Article ID：0253－4827（1999）09－1010－04

ABOUT A CONDITION FOR BLOW UP OF SOLUTIONS OF CAUCHY PROBLEM FOR A WAVE EQUATION＊

Cao Zhenchao（曹镇潮）${ }^{1}$ ，Wang Bixiang（王碧祥）${ }^{2}$
（1．Department of Mathematics，Xiamen University， Xiamen 361005，P R China；
2．Department of Applied Mathematics，Tsinghua University， Beijing 100084，P R China）

（Communicated by Xu Zhengfan）
Abstract：For the nonlinear wave equation in $\mathbf{R}^{N} \times \boldsymbol{R}^{+}(N \geqslant 2): \frac{\partial^{2} u(x, t)}{\partial t^{2}}-$ $\frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}} u\right)=|u|^{p-1}:^{\prime} u$ ，in 1980 Kato proved the solution of Cauchy prob－ lem may blow up in finite time if $1<p \leqslant \frac{N+1}{N-1}$ ．In the present work his result al－ lowing $1<p \leqslant \frac{N+3}{N-1}$ is improved by using different estimates．
Key words：condition for blow up；wave equation；Cauchy problem
CLC number：O175．27 Document code：A
Consider the Cauchy problem for the wave equation in $\mathbf{R}^{N} \times \mathbf{R}^{+}(N \geqslant 2)$ ：

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u(x, t)}{\partial t^{2}}-\frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{i}} u\right)=|u|^{p-1} \cdot u \quad\left((x, t) \in \mathbf{R}^{N} \times(0, T)\right) \tag{1}\\
u(x, 0)=g(x) \quad\left(x \in \mathbf{R}^{N}\right) \\
u_{i}(x, 0)=h(x) \quad\left(x \in \mathbf{R}^{N}\right)
\end{array}\right.
$$

where $u(x, t)$ is nontrivial solution with finite speed of propagation and is supported on a forward cone $\{(x, t) \cdot t \geqslant 0,|x| \leqslant t+d\}$ ．In 1980 Kato $^{[1]}$ proved the solution may blow up if $1<$ $p \leqslant \frac{N+1}{N-1}$ by using estimate for $\int_{\mathbf{R}^{N}} u(x, t) \mathrm{d} x$ under hypotheses $\left.\left(\frac{\mathrm{d}}{\mathrm{d} t} \int_{\mathbf{R}^{N}} u(x, t) \mathrm{d} x\right)\right|_{t=0}>0$ or $\left.\left(\int_{\mathbf{R}^{N}} u(x, t) \mathrm{d} x\right)\right|_{t=0} \neq 0$ ．In this paper，we will improve his result allowing $K_{p}<\frac{N+3}{N-1}$ ，by using different estimates for $\int_{\mathbf{R}^{N}} u^{2}(x, t) \mathrm{d} x$ ．

Theorem Assume that
（H1） $1<p<\frac{N+3}{N-1}$ ，
（H2）$a_{i j}(x) \in C^{2}\left(\mathbf{R}^{N}\right)$ and are elliptic，

[^0]Foundation item：the National Natural Science Foundation of China（19771069）
(H3) $g(x), h(x) \in C_{0}^{\infty}\left(\mathbf{R}^{N}\right), \operatorname{supp}\{g(x), h(x)\} \subseteq\{|x| \leqslant d\}$,
(H4) $\int_{\mathbf{R}^{N}} g(x) h(x) \mathrm{d} x \geqslant 0$ and $g(x) \not \equiv 0$, which imply

$$
\left.\left(\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\mathbf{R}^{*}} u^{2}(x, t) \mathrm{d} x\right)\right|_{t=0} \geqslant 0 \text { and }\left.\left(\int_{\mathbf{R}^{N}} u^{2}(x, t) \mathrm{d} x\right)\right|_{t=0}>0
$$

(H5) $I \triangleq \frac{2}{p+1} \int_{\mathbf{R}^{N}}|g(x)|^{p+1} \mathrm{~d} x-\int_{\mathbf{R}^{N}} a_{i j}(x) D_{i} g(x) D_{j} g(x) \mathrm{d} x-\int_{\mathbf{R}^{N}}|h(x)|^{2} \mathrm{~d} x \geqslant 0$.

Then $T<\infty$, i. e. $u(x, t)$ may blow up in finite time.
Proof The (H 2) ~ (H 4) implies the existence of a unique classical solution to problem (1). We will estimate

$$
w(t) \triangleq \int_{\mathbf{R}^{n}} u^{2}(x, t) \mathrm{d} x
$$

by using method similar to Ref. [2]. First, multiplying Eq. (1) by $u(x, t)$ and integrating over R^{N}, we have

$$
\begin{align*}
\frac{1}{2} w^{\prime \prime}(t)= & \frac{p-1}{p+1} \int_{\mathbf{R}^{N}}|u|^{p+1} \mathrm{~d} x+\frac{2}{p+1} \int_{\mathbf{R}^{N}}|u|^{p+1} \mathrm{~d} x+ \\
& \int_{\mathbf{R}^{N}}\left|u_{i}\right|^{2} \mathrm{~d} x-\int_{\mathbf{R}^{N}} a_{i j} D_{i} u D_{j} u \mathrm{~d} x . \tag{2}
\end{align*}
$$

Next, multiplying Eq. (1) by u_{t} and integrating over $\mathbf{R}^{N} \times[0, t]$, we have $\left(\right.$ Notice $\left.a_{i j} D_{i} u D_{j} u_{t}=\frac{1}{2}\left(a_{i j} D_{i} u D_{j} u\right)_{t}\right)$

$$
\begin{align*}
\int_{\mathbf{R}^{N}}\left|u_{t}\right|^{2} \mathrm{~d} x= & \frac{2}{p+1} \int_{\mathbf{R}^{N}}|u|^{p+1} \mathrm{~d} x-\int_{\mathbf{R}^{N}} a_{i j} D_{i} u D_{j} u \mathrm{~d} x+\int_{\mathbf{R}^{N}} a_{i j} D_{i} g D_{j} g \mathrm{~d} x+ \\
& \int_{\mathbf{R}^{N}} h^{2}(x) \mathrm{d} x-\frac{2}{p+1} \int_{\mathbf{R}^{N}}|g(x)|^{p+1} \mathrm{~d} x, \tag{3}
\end{align*}
$$

i. e., $\quad \int_{\mathbf{R}^{N}}\left|u_{i}\right|^{2} \mathrm{~d} x=\frac{2}{p+1} \int_{\mathbf{R}^{N}}|u|^{p+1} \mathrm{~d} x-\int_{\mathbf{R}^{N}} a_{i j} D_{i} u D_{j} u \mathrm{~d} x-I$.

Eqs. (2) and (3) yield

$$
\frac{1}{2} w^{\prime \prime}(t)=\frac{p-1}{p+1} \int_{\mathbf{R}^{N}}|u|^{p+1} \mathrm{~d} x+\int_{\mathbf{R}^{N}}\left|u_{t}\right|^{2} \mathrm{~d} x+\int_{\mathbf{R}^{N}}\left|u_{t}\right|^{2} \mathrm{~d} x+I
$$

By (H5) we obtain

$$
\begin{equation*}
\frac{1}{2} w^{\prime \prime}(t) \geqslant \frac{p-1}{p+1} \int_{\mathbf{R}^{N}}|u|^{\rho+1} \mathrm{~d} x . \tag{4}
\end{equation*}
$$

Thus $w^{\prime \prime}(t) \geqslant 0$ and $w^{\prime}(t)$ is monotone nondecreasing. Therefore $w^{\prime}(t) \geqslant w^{\prime}(0) \geqslant 0$ by (H4) and $w(t)$ is also monotone nondecreasing.

Thus by (H4), we have

$$
\begin{equation*}
w(t) \geqslant w(0)>0 \tag{5}
\end{equation*}
$$

Now, by finite speed of propagation and by (H 3) , we have

$$
\begin{aligned}
w(t)= & \int_{\mathbb{R}^{N}}|u|^{2} \mathrm{~d} x=\int_{|x| \leqslant t+d}|u|^{2} \mathrm{~d} x \leqslant \\
& \left\{\int_{|x| \leqslant t+d}|u|^{p+1} \mathrm{~d} x\right\}^{\frac{2}{p+1}} \cdot\left\{\int_{|x| \leqslant t+d} 1 \cdot \mathrm{~d} x\right\}^{\frac{p-1}{p+1}}
\end{aligned}
$$

or

$$
w(t)^{\frac{p+1}{2}} \leqslant c_{1}(t+d)^{N(p-1) / 2} \cdot \int_{\mathbf{R}^{N}}|u|^{p+1} \mathrm{~d} x
$$

Combining this with Eq. (4), we obtain

$$
w^{\prime \prime}(t) \geqslant c_{2}(t+d)^{-N(p-1) / 2} \cdot w(t)^{\frac{p+1}{2}}
$$

or

$$
\begin{equation*}
w^{\prime \prime}(t) \geqslant c_{0} \frac{p+3}{p-1}(t+d)^{-N(p-1) / 2} \cdot w(t)^{\frac{p+1}{2}} \tag{6}
\end{equation*}
$$

Thus $w^{\prime \prime}(t)>0$ by (5). Therefore there exists a positive constant ν such that $w^{\prime \prime}(t)>\nu$. This yields

$$
w(t) \geqslant \frac{1}{2} \nu t^{2}+w^{\prime}(0) \cdot t+w(0)
$$

or

$$
\begin{equation*}
w(t) \geqslant \mu(t+d) \tag{7}
\end{equation*}
$$

where μ is a positive constant.
Again by Eq. (6) we have

$$
\begin{aligned}
& 2 w^{\prime}\left[w^{\prime \prime}-c_{0} \frac{p+3}{p-1}(t+d)^{-N(p-1) / 2} \cdot w^{\frac{p+1}{2}}\right]+ \\
& \frac{4 c_{0}}{p+1} \cdot \frac{N(p-1)}{2} \cdot(t+d)^{\frac{-N(\rho-1)}{2}-1} \cdot w^{p+3} 2
\end{aligned} 0, ~ l
$$

i. e.

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\left(w^{\prime}(t)\right)^{2}-\frac{4 c_{0}}{p+1}(t+d)^{-N(p-1) / 2} \cdot w(t)^{\frac{p+3}{2}}\right\}>0 \tag{8}
\end{equation*}
$$

Because $w^{\prime}\left(t_{0}\right)>0$ for arbitrary fixed to $t_{0}>0$ we can take a sufficiently small $c_{0}>0$ in Eq. (6) such that

$$
\left[w^{\prime}\left(t_{0}\right)\right]^{2}-\frac{4 c_{0}}{p+1}\left(t_{0}+d\right)^{-N(p-1) / 2} \cdot w\left(t_{0}\right)^{\frac{p+3}{2}}>0
$$

Thus Eq. (8) yields

$$
\left[w^{\prime}(t)\right]^{2}-\frac{4 c_{0}}{p+1}(t+d)^{-N(p-1) / 2} \cdot w(t)^{\frac{p+3}{2}}>0 \quad\left(\text { for } t \geqslant t_{0}\right)
$$

or

$$
\begin{align*}
w^{\prime}(t) \geqslant & c_{3}(t+d)^{-N(p-1) / 4} \cdot w(t)^{\frac{p+3}{4}}= \\
& c_{3}(t+d)^{-N(p-1) / 4} \cdot w(t)^{\frac{p-1}{4}(1-\theta)} \cdot w(t)^{\frac{p-1}{4} \theta+1} \tag{9}
\end{align*}
$$

where $\theta \in(0,1)$ is sufficiently small constant such that $0<[N-(1-\theta)] \cdot \frac{p-1}{4}<1$. (Notice $0<p-1<\frac{4}{N-1}$ by (H1)).Thus Eqs. (7) and (9) yield

$$
w^{\prime}(t) \geqslant c_{5}(t+d)^{\frac{-N(p-1)}{4}+\frac{p-1}{4}(1-\theta)} \cdot w(t)^{\frac{p-1}{4} \theta+1} .
$$

Denote $\alpha=\frac{N(p-1)}{4}-\frac{p-1}{4}(1-\theta), \beta=\frac{p-1}{4} \theta+1$, then $0<\alpha<1$ and $\beta>1$. Therefore

$$
w^{\prime}(t) \geqslant c_{5}(t+d)^{-\alpha} \cdot w(t)^{\beta} .
$$

This differential inequality implies that for some time to $T_{0}<+\infty$:

$$
w(t)=\int_{\mathbf{R}^{\mathbf{N}}} u^{2}(x, t) \mathrm{d} x \rightarrow+\infty \quad\left(\text { when } t \rightarrow T_{0}^{-}\right)
$$

Thus, the solution $u(x, t)$ of Eq. (1) may blow up in finite time.

References:

[1] Kato T. Blow up of solutions of some nonlinear hyperbolic equations[J]. Comm Píre Appl Math ,1980,33(4):501~505.
[2] Cao Zhenchao, Wang Bixiang, Guo Boling. Global existence theory for the two dimensional derivative G-L equation[J]. Chinese Science Bulletin, 1998,43(5):393~395.

[^0]: ＊Received date：1998－02－24；Revised date：1999－05－16

