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1. Introduction

In 1980, Bleimann et al. [1] introduced a sequence of positive linear Bernstein-type operators
L, (abbreviated in the following by BBH operators) defined on the infinite interval I = [0, o0)

by

1 L/n k
Ln(f,.X') = mz<k>xkf<m>, x€el, neN, (11)

k=0

where N denotes the set of natural numbers.

Bleimann et al. [1] proved that L,(f,x) — f(x) asn — oo for f € Cp(I) (the space
of all bounded continuous functions on I) and give an estimate on the rate of convergence of
L,(f,x) — f(x)measured with the second modulus of continuity of f.

In the present paper, we introduce a new type of Kantorovich variant of BBH operator
Jn, also defined on I by

no/n L fdt
n 7 = 1;1_ leka—, 12
Ju(f,x) kZ_O(k>p< P (1.2)
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where py = x/(1+x) (x 20), I = [k/(n+2—-k),(k+1)/(n+1-k)], and dt is Lebesgue
measure.

The operator (1.2) is different from another type of Kantorovich variant of BBH
operator K,:

n (k+1)/ (n+1-k)
Ku(f,x) = (1":;) Z<n>x’<f SO 4, (13)

k/(m+2-k)  (1+t)

which was first considered by Abel and Ivan in [2]. The integrand function f(t)/(1 + 5% in
the operator (1.3) has been replaced with new integrand function f(¢) in the operator (1.2).
In this paper we will study the approximation properties of J, for the functions of bounded
variation. The rate of convergence for functions of bounded variation was investigated by
many authors such as Bojani¢ and Vuilleumier [3], Chéng [4], Guo and Khan [5], Zeng and
Piriou [6], Gupta et al. [7], involving several different operators.

Throughout this paper the class of function @ is defined as follows:

= {f | f is of bounded variation on every finite subinterval of I = [0,0)}. (1.4)

Our main result can be stated as follows.

Theorem 1.1. Letf € @ and let VE(f) be the total variation of f on interval [a,b]. Then, for n
sufficiently large, one has

( +)_ ( _) 51 9(1 x+x 1
I 0) - LT < A - )+ +2) oS0 +o (),

(1.5)

where

ft) = f(x+), x<t<oo,
(1) =10, x=t, (1.6)
ft)-f(x=), 0<t<x.

2. Some Lemmas

In order to prove Theorem 1.1, we need the following lemmas for preparation. Lemma 2.1
is the well-known Berry-Esséen bound for the classical central limit theorem of probability
theory. Its proof and further discussion can be founded in Feller [8, page 515].

Lemma 2.1. Let {¢}2; be a sequence of independent and identically distributed random variables.
And 0 < D¢; < oo, B3 = E|¢1 — E&1|® < +oo, then, there holds

1 L
<b1f2(§k_al) > N B et /2dt| <
where a; = E&, by> = D& = E(& - E&)?, 1/v27 < ¢ <0.82.

c P
Vi

max
y€eR

(2.1)




Journal of Inequalities and Applications 3

In addition, let {¢}}.; be the random variables with two-point distribution

X, gi =1
P = (2.2)
1- X, §1~ = 0,

wherei =1,2,...,n. Then we can easily obtain that
m=E&=x, b>=D&=x(1-x), fs=Elk-E&f <x(1-x) (2x2 x4 1). (2.3)

Let 7, = >, i, then we also have
LA n-k
P(nu=k) = . xX*1-x)""%, k=0,1,...,n (2.4)

On the other hand, J,,(f, x) can be written by following integral form:

Ju(f,%) = ank<1+x>hkj pm J‘f(t)H (x, B)dt, (2.5)
I
where
H,(x,t) t borel (2.6)
n(x, ank(1+ )m()hdt 0=y " .

Ir = [k/(n+2-k), (k+1)/ (n+1-k)], k =0,1,2,...,n.Itis easy to verify that f;oHn(x, u)du = 1.

Lemma 2.2. If x € (0, o) is fixed and n is sufficiently large, then
(a) for 0 <y < x, there holds

1 2x(1+x)?

v
H,(x,t)dt < (2.7)
IO (x - y)z n+1
b) for x < z < oo, there holds
e’} 2
f H, (x, Hdt < —— . 2x(1+x) 2.8)
2 (Z — x) n+1

Proof. We first prove (a). Since 0 <y < x, t € [0, y], then (x —t)/(x — y) > 1. Hence, we have

/ Y (x-b)? 1 2
H, (x,t)dt < H,(x,Hdt< ———], —-1)°,x). 2.9
[ e <j0(x_y)2 ot < (17 3) 29)
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Direct calculation gives

Cx(1+x)? (1+x)* (1+x)*(dx+1) .
]n<(x—t)2,x> == 1 S DY) + TS +o<n 4). (2.10)

Hence [JH,(x,t)dt < (1/(x - y)*)(2x(1 + x)*/ (n + 1)), for n sufficiently large.
The proof of (b) is similar. O

Lemma 2.3 (see [9, Theorem 1] or, cf. [10]). For every x € (0,1), there holds

) = Chxk( ke L 2.11
Pri(x) = Cox*(1-x) S\/m (211)
3. Proof of Theorem 1.1
Let f € @, and x € I, Bojanic-Cheng decomposition yields
f(t) — f(x+) ;f(x_) +gx(t) + f(x+) ;f(x_) Sgn(t—x) +5x(t) f(x) _ f(x+) ;f(x_) ,
(3.1)
where g (t) is defined as in (1.6) and
1, t=x,
Ox(t) = { (3.2)
0, t#x.

Obviously, J,(6x(t), x) = 0. Thus it follows from (3.1) that

In(h,0) - LTI <o)+ [t 0,0 LI g
First of all, we estimate | J,,(sgn(t — x), x)|
o m+1-k)(n+2-k) x
Jo(sgn(t=0,x) = SIS () [ s, G

where Iy = [k/(n+2-k),(k+1)/(n+1-k)].
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Assuming that x € [K'/(n+2 - k'), (k' +1)/(n+1-k")], for some k' (0 < k' < n), then
we have

Ju(sgn(t - x),x) = Z Pn,k<xi1>_ Z Pn,k<xf_1>

k/(n+2-k)>x (k+1)/(n+1-k)<x

N (n+1-K)n+2-Kk) ( x > J—<k’+1>/<n+1k)dt fx y
K -
n+2 P\ T3% X K/ (n+2-k)

=1-2 3, p””“(xf—l)

k/(n+2-k)<x
1-K 2 _ K (k'+1)/ (n+1-k)
+2(n+ KY(n+2-k) nk,( x >f "
n+2 “N1+x/),
(3.5)
Thus
t <[1-2 = )| +2 al (3.6)
n(sgnt-x0l<|1-2 5 pu(5g) |+ 2 (155): |
(n+2-k)<x
By Lemma 2.3 combining some direct computations, we can easily obtain
2 1

x 3.7)

an,k’< u )S < :
1+x/ 7 \f2en(x/(1+x))-(1/(1+x)) ~ v/nx

Sety =x/(1+x) <1, then by (2.4) and using Lemma 2.1, we have

X
1-2
k/(n%k)gxpn,k < x+1 >

1
1-2 3 pus(v)| =23~ Pln < (1+2)9)
k<(n+2)y

_o|lop[ My 2

2 \Wy(-y) y(i-y)

M=ny 2y 1 J‘<2y1>/\/ny<1y>e_
Vry(-y)  Any(i-y) ) V21l
1 J-(Zy—l)/ Vny(l-y)

2124

=2|P

—_— e 24t

V2

0
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M-ny 2y J‘(Zy D/ /ny(1-y)
Jiv-y) -y ) V2
J-2y/1/ny(1 Y)

<2|p e 24t

e 24t

" om
< 20ﬂ3 J‘
NI F
2x082><y(1 y) (22 2y+1)+ 2 2y

y(1-y)\/ny(1-y V27 fny (1 - )
< 4 =4(1+x)'
Cmy(-y) VY

2y/+/ny(1-y)

e 24t

(3.8)

Thus, by (3.7), (3.8) we have

4(1+x) 1+x 5(1+x)

| Jn(sgn(t —x),x)| < N \/7 N

(3.9)

Finally, we estimate J,(gx, X).
First, interval I = [0, o0) can be decomposed into four parts as

i for- ] b [es

i,Zx], Dy = [2x,+o0].

o
n Vn Vn
(3.10)

S0 Ju(gx, x) can be divided into four parts

]n(gx/ .X') = jo gx(t)Hn(xr t)dt = A1,n (gx) + AZ,n (gx) + A3,n (gx) + A4,n (gx)r (311)

where Aj,(gx) = ijgx(t)Hn (x,t)dt.
Noticing g»(x) = 0 and for t € D,, we have gy (t) = gx(f) — gx(x).
Thus

x+x//1n
| A2 (g)| sj | g2 (8) = gu(x) | Hulx, dt < VIV () < Z VErE(g). (312)

x—x/+/n k=1

Next, let y = x — x/+/n, Ay(x,t) = ff)Hn (x, u)du.
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Now, we recall the Lebesgue-Stieltjes integral representation, and by using partial

Lebesgue-Stieltjes integration, we get

Yy
|A1n(8x)| = fogx(t)dtin(x, t)|

y
~ g )z y) - L)‘"(’C’ t)dtgxa)’

y
<V (M) + [ 1e DAV (32).

An application of (a) in Lemma 2.2 yields

2x(l+x)2 2x(1+x)2 y 1 .
Gopnan mrD) oY)

|41 (80)] < Vy(8x)

Furthermore, since

| Vi) W) [ Vile)

f oD = T T ey

dt,
0(x—t)?

we have

()| < 20 208 St

2% (1 2 VX -, x—x/\/ﬁvx .
X1+ [ 56 o (;fgt)zdf]-

Putting t = x — x/+/u in the last integral, we have

2| IV () 4y 1

n 1 n
/2 dt=—| V¥ du < —= > V* ).
o (x—t) xz_[l x—x/ﬁ(g) L xzé x—x/\/ﬁ(g)

It follows from (3.16) and (3.17) that

2 2 n
< 2x(1 + x) < 4(1+ x)

|A1n(8x)] < W<V5‘(gx) + k—lViC_X/\/E(gX)> < WZV;‘_,M(&)-

k=1

Yy
(e ) - ) u(x,y) - f a1 (5:(0) - gx(x))‘

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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By a similar method and using Lemma 2.2(b), we obtain

2 n
MZV;WW (gx)- (3.19)

k=1

|23, (gx)] <

Now, the remainder of our work is to estimate Ay, (gyx)-
For f(x) satisfying the growth condition f(t) = 0(t") for some positive integer r as
t — +oo, we obviously have

(3.20)

x A\ Jilgx()]at
|Asn(gx)| < Pk : :
k/(n-;k)>2x <1 + x> jlkdt

Thus, for n sufficiently large, there exists a M > 0, such that the following inequalities
hold:

x \Jptdt
A4, (gx) <M Pnk\ 77— -
|84 | k/(n+22—k)>2x <1+X> Jy At
[ trdt

=M > Pk (V) (3.21)

k/(n+2-k)>2(y/(1-y)) IIk dt

k+1 \7
<M > pn,k(y)<—> ,
k/(n+2-k)>2(y/(1-y)) n+l-k

where vy = x/(1 + x). By the definition of the Stirling numbers S(r, s) of the second kind, we
readily have

a =zr:S(r,s)a(a—l)---(a—s+1), r €N, (3.22)

s=1

where the Stirling numbers S(r, s) satisfy

{1 (n=0),
S(n,0) = (3.23)
0 (neN).

Thus we can write

k+1 >r r
———— ) Puk(y) = DS(1,9) A, (3.24)
k/(n+2k)>2(y/(1y))<n +1-k o
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where

(k+Dk---(k-s+2)
A )
k/(n+2—k)>22(y/(1_y)) (Tl +1- k)

3.25
1 ni(k +1) (25)

- . k(1 _,\" k.
k/("+2—k)>zz(y/(l—y)) (n+1-k7 (k-s+Din-k)’ (1-y)

From k/(n+2-k) >2x,x/(1 +x) = y, we can easily find k > (2n +4)y/(1 + y). For a fixed
x>0,whenn>2r+r/x,wehave (k+1)/(k+1-s) < 2. Thus there holds

1 n!
A2 D, (n+l-k) (k—s)!(n—k)!yk(l_y)

k>(2n+4)y/ (1+y)

(3.26)

Now using the similar method as that in the proof of Lemma 4 of [11], we deduce that

A< rmyi( +y)
T (m+r-s)(n+r-s+2)’

for n>2r+ £ (3.27)

From (3.21), (3.24), and (3.27), we obtain

[A4n(8:)| < M 2 pui(¥) <Lik>

k/(n+2-k)>2(y/(1-y)) ntl

= MZS r,8)As = o( )

s=1

(3.28)

Finally, by combining (3.12), (3.18), (3.19), and (3.28), we deduce that
17 (8x(t), ¥)| < [A1n(ge)| + [A2n(8) [ + |43 (8x) ] + [A4(8)|

41+ x)* ¢ rox 8(1+x)2 &
: (n+1)xZ x- x/f(gx)+an x//f( 8x)+ (n+1)x & ZV /f(g )+O< >

x+x/\f 8(1 + x) x+x/f 1
n xx/f(x) (n+1)x Z xx/\f( 8:)+0 n

9 1 yr 1
( +x) Z xx//f(gx)+o<ﬁ>.
(3.29)

Theorem 1.1 now follows from (3.3), (3.9), and (3.29).
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