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Abstract. In recent works several authors have proposed the use of precise boundary conditions (BCs)
for blurring models, and they proved that the resulting choice (Neumann or reflective, antireflective) leads to
fast algorithms both for deblurring and for detecting the regularization parameters in presence of noise. When
considering a symmetric point spread function, the crucial fact is that such BCs are related to fast trigono-
metric transforms. In this paper we combine the use of precise BCs with the total variation (TV) approach in
order to preserve the jumps of the given signal (edges of the given image) as much as possible. We consider a
classic fixed point method with a preconditioned Krylov method (usually the conjugate gradient method) for
the inner iteration. Based on fast trigonometric transforms, we propose some preconditioning strategies that
are suitable for reflective and antireflective BCs. A theoretical analysis motivates the choice of our precondi-
tioners, and an extensive numerical experimentation is reported and critically discussed. Numerical tests show
that the TV regularization with antireflective BCs implies not only a reduced analytical error, but also a lower
computational cost of the whole restoration procedure over the other BCs.
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preconditioning

AMS subject classifications. 65F10, 65F15, 65Y20

DOI. 10.1137/100816213

1. Introduction. We are concerned with specific linear algebra/matrix theory as-
pects of the vast field of inverse problems [17], [18] which model the blurring of signals
and images (two-dimensional (2D) or dD with d ≥ 3). Here the goal is to reconstruct the
real object from its blurred and noisy version, and this goal is a classical one in astro-
nomical imaging, medical imaging, geosciences, etc. [5].

The blurring model is assumed to be space-invariant; i.e., the point spread function
(PSF) is represented by a specific bivariate function hðx− yÞ for some univariate func-
tion hð·Þ [19]. According to the linear models described in the literature [17], the observed
signal or image v and the original signal or image u are described by

vðxÞ ¼ HuðxÞ þ ηðxÞ ≔
Z
Ω
hðx− sÞuðsÞdsþ ηðxÞ; x ∈ Ω;ð1:1Þ

where the kernel h is the PSF and η denotes the noise. The problem (1.1) is ill-posed
since the operator H is compact [17]. Therefore, the approximation/discretization
matrix of H is usually increasingly ill-conditioned when the number n of pixels becomes
large. In addition, the size of the subspace associated with small eigenvalues, which
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substantially intersects the high frequencies, is large and proportional to the size of the
matrix. Thus, we cannot directly solve Hu ¼ d, since the small perturbations, repre-
sented by the noise η with important high frequency components due to its probabilistic
nature, would be amplified unacceptably.

To remedy the essential ill-conditioning of problem (1.1), one may employ regular-
ization methods. The total variation (TV) regularization approach is a good choice for
restoring edges of the original signals [24]. Rudin, Osher, and Fatemi [24] gave the TV
functional in the form

JTVðuÞ ≔
Z
Ω
j∇ujdx;ð1:2Þ

where j · j denotes the L1-norm. We note that the L1-norm j · j is not differentiable at
zero. To avoid the nondifferentiability, Acar and Vogel [1] considered the following mini-
mization problem:

min
u

kHu− vkL2ðΩÞ þ α

Z
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j∇uj2 þ β2

q
dx;ð1:3Þ

where α, β are positive parameters. Notice that the penalty term ∫ Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j∇uj2 þ β2

p
dx

converges to JTVðuÞ as β → 0. In other words, the penalty term is a differentiable reg-
ularized version of JTVðuÞ. The corresponding Euler–Lagrange equation for (1.3) is
given by

gðuÞ ≔ H�ðHu− vÞ− αLuðvÞ ¼ 0ð1:4Þ

under the zero Neumann boundary conditions, where H� is the adjoint of H and
LuðyÞ ≔ −∇ · ð1 ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j∇uj2 þ β2

p
∇yÞ is the differential operator appearing in (1.4)

and comes from the regularized penalty term. The lagged diffusivity fixed point
(FP) iteration is given by

Aukukþ1 ≡ ðH �H þ αLðukÞÞukþ1 ¼ H �v; k ¼ 0; 1; : : : ;ð1:5Þ

where H and LðukÞ denote the discretization matrix of H and Luk , respectively, which
was proposed by Vogel and Oman [32] for solving (1.4). One may solve (1.5) by the
preconditioned conjugate gradient (PCG) method [16, Algorithm 10.3.1].

In [7] the authors proposed a cosine preconditioner when H is a Toeplitz matrix, i.e.,
in the case of zero-Dirichlet boundary conditions (BCs). However, the choice of such
BCs induces remarkable pathologies in the quality of the restored images, which should
be avoided or at least minimized. In reality, using classical BCs such as periodic or zero-
Dirichlet may imply, when the background is not uniformly black, disturbing Gibbs
phenomena called ringing effects [19], [21], [26].

The novelty of this paper is represented by the choice of appropriate BCs, in order to
reduce the ringing effects, and in the related matrix/numerical analysis. The latter will
affect the algebraic expression of H , while for LðukÞ the choice of BCs in the Euler–
Lagrange equation for (1.4) seems to impose Neumann BCs. In this context, the idea
is to combine the application of antireflective BCs, already studied for their precision
with plain regularization methods like Tikhonov and Landweber [2], [11], [12], [23], [26],
[28], with the more sophisticated TV regularization. In other words, the first aim
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consists of checking how to reduce the ringing effects and the oversmoothing of the edges
simultaneously. Next, we want to study the use of preconditioners based on innovative
fast transforms in the setting of Krylov methods when the real problem is modeled by a
symmetric PSF. The final goal is to combine the precision of the reconstruction with
highly efficient numerical procedures. We study some preconditioning techniques
and give the theoretical explanations of different proposals. An effective preconditioner
for reflective BCs is inspired by the work in [7], while, for the antireflective BCs, we
propose a new sine preconditioner for the linear system (1.5) and explore the reblurring
approach introduced in [13]. Numerical results confirm the effectiveness of the
proposed preconditioners and the superiority of the antireflective BCs over the reflective
BCs. Indeed, antireflective BCs not only provide better restorations as expected (see
[12], [26]), but also require a lower computational cost, because our approach converges
faster for small α and a more precise model requires less regularization, i.e., a smaller α.

Recently, further TV algorithms have been proposed, and the analysis has
shown that these algorithms could be in general more efficient than the FP algo-
rithm (1.5) (see [10], [14], [20], [22], [33]). Some of them are mainly suitable for
denoising problems. In addition many other methods depend on the solution of very
similar linear systems. For instance, the fast total variation deblurring (FTVd) al-
gorithm in [33] is an alternating minimization algorithm, which is computationally
efficient since only three fast Fourier transforms (FFTs) are required per iteration,
when the periodic BCs are imposed. In [33] the authors observe that dozens of total
inner iterations are enough in order to compute a good reconstruction having a
quality of the same level as that obtained via lagged diffusivity with Dirichlet
BCs. Our proposal requires four fast transforms for each inner iteration, and the
numerical results in section 5.2 show that only few outer and inner iterations
(around one hundred total inner iterations) are necessary to converge. Therefore,
the total number of fast transforms is usually larger (a factor around ten) than
FTVd, but a better restoration given by the more accurate BCs model is obtained.
However, the combination of antireflective BCs with the FTVd method should be
better investigated in future work. A direct application of antireflective BCs to the
FTVd method implies the solution of a linear system similar to (1.5), and the pre-
conditioning strategies proposed in this paper could be again useful.

The paper is organized as follows. In section 2 we consider reflective and antireflec-
tive BCs. In section 3 we define some optimal preconditioners for signal and image de-
blurring with reflective and antireflective BCs. In section 4 some spectral features of the
proposed preconditioners are discussed. Section 5 is concerned with the numerical tests
for checking the real efficiency of the considered preconditioners and the quality of the
restorations. Finally, in section 6 we draw conclusions.

2. Boundary conditions. We start by introducing the one-dimensional (1D) de-
blurring problem. Consider the original signal ~u ¼ ð : : : ; u−mþ1; : : : ; u0; u1; : : : ; un;
unþ1; : : : ; unþm; : : : ÞT and the normalized PSF given by h ¼ ð : : : ; 0; 0; h−m; h−mþ1; : : : ;
h0; : : : ; hm−1; hm; 0; 0; : : : ÞT with the usual normalization

P
m
j¼−m hj ¼ 1, which pre-

serves the global intensity and therefore represents an average. The deblurring problem
is to recover the vector u ¼ ðu1; : : : ; unÞT given the PSF h and a blurred signal
v ¼ ðv1; : : : ; vnÞT of finite length. The blurred signal v is the convolution of h and ~u,
and consequently it is such that
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v ¼

2
666666664
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0
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u−mþ2

..

.
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u
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..

.

unþm−1

unþm

1
CCCCCCCCCCCCCA
:ð2:1Þ

Thus the blurred signal v is determined not only by u, but also by ðu−mþ1; : : : ; u0ÞT and
ðunþ1; : : : ; unþmÞT , and the linear system (2.1) is underdetermined. To overcome this,
we make certain assumptions (called BCs) on the unknown boundary data
u−mþ1; : : : ; u0 and unþ1; : : : ; unþm in such a way that the number of unknowns equals
the number of equations.

For the zero-Dirichlet BCs, we assume that the data outside u are zero; i.e., we set
u1−j ¼ unþj ¼ 0 for j ¼ 1; : : : ;m. Then, (2.1) becomes Au ¼ v, where A is Toeplitz. For
the periodic BCs, we assume that the signal u is extended by periodicity. More precisely,
we set u1−j ¼ un−jþ1 and unþj ¼ uj for j ¼ 1; : : : ;m. It follows that (2.1) becomes
Au ¼ v, where A is circulant and hence it can be diagonalized by the discrete Fourier
transform (DFT) (see [19]).

For the Neumann or reflective BCs, we assume that the data outside u are a reflec-
tion of the data inside u. Discretization of the Neumann BCs can be centered at a mesh-
point or a midpoint; different choices do not affect the approximation error but only the
structure of the matrix. More in detail, the eigenvectors are related to different discrete
cosine transforms [29]. In this paper we use only the midpoint discretization that leads to
the standard discrete cosine transform of type II (DCT-2) previously considered in [21].
Therefore, we set u1−j ¼ uj and unþj ¼ unþ1−j for all j ¼ 1; : : : ;m in (2.1). Thus (2.1)
becomesAu ¼ v, whereA is neither Toeplitz nor circulant but a special n-by-nToeplitz-
plus-Hankel matrix that is diagonalized by the discrete cosine transform provided that
the blurring function h is symmetric; i.e., hj ¼ h−j for all j. It follows that the above
system can be solved by using three fast cosine transforms (FCTs) in Oðn log nÞ opera-
tions [21]. This approach is computationally interesting since the FCT requires only real
operations and is about twice as fast as the FFT. We note that the reflection ensures the
continuity of the signal and the error is linear in the discretization step (the linear error
can be easily seen by applying a Taylor expansion [21]). Therefore, we usually observe a
reduction of the boundary artifacts with respect to zero-Dirichlet and periodic BCs.

For the antireflective BCs, we assume that the data outside u are an antireflection of
the data inside u. According to the terminology employed in [29], we perform a midpoint
antireflection as for the Neumann BCs. More precisely, if x is a point outside the domain
and x� is the closest boundary point, then we have x ¼ x� − δx, and the quantity uðxÞ is
approximated by uðx�Þ− ðuðx� þ δxÞ− uðx�ÞÞ. Consequently, we set

u1−j ¼ u1 − ðujþ1 − u1Þ ¼ 2u1 − ujþ1 for all j ¼ 1; : : : ;m;

unþj ¼ un − ðun−j − unÞ ¼ 2un − un−j for all j ¼ 1; : : : ;mð2:2Þ

in (2.1). By a Taylor expansion, the antireflection (2.2) ensures a C1 continuity of the
signal, and the error is quadratic in the discretization step [26]. Usually, the boundary
artifacts are also reduced with respect to reflective BCs.
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Imposing the antireflection (2.2), (2.1) becomes Au ¼ v, where A is a Toeplitz-plus-
Hankel plus a rank-2 correction matrix, where the correction is placed at the first and the
last column. Furthermore, in [2] the authors proved that if h is symmetric, then
A ¼ TnΛT−1

n with

Tn ¼
"
1 0 0
p Sn−2 Jp
0 0 1

#
; T−1

n ¼
"

1 0 0
−Sn−2p Sn−2 −Sn−2Jp

0 0 1

#
;ð2:3Þ

where J is the flip matrix, Sn−2 is the sine transform matrix of order n− 2, and
pj ¼ 1− j ∕ ðn− 1Þ so that the first column vector is exactly the sampling of the function
1− x on the grid j ∕ ðn− 1Þ for j ¼ 0; : : : ; n− 1. Finally, Λ is a diagonal matrix given by
suitable samplings of the function

ĥðyÞ ¼
X

hj expðijyÞ;ð2:4Þ

which is the symbol of the PSF. That is,

Λ ¼ diagj¼1; : : : ;nðĥðyjÞÞ; Sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

mþ 1

r �
sin

�
jiπ

mþ 1

��
m

i;j¼1

;ð2:5Þ

where

yj ¼
ðj− 1Þπ
n− 1

for j ¼ 1; : : : ; n− 1; and yn ¼ 0:ð2:6Þ

As a consequence, a generic system Au ¼ v can be solved within Oðn log nÞ real opera-
tions by resorting to the application of three fast sine transforms (FSTs) (refer to [26]),
where each FST is computationally as cheap as a generic FCT. There is a suggestive
functional interpretation of the transform Tn: it can be functionally interpreted as a
linear combination of sine functions and of linear polynomials (whose use is exactly re-
quired for imposing the C 1 continuity at the borders). This intuition becomes evident in
the expression of Tn. Indeed, the jth row of Tn is given by

�
1−

yj
π
; sinðyjÞ; : : : ; sinððn− 2ÞyjÞ;

yj
π

�
· diag

�
1;

ffiffiffiffiffiffiffiffiffiffiffiffi
2

n− 1

r
I n−2; 1

�
;ð2:7Þ

where yj is defined in (2.6) for j ¼ 1; : : : ; n and it is a suitable gridding of ½0;π�.
Now, we introduce the 2D case. For the Neumann or reflective BCs, the blurring

matrix is a block Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel blocks
and can be diagonalized by the 2D FCTs, which are tensor products of 1D FCTs,
in Oðn2 log nÞ operations provided that h is quadrantally symmetric; i.e., hi;j ¼ h−i;j ¼
hi;−j ¼ h−i;−j (refer to [21]).

For the antireflective BCs, a point outside the domain is antireflected to the closest
boundary point first in one direction and then in the other direction. In particular, we set

u1−j;ϕ ¼ 2u1;ϕ − ujþ1;ϕ; unþj;ϕ ¼ 2un;ϕ − un−j;ϕ for 1 ≤ j ≤ m; 1 ≤ ϕ ≤ n;

uψ;1−j; ¼ 2uψ;1 − uψ;jþ1; uψ;nþj ¼ 2uψ;n − uψ;n−j for 1 ≤ j ≤ m; 1 ≤ ψ ≤ n:
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When both indices lie outside the range f1; : : : ; ng (this happens close to the 4 corners
of the given image), we set

u1−i;1−j ¼ 4u1;1 − 2u1;jþ1 − 2uiþ1;1 þ uiþ1;jþ1;

u1−i;nþj ¼ 4u1;n − 2u1;n−j − 2uiþ1;n þ uiþ1;n−j;

unþi;1−j ¼ 4un;1 − 2un;jþ1 − 2un−i;1 þ un−i;jþ1;

unþi;nþj ¼ 4un;n − 2un;n−j − 2un−i;n þ un−i;n−j

for 1 ≤ i, j ≤ m. If the blurring function (PSF) h is quadrantally symmetric, then the
blurring matrix is a block Toeplitz-plus-Hankel-plus-2-rank-correction matrix with
Toeplitz-plus-Hankel-plus-2-rank-correction blocks and can be diagonalized by the
2D antireflective transforms, which are tensor products of 1D antireflective transforms
Tn inOðn2 log nÞ real operations; see, for instance, [2]. In the following we will assume a
symmetric (quadrantally symmetric in 2D) PSF since reflective and antireflective BCs
can be diagonalized by fast transforms only in such a case. However, in the nonsym-
metric case, even if the blurring matrix cannot be diagonalized by fast transforms,
the matrix-vector product can be done again in Oðn2 log nÞ by FFTs. Moreover, many
practical blurs have symmetry like the celebrated Gaussian blur, widely used in several
contexts.

3. Optimal preconditioners with different boundary conditions. The opti-
mal preconditioner for a matrix A aims to find an approximation that minimizes
kB − AkF over all B in a set of matrices for the Frobenius matrix norm k · kF : the typical
set of matrices is formed by considering an algebra of matrices that are simultaneously
diagonalized by a given unitary transform. The main novelty in our context is repre-
sented by the fact that the antireflective matrices with symmetric PSFs form a commu-
tative algebra associated with a nonunitary transform. The antireflective algebra poses
nontrivial difficulties that are treated in the remainder of the paper. The optimal cir-
culant preconditioner was originally given in [9]. The optimal sine transform precondi-
tioner was presented in [8]. The optimal cosine transform preconditioner was provided in
[6]. In this section, we construct the optimal reflective BCs preconditioner and the
optimal antireflective BCs preconditioner for (1.5) and the optimal reblurring precondi-
tioner for the reblurring equation (3.8) below instead of (1.5). Some of these precondi-
tioning techniques are inspired from the idea proposed in [6], [7] for zero-Dirichlet BCs.

3.1. One-dimensional problems. For the 1D problems, we assume a symmetric
and normalized PSF.

3.1.1. The reflective boundary condition. Suppose that we impose the reflec-
tive BCs on H and the zero Neumann BCs on LðukÞ. In this case, we propose the follow-
ing reflective BCs preconditioners for (1.5). Let Cn be the n-dimensional discrete cosine
transform with entries

½Cn�i;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2− δj1

n

r
cos

�ð2i− 1Þðj− 1Þπ
2n

�
; i; j ¼ 1; : : : ; n;

where δij is the Kronecker delta. The matrix Cn is orthogonal; i.e., CnC
T
n ¼ I . More-

over, for any n-vector w, the matrix-vector product Cnw can be computed within
Oðn log nÞ real operations by the FCT.
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For an n-by-n matrix A, the optimal cosine transform preconditioner is

cðAÞ ¼ arg min
B∈C

kB − AkF ;

where C ¼ fCT
nΛCn∶Λ is a realn-by-n diagonal matrixg. The operator cð·Þ is linear,

preserves positive definiteness, and compresses every unitarily invariant norm. For
the specific cosine algebra and a general convergence theory based on the Korovkin
theorems, we refer to [7], [25].

As in [7] for Dirichlet BCs, the optimal cosine transform preconditioner (i.e., the
optimal reflective BCs preconditioner) for (1.5) can be defined as

R ¼ H �H þ αcðLðukÞÞ:ð3:1Þ
We note that R ¼ cðAukÞ since H � ¼ H ∈ C. Spectral properties of the preconditioner
will be discussed in section 4. Here, we only note that cðLðukÞÞ is not an optimal pre-
conditioner for LðukÞ if the coefficient ðj∇uj2 þ β2Þ−1 ∕ 2 has large variation. In such
case a diagonal scaling is necessary to obtain an effective preconditioner like
diagðLðukÞÞ1 ∕ 2cðLðukÞÞdiagðLðukÞÞ1 ∕ 2, where diagðLðukÞÞ is the diagonal matrix whose
diagonal entries are the same as that of LðukÞ [27]. We note that the coefficient matrix in
(1.5) is the sum of two operators. To avoid the possibly large fluctuation in the coeffi-
cient of the operator in (1.5), we define a scaled reflective BCs preconditioner for (1.5) by
DR ¼ D

1
2RD

1
2, where R is given in (3.1) and

D ≡ I þ αdiagðLðukÞÞ:ð3:2Þ

A further possibility is to employ a diagonal scaling for (1.5). As in [7], we consider
the scaled equation

~Auk ~ukþ1 ≡ ð ~H � ~H þ α ~LðukÞÞ ~ukþ1 ¼ ~H �v;ð3:3Þ

where ~H ¼ HD−1∕ 2, ~LðukÞ ¼ D−1 ∕ 2LðukÞD−1∕ 2, and ~uk ¼ D1 ∕ 2uk. Then we propose an
unscaled reflective BCs preconditioner for (3.3) by RD ¼ Ĥ �Ĥ þ αcð ~LðukÞÞ, where
Ĥ ¼ HcðD−1∕ 2Þ. If ΛH , ΛD, and Λ ~L denote the eigenvalue matrices of H , cðD−1∕ 2Þ,
and cð ~LðukÞÞ, respectively, then RD can be written as

RD ¼ CT
n ðΛ�

HΛHΛ�
DΛD þ αΛ ~LÞCn:

3.1.2. The antireflective boundary condition. Under antireflective BCs for H
and the zero Neumann BCs or antireflective BCs for LðukÞ, we construct the antireflec-
tive BCs preconditioners for (1.5) and then propose a preconditioned reblurring method.
Let Sn be the n-dimensional discrete sine transform of type I with entries as in (2.5).
Then Sn is orthogonal and symmetric; i.e., ST

n ¼ Sn and S2
n ¼ I . Moreover, for any

n-dimensional vector w, the matrix-vector product Snw can be computed in
Oðn log nÞ real operations by the FST. Let σðzÞ ≔ ðz2; : : : ; zn; 0ÞT with z ¼
ðz1; : : : ; znÞT . Let T ðzÞ be the n-by-n symmetric Toeplitz matrix whose first column is
z and Hðz; JzÞ be the n-by-n Hankel matrix whose first and last column are z and Jz,
respectively. It was shown that for any B ∈ τ, there exists z ¼ ðz1; : : : ; znÞT ∈ Rn

such that [8] B ¼ T ðzÞ−Hðσ2ðzÞ; Jσ2ðzÞÞ. For an n-by-n matrix A, the optimal sine
preconditioner is

sðAÞ ¼ arg min
B∈τ

kB −AkF ;ð3:4Þ
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where τ ≔ fSnΛSn∶Λ is a real diagonal matrix of orderng. The construction of sðAÞ
requires only Oðn2Þ operations for a general matrix A and OðnÞ operations for a banded
matrixA. Furthermore, sð·Þ is linear, preserves positive definiteness, and compresses any
unitarily invariant norm (see [8], [25]).

Now, we define an optimal sine transform based preconditioner (i.e., the so-called
antireflective BCs preconditioner) for (1.5) by

M ¼ ŝðHÞ�ŝðHÞ þ αŝðLðukÞÞð3:5Þ

in the sense that, for any n-by-n matrix A, ŝðAÞ is given by

ŝðAÞ ¼ arg min
B∈τ̂

kB −AkF ;ð3:6Þ

where τ̂ ¼ fŜnΛŜn∶Λ is a real diagonal matrix of ordern and Ŝn ¼ diagð1; Sn−2; 1Þg.
PROPOSITION 3.1. Given an n-by-n matrix A, we have

ŝðAÞ ¼
2
4Að1; 1Þ 0 0

0 sðAð2∶n− 1; 2∶n− 1ÞÞ 0
0 0 Aðn; nÞ

3
5;

where ŝð·Þ and sð·Þ are defined in (3.6) and (3.4), respectively, and Að2∶n− 1; 2∶n− 1Þ
is the submatrix of A corresponding to rows indexed from 2 to n− 1 and columns from 2
to n− 1.

Proof. By unitary invariance of the Frobenius norm (Ŝn is unitary), we find
kA− ŜnΛŜnkF ¼ kŜnAŜn − ΛkF , where Λ is a diagonal matrix. To conclude the proof,
it is enough to observe that

diagðŜnAŜnÞ ¼
2
4Að1; 1Þ 0 0

0 diagðSn−2Að2∶n− 1; 2∶n− 1ÞSn−2Þ 0
0 0 Aðn; nÞ

3
5

and that sðAÞ ¼ SndiagðSnASnÞSn. ▯
To reduce the potential fluctuations in the coefficient of the elliptic operator in (1.5),

we define a scaled antireflective BCs preconditioner for (1.5) byDM ¼ D
1
2MD

1
2, whereM

is defined in (3.5) and D is given in (3.2). Similarly, for the scaled equation in the
form of (3.3), we give the unscaled antireflective BCs preconditioner by MD ¼
Ĥ �Ĥ þ αŝð ~LðukÞÞ, where Ĥ ¼ ŝðHÞŝðD−1∕ 2Þ. If ΛH , ΛD, and Λ ~L denote the eigenvalue

matrices of ŝðHÞ, ŝðD−1 ∕ 2Þ, and ŝð ~LðukÞÞ, respectively, then MD can be written as

MD ¼ ŜnðΛ�
HΛHΛ�

DΛD þ αΛ ~LÞŜn:

Next, we consider the preconditioned reblurring method. Let

AR ¼ fTnΛT−1
n ∶Λ is a real diagonal matrix of orderng;ð3:7Þ

where Tn and T−1
n are defined in (2.3). Unfortunately, H ∈ AR but H � ∈= AR. However,

in [12], it was proposed to use a reblurring approach, i.e., to replaceH � withH  0, whereH  0

is the matrix obtained by imposing antireflective BCs to the PSF rotated by 180 degrees.
Since the PSF is assumed to be symmetric, H  0 ¼ H [13]. Therefore, instead of (1.5), one
may solve the equation
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A  0
uku

kþ1 ≡ ðH  0H þ αLðukÞÞukþ1 ¼ H  0v; k ¼ 0; 1; : : : ;ð3:8Þ

by the preconditioned BICGSTAB or PBiCGstab method [31] since A  0
uk is not sym-

metric. In this case, a reblurring preconditioner for (3.8) is given by

P ¼ H  0H þ αarðLðukÞÞ:ð3:9Þ

Here, for any n-by-n matrix A, arðAÞ is defined by

arðAÞ ≔

2
6666666666666664

z1 þ 2
P

n−2
k¼2 zk 0 · · · 0 0

z2 þ 2
P

n−2
k¼3 zk 0

..

.
zn−2

zn−3 þ 2zn−2 sðAð2∶n− 1; 2∶n− 1ÞÞ zn−3 þ 2zn−2

zn−2
..
.

0 z2 þ 2
P

n−2
k¼3 zk

0 0 · · · 0 z1 þ 2
P

n−2
k¼2 zk

3
7777777777777775

;

where z ¼ ðz1; z2; : : : ; zn−2ÞT is such that sðAð2∶n− 1; 2∶n− 1ÞÞ ¼ T ðzÞ−Hðσ2ðzÞ;
Jσ2ðzÞÞ. We need only form sðAð2∶n− 1; 2∶n− 1ÞÞ for computing arðAÞ.

We note that arðAÞ belongs to the algebra AR defined in (3.7),1 where Λ is defined
as in (2.5). Therefore, a linear system Au ¼ v can be solved within Oðn log nÞ real
operations by using three FSTs.

To reduce the potential fluctuations in the coefficient of the elliptic operator in (3.8),
we define a scaled reblurring preconditioner for (3.8) as follows:DP ¼ D1 ∕ 2PD1 ∕ 2, where
P is defined in (3.9) and D is given in (3.2). For the scaled system

~A  0
uk ~ukþ1 ≡ ð ~H  0 ~H þ α ~LðukÞÞ ~ukþ1 ¼ ~H  0v;ð3:10Þ

the unscaled reblurring preconditioned is defined by

PD ¼ arðD−1 ∕ 2ÞH  0HarðD−1∕ 2Þ þ αarð ~LðukÞÞ:
If ΛH , ΛD, and Λ ~L denote the eigenvalue matrices of H , arðD−1∕ 2Þ, and arð ~LðukÞÞ, re-
spectively, then PD can be written as

PD ¼ TnðΛ�
HΛHΛ�

DΛD þ αΛLÞT−1
n :

A further possibility is the use of antireflective BCs for LðukÞ. This implies that the
coefficient matrix in (3.8) is closer to the preconditioner. Consequently, a faster conver-
gence and a lower global cost have to be expected. This case is in fact considered in the
numerics.

We comment on the cost of constructing unscaled preconditioners XD,
X ∈ fR;M;Pg and of each PCG/PBiCGstab iteration. We note that LðukÞ is a banded
matrix. Therefore, computing cðLðukÞÞ, ŝðLðukÞÞ, and arðLðukÞÞ needs only OðnÞ opera-
tions [6], [8]. At each PCG/PBiCGstab iteration, we need to calculate the matrix-vector
product ~Aukw and ~A 0

ukw and solve the system XDy ¼ b. The vector multiplication

1In general, arðAÞ ≠ arg minB∈ARkB −AkF . Moreover, we cannot construct arg minB∈ARkB − AkF in
only Oðn2Þ operations by using the similar technique for computing sðAÞ in [6].

PRECONDITIONERS FOR TV WITH ANTIREFLECTIVE BCS 793

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

0/
17

 to
 5

9.
77

.2
0.

10
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



D−1 ∕ 2w can be computed in OðnÞ operations since D−1∕ 2 is a diagonal matrix. LðukÞw
can be done in OðnÞ operations. For H ∈ C or H ∈ AR, Hw, H �Hw, and H  0Hw can be
calculated in Oðn log nÞ operations by two FCTs or FSTs plus computations of lower
orders. The system XDy ¼ b can also be solved in Oðn log nÞ operations. Therefore, the
total cost of each PCG/PBiCGstab iteration is bounded by Oðn log nÞ, mainly due to
four fast trigonometric transforms.

3.2. Two-dimensional problems. We can extend the results in subsection 3.1 to
image deblurring problems with different BCs. In the 2D case, we assume that the PSF is
quadrantally symmetric and normalized.

Let us consider the three algebras C, τ̂, and AR introduced in section 3.1 together,
and so we fix t ∈ fc; ŝ; arg. For an n2-by-n2 matrix A in the form of

A ¼

2
666664

A1;1 A1;2 · · · A1;n

A2;1 A2;2 · · · A2;n

..

. . .
. . .

. ..
.

An;1 An;2 · · · An;n

3
777775;ð3:11Þ

where Ai;j are n-by-n matrices, as defined in [7], the level-1 transform preconditioner
t1ðAÞ is given by

t1ðAÞ ¼

2
666664

tðA1;1Þ tðA1;2Þ · · · tðA1;nÞ
tðA2;1Þ tðA2;2Þ · · · tðA2;nÞ

..

. . .
. . .

. ..
.

tðAn;1Þ tðAn;2Þ · · · tðAn;nÞ

3
777775;

and then the level-2 transform preconditioner is

t2ðAÞ ¼ Qt1ðQTt1ðAÞQÞQT;ð3:12Þ

where Q is the permutation matrix that satisfies ½QTAQ�i;j;k;l ¼ ½A�k;l;i;j for 1 ≤ i, j ≤ n
and 1 ≤ k, l ≤ n; i.e., the ði; jÞth entry of the ðk; lÞth block of A is permuted to the
ðk; lÞth entry of the ði; jÞth block. The expression of the level-2 preconditioner in
(3.12) is a classical result for t ¼ c, while for t ∈ fŝ; arg the same proof technique of
Theorem 3.3 in [21] can be applied.

When one imposes the reflective BCs onH and the zero Neumann BCs on LðukÞ, the
blurring matrix H is a block Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel
blocks, which can be diagonalized by the 2D FCTs in Oðn2 log nÞ operations [21].
For the 2D linear equation (1.5), using the fact that c2ðHÞ ¼ H , we define the following
optimal reflective BCs preconditioner:

R ¼ H �H þ αc2ðLðukÞÞ:ð3:13Þ

To eliminate the possibility of large variations in the coefficient of the elliptic op-
erator in (1.5), we employ the same strategy as in section 3.1 by the diagonal scaling.
Therefore, the scaled reflective BCs preconditioner is given by DR ¼ D

1
2RD

1
2, where R is

defined in (3.13) and D is given in (3.2). Similarly, for the scaled system in (3.3), the
unscaled reflective BCs preconditioner is given by RD ¼ Ĥ �Ĥ þ αc2ð ~LðukÞÞ, where
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Ĥ ¼ Hc2ðD−1 ∕ 2Þ. Let ΛH , ΛD, and Λ ~L denote the eigenvalue matrices of H , c2ðD−1 ∕ 2Þ,
and c2ð ~LðukÞÞ, respectively. Then RD can be written as

RD ¼ ðCn ⊗ CnÞT ðΛ�
HΛHΛ�

DΛD þ αΛ ~LÞðCn ⊗ CnÞ;

and hence it is easily inverted by employing few FCTs in Oðn2 log nÞ operations.
Next, we assume the antireflective BCs for H and the Neumann BCs for LðukÞ.

Then, we design the sine-based transform preconditioner for (1.5) by

M ¼ ŝ2ðHÞ�ŝ2ðH Þ þ αŝ2ðLðukÞÞ:

By employing the diagonal scaling, we define the scaled antireflective BCs precondi-
tioner DM ¼ D1 ∕ 2MD1 ∕ 2 for (1.5) and the unscaled antireflective BCs preconditioner
MD ¼ Ĥ �Ĥ þ αc2ð ~LðukÞÞ, where Ĥ ¼ ŝ2ðHÞŝ2ðD−1∕ 2Þ for the scaled 2D system (3.3).
Let ΛH , ΛD, and Λ ~L denote the eigenvalue matrices of H , ŝ2ðD−1∕ 2Þ, and ŝ2ð ~LðukÞÞ,
respectively. Then MD takes the form

MD ¼ ðŜn ⊗ ŜnÞðΛ�
HΛHΛ�

DΛD þ αΛ ~LÞðŜn ⊗ ŜnÞ;

which is computationally attractive via FSTs since any matrix operation can be done
within Oðn2 log nÞ operations.

Finally, we design the reblurring preconditioner ar2ðA 0
ukÞ for (3.8) assuming the

antireflective BCs forH and the Neumann BCs or the antireflective BCs for LðukÞ. Since
H is the antireflective BCs matrix, we define a reblurring preconditioner for (3.8) as
P ¼ H  0H þ αar2ðLðukÞÞ. Also, we propose the scaled reblurring preconditioner DP ¼
D1 ∕ 2PD1 ∕ 2 for (3.8) and the unscaled reblurring preconditioner PD ¼ Ĥ  0Ĥþ
αar2ð ~LðukÞÞ for the 2D scaled linear system (3.10),where Ĥ ¼ H · ar2ðD−1 ∕ 2Þ. Let
ΛH , ΛD, and Λ ~L denote the eigenvalue matrices of H , ar2ðD−1 ∕ 2Þ, and ar2ð ~LðukÞÞ,
respectively. Then, the 2D preconditioner PD can be written as

PD ¼ ðTn ⊗ TnÞðΛ�
HΛHΛ�

DΛD þ αΛ ~LÞðTn ⊗ TnÞ−1:

Again, these 2D preconditioners show interesting computational features since the as-
sociated linear systems can be solved within Oðn2 log nÞ operations.

4. Asymptotic spectral analysis of the preconditioned sequences. To study
the effectiveness of the proposed preconditioners, we need the clustering analysis of the
spectrum. Also, localization of eigenvalues is of interest when solving (3.3) via PCG or
(3.10) by PBiCGstab [4]. Here is a useful definition [27] for sequences of matrices fAng,
where An has size dn, n positive integer, and dk > dq if k > q.

DEFINITION 4.1. A matrix sequence fAng is said to be distributed (in the sense of the
eigenvalues) as the pair ðθ; GÞ, or has the distribution function θ if, for any F ∈ C 0ðCÞ,
the following limit relation holds:

limn→∞
1

n

Xn
j¼1

FðλjðAnÞÞ ¼
1

μðGÞ
Z
G
FðθðtÞÞdt; t ¼ ðt1; : : : ; tdÞ;ð4:1Þ

where fλjðAnÞgnj¼1 denote the eigenvalues of An and μð·Þ is the standard Lebesgue mea-
sure. In that case we write fAng∼λ ðθ; GÞ.
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An interesting consequence of (4.1) is that fAng∼λ ðθ; GÞ implies that most of the
eigenvalues are contained within any ϵ-neighborhood of the essential range of θ. That is,
the range of θ is a cluster for the spectrum of fAng.

The main observation is that all the matrices considered so far are low-rank per-
turbations of Toeplitz matrices or can be viewed as extracted from generalized locally
Toeplitz (GLT) sequences (see [27] and references therein and the seminal work [30]).
We note that every GLT sequence has a symbol and this symbol is the spectral distribu-
tion function. Furthermore, the class of GLT sequences is an algebra of matrix-
sequences. Hence, when making linear combinations, products, or inverses (when the
symbol does not vanish on sets of positive measure), the result is a new GLT sequence
whose symbol can be obtained via the same operations on the original symbols. There-
fore, the preconditioned matrices can be seen again as extracted from a GLT sequence
whose symbol is the ratio of the symbols: here the numerator is the symbol of the original
matrix sequence and the denominator is the symbol of the preconditioning sequence.

In this section, according to Definition 4.1 and since we are interested in asymptotic
estimates, we are forced to indicate explicitly the parameter n, which uniquely defines
the size of the associated matrix. First, we discuss in detail the case of reflective BCs.
When considering Bn ¼ LðukÞ, it is known that [27]

fBng∼λ ðaðxÞwðtÞ; GÞ; G ¼ Ω× ½0; 2π�d;

aðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j∇xj2 þ β2

p wðtÞ ¼
Xd
i¼1

ð2− 2 cosðtiÞÞ:

On the other hand, cðBnÞ∼λ ðāwðtÞ; GÞ, where ā is a constant and in fact it
is the mean of the function aðxÞ: ā ¼ 1

μðΩÞ ∫ ΩaðxÞdx. The sequence fcðBnÞ−1Bng is

clustered at one only if the sequence fBn − cðBnÞg is clustered at zero. Since
fBn − cðBnÞg∼λ ððaðxÞ− āÞwðtÞ; GÞ, the optimal cosine preconditioner is effective only
if the function aðxÞ has no large variation. To obtain a clustering preconditioner, a di-
agonal scaling has to be introduced. The preconditioner diagðBnÞ1∕ 2cðBnÞdiagðBnÞ1 ∕ 2 is
such that fdiagðBnÞ1 ∕ 2cðBnÞdiagðBnÞ1∕ 2g∼λ ðaðxÞwðtÞ; GÞ due to the algebra structure
of GLT sequences. Hence, the preconditioned sequence is clustered at one.

In our case, the coefficient matrix An ¼ H �H þ αLðukÞ is the sum of an integral
approximate operator and an approximate elliptic differential operator. We note that
fAng∼λ ðjĥðtÞj2 þ αaðxÞwðtÞ; GÞ, where ĥ is the symbol of the PSF defined in (2.4) for
the 1D case and similarly can be defined for d > 1 (the entries of the PSF are the Fourier
coefficients of ĥ). An effective preconditioner has to consider both terms that constitute
the matrix An. This is the aim of the preconditioner Rn defined in (3.1) and (3.13) for
the 1D and 2D case, respectively. We have fRng∼λ ðjĥðtÞj2 þ αāwðtÞ; GÞ and so
fAn − Rng∼λ ððaðxÞ− āÞαwðtÞ; GÞ. In this case, we cannot apply a diagonal scaling
to cðLðukÞÞ because otherwise we lose the computational efficiency; the matrix H �H þ
αdiagðLðukÞÞ1∕ 2cðLðukÞÞdiagðLðukÞÞ1 ∕ 2 cannot be diagonalized by discrete cosine trans-
forms. Therefore, we have to apply to Rn a diagonal scaling that should act like
diagðLðukÞÞ1 ∕ 2 on cðLðukÞÞ, while it should not affect the term H �H .

Unfortunately, since we have a diagonal scaling, we cannot apply the diagonal
scaling only to a term of the sum. To balance the contribution of the two terms, the
diagonal scaling is defined by the matrix D (defined in (3.2)), which leads to the scaled
preconditioner DR. We have fðDRÞng∼λ ðð1þ αaðxÞÞðjĥðtÞj2 þ αwðtÞÞ; GÞ, and hence
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the preconditioned sequence is not clustered at one, even if for values of α used in the
considered applications it shows an optimal behavior (see Figure 5.2).

We recall that the clustering is a useful property, but it is not strictly necessary for
the optimality of the related preconditioned Krylov method: for instance, in the
Hermitian positive definite case and when dealing with the PCG iterations, the spectral
equivalence is sufficient. Since D−1

R An is similar to R−1 ~An, with ~An ¼ D−1 ∕ 2AnD
−1∕ 2,

the use of the scaled preconditioner DR to the linear system (1.5) is equivalent to apply-
ing the preconditioner R to the scaled linear system (3.3). However, the scaled precondi-
tioner DR is more effective than R for large values of α (see numerical results in
section 5).

Remark 4.2. For small values of α, i.e., when little regularization is required, the
three preconditioners R, DR, and RD have a similar behavior. Moreover, when α goes to
zero, the effectiveness of the proposed preconditioners increases because the precondi-
tioners and the original coefficient matrix An all tend to H �H .

To conclude this section, we note that in the case of antireflective BCs, similar con-
siderations can be done. The main difference is when we consider the reblurring strategy.
However, using the results in [15], the nonsymmetric case can be considered as well, since
the antisymmetric part has trace norm (sum of all singular values) bounded by a pure
constant independent of n. Therefore the spectral distribution is governed by the sym-
metric part, which is dominant as discussed in section 3.3 of [3].

5. Numerical tests. We solve problem (1.4) by the FP method (1.5) with the
operator H approximated by using different BCs and with the operator Lu imposed
by zero Neumann BCs or antireflective BCs. The algorithm was implemented in
MATLAB 7.10 and run on a PC Intel Pentium IV of 3.00 GHZ CPU. We shall show
the effectiveness of the proposed preconditioners for signal/image deblurring and also
give a comparison of the quality of the restored signals/images with different BCs.

In our test, we choose initial guess u0 ¼ v for the FP algorithm. We shall solve (1.5)
by the PCG method when the Neumann BCs are imposed on LðukÞ and solve (1.5) by
the PBiCGstab method when the antireflective BCs are imposed on LðukÞ. Also, we
solve (3.8) by the PBiCGstab method. The initial guess for the PCG and PBiCGstab
methods at the kth FP iteration is chosen to be the (k− 1)th FP iterate. The inner PCG
and PBiCGstab iterations are stopped when the residual vector rk of the linear systems
(1.5) and (3.8) at the kth iteration satisfies krkk ∕ kr0k < tol, where k · k denotes the
2-norm and tol is set to 10−6 and 10−5 in the 1D and 2D case, respectively.

5.1. One-dimensional case: Signal deblurring. In our experiments, we sup-
pose the true signal u is given as in Figure 5.1(a). The two vertical lines shown in
Figure 5.1(a) denote the field of view (i.e., [0.1, 0.9]) of our signal, and the signal outside
the two vertical lines can be approximated by different BCs. The true signal is blurred
by the symmetric out of focus PSF

hi ¼
�
c if jij < mðnÞ;
0 otherwise;

ð5:1Þ

where c is the normalization constant such that
P

ihi ¼ 1 and mðnÞ is the center
of the PSF that depends on n so that the restored signal lies in the interval [0.1,
0.9]. A Gaussian noise η with a specific signal-to-noise ratio kηk ∕ kHuk is added to
the blurred signal. We consider the true signal to be blurred by the out of focus
PSF and then added the Gaussian noise with the noise levels 1%; i.e., kηk ∕ kHuk ¼
0.01. Figure 5.1(b) shows the observed signal.
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We now show that the proposed preconditioners are effective for solving (1.5) and (3.8)
with different BCs. In our numerical experiments, the FP iteration is stopped when
kuk − uk−1k ∕ kukk < 10−3. We will concentrate on the performance of different choices
of preconditioners for various values of the regularization parameters α and β in (1.3)
and the size n of the coefficient matrix Auk in (1.5).

In Tables 1 and 2, we report the average number of iterations per FP iteration,
According to Remark 4.2, the effectiveness of the proposed preconditioners increases
when α decreases. Moreover, decreasing α, all the proposed preconditioners become
equivalent; explicitly, the PCG/PBiCGstab converges in about the same number of
iterations.

We note that antireflective BCs usually require fewer steps and fewer PCG/
BiCGstab iterations per FP step when compared with reflective BCs. This shows that

0 0.2 0.4 0.6 0.8 1
0
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0.2

0.3
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0.5
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0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
true signal
observed signal

FIG. 5.1. True and observed signals.

TABLE 1
Average number of PCG/PBiCGstab iterations per FP step varying α with n ¼ 203 and β ¼ 0.1. Here,

N , I , D, “Reflective,” “ARþ Sineþ ZNL,” “ARþReblurþ ZNL,” and “ARþReblurþARL” denote the
number of FP steps, no-preconditioner and the diagonal scaling preconditioner, the reflective BCs, the anti-
reflective BCs with sine preconditioner by imposing the zero Neumann BCs on LðukÞ, the antireflective BCs
with reblurring by imposing the zero Neumann BCs on LðukÞ, and the antireflective BCs with reblurring by
imposing the antireflective BCs on LðukÞ, respectively.

PCG Reflective ARþ Sineþ ZNL

α N I D R DR RD N I D M DM MD

10−1 30 269 163 73 49 45 28 221 155 60 51 36
10−2 37 172 107 84 37 32 24 149 94 67 33 25
10−3 32 99 71 63 42 36 24 80 59 56 37 31
10−4 19 57 56 38 36 35 19 60 58 31 30 29
10−5 20 74 71 23 25 24 17 47 45 20 20 19
10−6 11 122 122 7 7 8 8 85 86 14 14 14

PBiCGstab ARþ Reblurþ ZNL ARþReblurþ ARL

α N I D P DP PD N I D P DP PD

10−1 27 178 105 57 53 51 24 179 109 41 46 35
10−2 24 105 59 59 25 21 23 107 60 39 23 20
10−3 23 60 44 43 27 23 22 54 37 34 22 20
10−4 20 33 31 20 18 18 20 32 30 18 16 17
10−5 25 31 33 10 9 10 20 31 32 10 10 10
10−6 9 78 68 4 4 4 11 56 62 4 4 4
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the improvement in the model also leads to an improvement in the global computational
complexity of the numerical methods. This is more evident for the optimal restoration
since the antireflective BCs require a regularization parameter α smaller than that of
reflective BCs (Figures 5.6(a) and 5.4).

Figure 5.2 describes the average PCG/PBiCGstab iterations per FP step varying n.
We note that the preconditioners with a diagonal scaling show the best behavior.

In Figure 5.3, we present the restored signals for varying β, e.g., by solving (1.5)
when antireflective BCs have been imposed. As expected, the recovered signals become

TABLE 2
Average number of PCG/PBiCGstab iterations per FP step varying β with n ¼ 203 and α ¼ 0.001.

PCG Reflective ARþ Sineþ ZNL

β N I D R DR RD N I D M DM MD

10−3 31 434 245 305 298 125 24 349 200 297 226 85
10−2 31 218 139 149 98 67 24 175 112 139 72 46
10−1 32 99 71 63 42 36 24 80 59 56 37 31
100 28 39 36 21 18 20 21 35 32 19 16 15

PBiCGstab ARþ Reblurþ ZNL ARþReblurþ ARL

β N I D P DP PD N I D P DP PD

10−3 23 403 254 361 346 59 22 323 207 288 285 57
10−2 23 157 87 130 58 43 22 134 77 102 43 28
10−1 23 60 44 43 27 23 22 54 37 34 22 20
100 20 21 20 12 11 11 20 19 18 10 9 9
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FIG. 5.2. Average number of PCG/PBiCGstab iterations per FP step for various n with α ¼ 10−3 and
β ¼ 0.1.
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sharper when the value of β is smaller; the value β ¼ 0.1 gives a restoration sufficiently
good anyway.

We can easily observe from Tables 1–2 and Figure 5.2 that the proposed precondi-
tioners with a diagonal scaling are the most effective preconditioners when varying para-
meters α, β, and n. Finally, we remark that in all our tests, the proposed algorithm needs
the same number of FP steps for the no-preconditioner and preconditioned cases, and
kgðukÞk (see (1.4) for the definition of gð·Þ) tends to Oð10−5Þ or Oð10−6Þ at the final
FP iterate.

To check the quality of restored signals by using different BCs, in Figure 5.6(a) we
show the relative restoration error (RRE), kuα − uk ∕ kuk, where uα is the computed
approximation of the true signal u, versus the regularization parameter α. Figure 5.4
gives the restored signals with optimal value of the parameter α, where αopt, Re.,
Fp., and It. denote the optimal α, the minimal RRE, the number of FP steps, and
the average number of PCG/BiCGstab iterations per FP step, respectively.

From Figure 5.4 we argue that antireflective BCs lead to the most accurate restored
signals with less significant ringing effects at the edges and fewer PCG iterations per FP
step, when compared with reflective BCs. Moreover, thanks to the improvement in the
model of the problem, antireflective BCs require less regularization than reflective BCs.
This implies a smaller αopt and hence a small number of PCG/BiCGstab iterations per
FP step, while the number of FP iterations remains about the same.

5.2. Two-dimensional case: Image deblurring. In this section, we apply the
proposed preconditioners to image restoration with different BCs. Suppose the true

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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FIG. 5.3. Restorations for antireflective BCs based (1.5) with n ¼ 203, α ¼ 10−3 varying β.
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images are blurred by the Gaussian blur, and then suppose that a white Gaussian noise η
with the noise level 0.1% is added. Figure 5.5 shows the true and observed images.

In our numerical tests, the FP iteration is stopped when kuk − uk−1k ∕ kukk < 10−4

and the maximal number of FP steps is set to be 100. We fix β ¼ 0.01 and only focus on
the performance of different choices of preconditioners for varying α.

In Table 3 the number of iterations is displayed for solving (1.5) or (3.8) with dif-
ferent BCs and various values of α, whereN and I mean the number of FP iterations and
no-preconditioner, respectively. Here, we only give the average number of CG/
BiCGstab iterations per FP step. Table 3 suggests that the unscaled preconditioners
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FIG. 5.4. Restored signals with different BCs. Here n ¼ 203 and β ¼ 0.1.

True image Observed image

FIG. 5.5. True and observed images.
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XD, with X ∈ fR;M;Pg, are very effective matrix approximations for all values of α,
while the scaled preconditioners DX do not work well for large values of α, especially for
antireflective BCs. However, concerning antireflective BCs, a good choice for α is in the
interval ½10−3; 10−2�, and in this case both choices XD and DX have a similar behavior.
We note that the number of FP iterations decreases with α, so if we have a good model
that requires a lower regularization, we obtain a gain also in terms of the computational
cost of the whole restoration procedure. In all our tests, it is shown that kgðukÞk tends to
Oð10−3Þ or Oð10−4Þ at the final FP iterate.

Next, we check the quality of restored images by using different BCs. Figure 5.6(b)
describes the RRE kuα − uk ∕ kuk, where uα is the computed approximation of the true
image u, versus the regularization parameter α. Figure 5.7 presents the restored images
with optimal value of the parameter α. Like in the 1D case, Figure 5.7 shows that the
antireflective BCs lead to better restored images and sharper edges with a lower com-
putational cost than the reflective BCs (see the high reduction in the FP iterations with
smaller αopt).

TABLE 3
Average number of CG/BiCGstab iterations per FP step for varying α. Here, β ¼ 0.01.

PCG Reflective ARþ Sineþ ZNL

α N I N DR N RD N I N DM N MD

100 60 244 60 48 60 23 60 229 60 210 61 23
10−1 41 129 46 29 33 22 40 114 40 117 28 38
10−2 13 70 13 44 11 39 12 58 9 49 8 41
10−3 3 124 2 42 2 42 2 147 2 36 2 37
10−4 2 164 1 23 1 23 1 354 1 23 1 23

PBiCGstab ARþReblurþ ZNL ARþReblurþARL

α N I N DP N PD N I N DP N PD

100 58 52 1* * 59 13 60 52 59 50 60 7
10−1 27 27 33 16 31 7 26 28 31 9 30 5
10−2 10 9 10 7 10 6 10 10 12 5 10 5
10−3 2 16 2 5 2 5 3 11 2 4 2 5
10−4 1 33 1 3 2 1 1 34 1 3 2 1

1*means that the method does not converge.
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FIG. 5.6. The RRE versus the regularization parameter α for different BCs.
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6. Conclusions. In this paper, we have considered the effect of reflective and
antireflective BCs when regularizing blurred and noisy images via the TV approach.
In particular, we have studied some preconditioning strategies for the linear systems
arising from the FP iteration given in [32]. In the case of antireflective BCs, we have
also considered a comparison with the reblurring idea proposed in [13]. We recall that
the reblurring method has been shown effective when combined with the Tikhonov reg-
ularization, and here one of the issues was to verify that reblurring and TV can be com-
bined satisfactorily. Furthermore, the optimal behavior of our preconditioners has been
validated numerically.

Besides the computational features of the preconditioning techniques, we stress the
improvement obtained via antireflective BCs in terms of both reconstruction quality
and reduction of the computational cost. In fact, the precision of such BCs was already
known in the relevant literature (see [11], [12], [23], and the references therein). However,
this is the first time that the antireflective BCs have been combined with a sophisticated
regularization method, where the use of fast transforms is very welcome for saving com-
putational cost. The antireflective BCs require a smaller regularization parameter α

than that of other BCs (see numerical results in section 5). Also, the proposed precondi-
tioners are more effective when α becomes smaller. All these features lead to an efficient
method that converges within few iterations and that requires only four fast trigono-
metric transforms plus lower order computations. Therefore, the total complexity could
be comparable with that of the efficient FTVd method proposed in [33]: in this respect,
as a future line of research, a modification of the FTVd method including the antire-
flective BCs has to be investigated.

α
opt

 = 0.17783,  Re. = 0.10398,  Fp. = 37,  It. = 22 α
opt

 = 0.0056234,  Re. = 0.083353,  Fp. = 6,  It. = 35

α
opt

 = 0.01,  Re. = 0.085559,  Fp. = 8,  It. = 16 α
opt

 = 0.01,  Re. = 0.085984,  Fp. = 8,  It. = 14

FIG. 5.7. Restored images with different BCs.
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Besides deconvolution problems, the proposed antireflective BCs and the precon-
ditioning strategies for the lagged diffusivity algorithm in (1.5) could be also applied
to more general forward operators, where symmetric shift-invariant operators should
be considered.

Potential lines of interest for future investigations could include the use of antire-
flective BCs in the promising split Bregman method [14] and FTVd [33], and a more
precise clustering analysis of the preconditioning sequences, in the spirit of section 4:
in particular, according to the analysis in [27], it is important to concentrate the efforts
in designing new preconditioners in such a way that the resulting preconditioned se-
quence is a GLT sequence showing a symbol concentrated at 1 as much as possible.
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