiCGstab method when the antireflective BCs are imposed on $L\left(u^{k}\right)$. Also, we solve (3.8) by the PBiCGstab method. The initial guess for the PCG and PBiCGstab methods at the k th FP iteration is chosen to be the $(k-1)$ th FP iterate. The inner PCG and PBiCGstab iterations are stopped when the residual vector r_{k} of the linear systems (1.5) and (3.8) at the k th iteration satisfies $\left\|r_{k}\right\| /\left\|r_{0}\right\|<$ tol, where $\|\cdot\|$ denotes the 2 -norm and tol is set to 10^{-6} and 10^{-5} in the 1 D and 2 D case, respectively.
5.1. One-dimensional case: Signal deblurring. In our experiments, we suppose the true signal u is given as in Figure 5.1(a). The two vertical lines shown in Figure 5.1 (a) denote the field of view (i.e., $[0.1,0.9]$) of our signal, and the signal outside the two vertical lines can be approximated by different BCs. The true signal is blurred by the symmetric out of focus PSF

$$
h_{i}= \begin{cases}c & \text { if }|i|<m(n) \tag{5.1}\\ 0 & \text { otherwise }\end{cases}
$$

where c is the normalization constant such that $\sum_{i} h_{i}=1$ and $m(n)$ is the center of the PSF that depends on n so that the restored signal lies in the interval $[0.1$, $0.9]$. A Gaussian noise η with a specific signal-to-noise ratio $\|\eta\| /\|H u\|$ is added to the blurred signal. We consider the true signal to be blurred by the out of focus PSF and then added the Gaussian noise with the noise levels 1%; i.e., $\|\eta\| /\|H u\|=$ 0.01. Figure $5.1(\mathrm{~b})$ shows the observed signal.

Fig. 5.1. True and observed signals.

We now show that the proposed preconditioners are effective for solving (1.5) and (3.8) with different BCs. In our numerical experiments, the FP iteration is stopped when $\left\|u^{k}-u^{k-1}\right\| /\left\|u^{k}\right\|<10^{-3}$. We will concentrate on the performance of different choices of preconditioners for various values of the regularization parameters α and β in (1.3) and the size n of the coefficient matrix $A_{u^{k}}$ in (1.5).

In Tables 1 and 2, we report the average number of iterations per FP iteration, According to Remark 4.2, the effectiveness of the proposed preconditioners increases when α decreases. Moreover, decreasing α, all the proposed preconditioners become equivalent; explicitly, the PCG/PBiCGstab converges in about the same number of iterations.

We note that antireflective BCs usually require fewer steps and fewer PCG/ BiCGstab iterations per FP step when compared with reflective BCs. This shows that

Table 1
Average number of PCG/PBiCGstab iterations per FP step varying α with $n=203$ and $\beta=0.1$. Here, N, I, D, "Reflective," "AR + Sine + ZNL," "AR + Reblur + ZNL," and "AR + Reblur + ARL" denote the number of FP steps, no-preconditioner and the diagonal scaling preconditioner, the reflective BCs, the antireflective BCs with sine preconditioner by imposing the zero Neumann BCs on $L\left(u^{k}\right)$, the antireflective BCs with reblurring by imposing the zero Neumann BCs on $L\left(u^{k}\right)$, and the antireflective BCs with reblurring by imposing the antireflective $B C$ s on $L\left(u^{k}\right)$, respectively.

PCG	Reflective						AR + Sine + ZNL					
α	N	I	D	R	D_{R}	R_{D}	N	I	D	M	D_{M}	M_{D}
10^{-1}	30	269	163	73	49	45	28	221	155	60	51	36
10^{-2}	37	172	107	84	37	32	24	149	94	67	33	25
10^{-3}	32	99	71	63	42	36	24	80	59	56	37	31
10^{-4}	19	57	56	38	36	35	19	60	58	31	30	29
10^{-5}	20	74	71	23	25	24	17	47	45	20	20	19
10^{-6}	11	122	122	7	7	8	8	85	86	14	14	14
$\underline{\text { PBiCGstab }}$	AR + Reblur + ZNL						AR + Reblur + ARL					
α	N	I	D	P	D_{P}	P_{D}	N	I	D	P	D_{P}	P_{D}
10^{-1}	27	178	105	57	53	51	24	179	109	41	46	35
10^{-2}	24	105	59	59	25	21	23	107	60	39	23	20
10^{-3}	23	60	44	43	27	23	22	54	37	34	22	20
10^{-4}	20	33	31	20	18	18	20	32	30	18	16	17
10^{-5}	25	31	33	10	9	10	20	31	32	10	10	10
10^{-6}	9	78	68	4	4	4	11	56	62	4	4	4

Table 2
Average number of PCG/PBiCGstab iterations per FP step varying β with $n=203$ and $\alpha=0.001$.

PCG	Reflective						AR + Sine + ZNL					
β	N	I	D	R	D_{R}	R_{D}	N	I	D	M	D_{M}	M_{D}
10^{-3}	31	434	245	305	298	125	24	349	200	297	226	85
10^{-2}	31	218	139	149	98	67	24	175	112	139	72	46
10^{-1}	32	99	71	63	42	36	24	80	59	56	37	31
10^{0}	28	39	36	21	18	20	21	35	32	19	16	15
PBiCGstab	AR + Reblur + ZN L						AR + Reblur + ARL					
β	N	I	D	P	D_{P}	P_{D}	N	I	D	P	D_{P}	P_{D}
10^{-3}	23	403	254	361	346	59	22	323	207	288	285	57
10^{-2}	23	157	87	130	58	43	22	134	77	102	43	28
10^{-1}	23	60	44	43	27	23	22	54	37	34	22	20
10^{0}	20	21	20	12	11	11	20	19	18	10	9	9

the improvement in the model also leads to an improvement in the global computational complexity of the numerical methods. This is more evident for the optimal restoration since the antireflective BCs require a regularization parameter α smaller than that of reflective BCs (Figures 5.6(a) and 5.4).

Figure 5.2 describes the average PCG/PBiCGstab iterations per FP step varying n. We note that the preconditioners with a diagonal scaling show the best behavior.

In Figure 5.3, we present the restored signals for varying β, e.g., by solving (1.5) when antireflective BCs have been imposed. As expected, the recovered signals become

Fig. 5.2. Average number of $P C G / P B i C G$ stab iterations per $F P$ step for various n with $\alpha=10^{-3}$ and $\beta=0.1$.

FIG. 5.3. Restorations for antireflective BCs based (1.5) with $n=203, \alpha=10^{-3}$ varying β.
sharper when the value of β is smaller; the value $\beta=0.1$ gives a restoration sufficiently good anyway.

We can easily observe from Tables 1-2 and Figure 5.2 that the proposed preconditioners with a diagonal scaling are the most effective preconditioners when varying parameters α, β, and n. Finally, we remark that in all our tests, the proposed algorithm needs the same number of FP steps for the no-preconditioner and preconditioned cases, and $\left\|g\left(u^{k}\right)\right\|$ (see (1.4) for the definition of $\left.g(\cdot)\right)$ tends to $O\left(10^{-5}\right)$ or $O\left(10^{-6}\right)$ at the final FP iterate.

To check the quality of restored signals by using different BCs, in Figure 5.6(a) we show the relative restoration error (RRE), $\left\|u_{\alpha}-u\right\| /\|u\|$, where u_{α} is the computed approximation of the true signal u, versus the regularization parameter α. Figure 5.4 gives the restored signals with optimal value of the parameter α, where $\alpha_{\text {opt }}$, Re., $F p$., and It. denote the optimal α, the minimal RRE, the number of FP steps, and the average number of PCG/BiCGstab iterations per FP step, respectively.

From Figure 5.4 we argue that antireflective BCs lead to the most accurate restored signals with less significant ringing effects at the edges and fewer PCG iterations per FP step, when compared with reflective BCs. Moreover, thanks to the improvement in the model of the problem, antireflective BCs require less regularization than reflective BCs. This implies a smaller $\alpha_{\text {opt }}$ and hence a small number of PCG/BiCGstab iterations per FP step, while the number of FP iterations remains about the same.
5.2. Two-dimensional case: Image deblurring. In this section, we apply the proposed preconditioners to image restoration with different BCs. Suppose the true

Fig. 5.4. Restored signals with different BCs. Here $n=203$ and $\beta=0.1$.
images are blurred by the Gaussian blur, and then suppose that a white Gaussian noise η with the noise level 0.1% is added. Figure 5.5 shows the true and observed images.

In our numerical tests, the FP iteration is stopped when $\left\|u^{k}-u^{k-1}\right\| /\left\|u^{k}\right\|<10^{-4}$ and the maximal number of FP steps is set to be 100 . We fix $\beta=0.01$ and only focus on the performance of different choices of preconditioners for varying α.

In Table 3 the number of iterations is displayed for solving (1.5) or (3.8) with different BCs and various values of α, where N and I mean the number of FP iterations and no-preconditioner, respectively. Here, we only give the average number of CG/ BiCGstab iterations per FP step. Table 3 suggests that the unscaled preconditioners

Fig. 5.5. True and observed images.

Table 3
Average number of $C G / B i C G s t a b$ iterations per FP step for varying α. Here, $\beta=0.01$.

PCG	Reflective						AR + Sine + ZNL					
α	N	I	N	D_{R}	N	R_{D}	N	I	N	D_{M}	N	M_{D}
10^{0}	60	244	60	48	60	23	60	229	60	210	61	23
10^{-1}	41	129	46	29	33	22	40	114	40	117	28	38
10^{-2}	13	70	13	44	11	39	12	58	9	49	8	41
10^{-3}	3	124	2	42	2	42	2	147	2	36	2	37
10^{-4}	2	164	1	23	1	23	1	354	1	23	1	23
PBiCGstab	$\mathrm{AR}+$ Reblur + ZNL						AR + Reblur + ARL					
α	N	I	N	D_{P}	N	P_{D}	N	I	N	D_{P}	N	P_{D}
10^{0}	58	52	${ }^{1 *}$	*	59	13	60	52	59	50	60	7
10^{-1}	27	27	33	16	31	7	26	28	31	9	30	5
10^{-2}	10	9	10	7	10	6	10	10	12	5	10	5
10^{-3}	2	16	2	5	2	5	3	11	2	4	2	5
10^{-4}	1	33	1	3	2	1	1	34	1	3	2	1

${ }^{1 *}$ means that the method does not converge.
X_{D}, with $X \in\{R, M, P\}$, are very effective matrix approximations for all values of α, while the scaled preconditioners D_{X} do not work well for large values of α, especially for antireflective BCs. However, concerning antireflective BCs, a good choice for α is in the interval $\left[10^{-3}, 10^{-2}\right]$, and in this case both choices X_{D} and D_{X} have a similar behavior. We note that the number of FP iterations decreases with α, so if we have a good model that requires a lower regularization, we obtain a gain also in terms of the computational cost of the whole restoration procedure. In all our tests, it is shown that $\left\|g\left(u^{k}\right)\right\|$ tends to $O\left(10^{-3}\right)$ or $O\left(10^{-4}\right)$ at the final FP iterate.

Next, we check the quality of restored images by using different BCs. Figure 5.6(b) describes the $\operatorname{RRE}\left\|u_{\alpha}-u\right\| /\|u\|$, where u_{α} is the computed approximation of the true image u, versus the regularization parameter α. Figure 5.7 presents the restored images with optimal value of the parameter α. Like in the 1D case, Figure 5.7 shows that the antireflective BCs lead to better restored images and sharper edges with a lower computational cost than the reflective BCs (see the high reduction in the FP iterations with smaller $\alpha_{\text {opt }}$).

Fig. 5.6. The RRE versus the regularization parameter α for different BCs.

Fig. 5.7. Restored images with different BCs.
6. Conclusions. In this paper, we have considered the effect of reflective and antireflective BCs when regularizing blurred and noisy images via the TV approach. In particular, we have studied some preconditioning strategies for the linear systems arising from the FP iteration given in [32]. In the case of antireflective BCs, we have also considered a comparison with the reblurring idea proposed in [13]. We recall that the reblurring method has been shown effective when combined with the Tikhonov regularization, and here one of the issues was to verify that reblurring and TV can be combined satisfactorily. Furthermore, the optimal behavior of our preconditioners has been validated numerically.

Besides the computational features of the preconditioning techniques, we stress the improvement obtained via antireflective BCs in terms of both reconstruction quality and reduction of the computational cost. In fact, the precision of such BCs was already known in the relevant literature (see [11], [12], [23], and the references therein). However, this is the first time that the antireflective BCs have been combined with a sophisticated regularization method, where the use of fast transforms is very welcome for saving computational cost. The antireflective BCs require a smaller regularization parameter α than that of other BCs (see numerical results in section 5). Also, the proposed preconditioners are more effective when α becomes smaller. All these features lead to an efficient method that converges within few iterations and that requires only four fast trigonometric transforms plus lower order computations. Therefore, the total complexity could be comparable with that of the efficient FTVd method proposed in [33]: in this respect, as a future line of research, a modification of the FTVd method including the antireflective BCs has to be investigated.

Besides deconvolution problems, the proposed antireflective BCs and the preconditioning strategies for the lagged diffusivity algorithm in (1.5) could be also applied to more general forward operators, where symmetric shift-invariant operators should be considered.

Potential lines of interest for future investigations could include the use of antireflective BCs in the promising split Bregman method [14] and FTVd [33], and a more precise clustering analysis of the preconditioning sequences, in the spirit of section 4 : in particular, according to the analysis in [27], it is important to concentrate the efforts in designing new preconditioners in such a way that the resulting preconditioned sequence is a GLT sequence showing a symbol concentrated at 1 as much as possible.

Acknowledgments. We would like to thank the associate editor and the referees for their valuable comments, which have considerably improved this paper.

REFERENCES

[1] R. Acar and C. Vogel, Analysis of total variation penalty methods, Inverse Problems, 10 (1994), pp. 1217-1229.
[2] A. Aricó, M. Donatelli, J. Nagy, and S. Serra-Capizzano, The anti-reflective transform and regularization by filtering, in Numerical Linear Algebra in Signals, Systems, and Control, Lecture Notes in Electrical Engineering 80, Springer-Verlag, New York, 2011.
[3] A. Aricó, M. Donatelli, and S. Serra-Capizzano, Spectral analysis of the anti-reflective algebras and applications, Linear Algebra Appl., 428 (2008), pp. 657-675.
[4] O. Axelsson and G. Lindskog, On the rate of convergence of the preconditioned conjugate gradient method, Numer. Math., 48 (1986), pp. 499-523.
[5] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, Institute of Physics Publishing, Bristol, UK, 1998.
[6] R. Chan, T. Chan, and C. Wong, Cosine transform based preconditioners for total variation minimization problems in image processing, in Proceedings of the 2nd IMACS International Symposium on Iterative Methods in Linear Algebra, IMACS Series in Computational and Applied Mathematics 2, S. Margenov and P. Vassilevski, eds., 1995, pp. 311-329.
[7] R. Chan, T. Chan, and C. Wong, Cosine transform based preconditioners for total variation deblurring, IEEE Trans. Image Process., 8 (1999), pp. 1472-1478.
[8] R. Chan, M. Ng, and C. Wong, Sine transform based preconditioners for symmetric Toeplitz systems, Linear Algebra Appl., 232 (1996), pp. 237-259.
[9] T. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 766-771.
[10] T. Chan, S. Esedoglu, F. Park, and A. Yip, Total variation image restoration: Overview and recent developments, in Handbook of Mathematical Models in Computer Vision, Springer-Verlag, New York, 2006, pp. 17-31.
[11] M. Christiansen and M. Hanke, Deblurring methods using antireflective boundary conditions, SIAM J. Sci. Comput., 30 (2008), pp. 855-872.
[12] M. Donatelli, C. Estatico, and S. Serra-Capizzano, Improved image deblurring with anti-reflective boundary conditions and re-blurring, Inverse Problems, 22 (2006), pp. 2035-2053.
[13] M. Donatelli and S. Serra Capizzano, Anti-reflective boundary conditions and re-blurring, Inverse Problems, 21 (2005), pp. 169-182.
[14] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), pp. 323-343.
[15] L. Golinskii and S. Serra-Capizzano, The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences, J. Approx. Theory, 144 (2007), pp. 84-102.
[16] G. Golub and C. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996.
[17] C. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg, Wiesbaden, Germany, 1993.
[18] H. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
[19] P. C. Hansen, J. Nagy, and D. P. O'Leary, Deblurring Images: Matrices, Spectra, and Filtering, SIAM, Philadelphia, 2005.
[20] Y. Huang, M. K. Ng, and Y. Wen, A fast total variation minimization method for image restoration, Multiscale Model. Simul., 7 (2008), pp. 774-795.
[21] M. Ng, R. Chan, and W. Tang, A fast algorithm for deblurring models with Neumann boundary conditions, SIAM J. Sci. Comput., 21 (1999), pp. 851-866.
[22] M. Ng, P. Weiss, and X. M. Yuan, Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods, SIAM J. Sci. Comput., 32 (2010), pp. 2710-2736.
[23] L. Perrone, Kronecker product approximations for image restoration with anti-reflective boundary conditions, Numer. Linear Algebra Appl., 13 (2006), pp. 1-22.
[24] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259-268.
[25] S. Serra Capizzano, A Korovkin-type theory for finite Toeplitz operators via matrix algebras, Numer. Math., 82 (1999), pp. 117-142.
[26] S. Serra-Capizzano, A note on antireflective boundary conditions and fast deblurring models, SIAM J. Sci. Comput., 25 (2003), pp. 1307-1325.
[27] S. Serra-Capizzano, The GLT class as a generalized Fourier analysis and applications, Linear Algebra Appl., 419 (2006), pp. 180-233.
[28] Y. Shi and Q. Chang, Acceleration methods for image restoration problem with different boundary conditions, Appl. Numer. Math., 58 (2008), pp. 602-614.
[29] G. Strang, The discrete cosine transform, SIAM Rev., 41 (1999), pp. 135-147.
[30] P. Tilli, Locally Toeplitz sequences: Spectral properties and application, Linear Algebra Appl., 278 (1998), pp. 91-120.
[31] H. van der Vorst, BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631-644.
[32] C. Vogel and M. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17 (1996), pp. 227-238.
[33] Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), pp. 248-272.

[^0]: *Received by the editors November 29, 2010; accepted for publication (in revised form) by J. G. Nagy May 18, 2011; published electronically August 16, 2011.
 http://www.siam.org/journals/simax/32-3/81621.html
 ${ }^{\dagger}$ 'School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China, and Dipartimento di Fisica e Matematica, Università dell'Insubria-Sede di Como, Via Valleggio 11, 22100 Como, Italy (zjbai@xmu.edu.cn). The research of this author was partially supported by the Natural Science Foundation of Fujian Province of China for Distinguished Young Scholars (2010J06002), NCET, and Internationalization Grant of U. Insubria 2008, 2009.
 ${ }^{\ddagger}$ Dipartimento di Fisica e Matematica, Università dell’Insubria-Sede di Como, Via Valleggio 11, 22100 Como, Italy (marco.donatelli@uninsubria.it, stefano.serrac@uninsubria.it). The work of these authors was partially supported by MIUR grant 20083KLJEZ.

[^1]: ${ }^{1}$ In general, $\operatorname{ar}(A) \neq \arg \min _{B \in \mathcal{A R}}\|B-A\|_{F}$. Moreover, we cannot construct arg $\min _{B \in \mathcal{A R}}\|B-A\|_{F}$ in only $O\left(n^{2}\right)$ operations by using the similar technique for computing $s(A)$ in [6].

