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a2u(x,t) 
Abstract: For the nonlinear wave equation in R u x R § ( N >~ 2) : 0 t 2 - 

8~i ( ao.( x ) 3~iu ) = , u l '- t  .'u , in1980 Kato proved the solution of Cauchy prob- 

N + I  
lem may blow up in finite time if I < p < N 1 " In the present work his result al- 

N + 3  . lowing 1 < p <~ ~ ts improved by using different estimates. 
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Consider the Cauchy problem for the wave equation in R ~ x R § ( N ~> 2) : 

- - - d t - ~  - a ~  a , ~ ( x )  = I u I , - a  . u ( ( x , t )  E R ~ x (0, r ) ) ,  

u ( x , O )  = g ( x )  ( x  E RN),  (1) 

u , ( x , 0 )  h ( x )  ( x  6 RN),  

where u ( x ,  t ) is nontrivial solution with finite speed of propagation and is supported on a forward 

cone { ( x ,  t )  �9 t ~> 0, I x I ~< t + d} .  In 1980 Kato C1] proved the solution may blow up i f l  < 

( d ;  u ( x , t ) d x )  ,=0 > 0 o r  N + 1 by using estimate for u ( x ,  t ) d x  under hypotheses ~ RN 
P~< N 1 R" 

, t ) dx  # 0. In this paper, we will improve his result allowing Kp < N 1' by using 
t = 0  - -  

different estimates f o r f  u 2 ( x , t ) d x .  
J R M 

T h e o r e m  Assume that 

N § 
( H I )  1 < p < N -  1 '  

(H2)  air(x)  E C2(R N) and are elliptic, 
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(H3) g ( x ) , h ( x )  E Cg(RU) , supp{g (x ) ,h (x ) }C_  {I x 1 4  d } ,  

(H4) f g ( x ) h ( x ) d x  >t 0 and g ( x )  ~ O, which imply 
R ,v 

t d f  x t ) d x )  and(fR" ' IZ2(x ' t )dx)  ,=o 0, 
to-  , > 

(H5) I & 2 f  f f - p + l  R ' l g ( x )  lP+ 'dx -  R.a~(x) D,g(x )D~g(x)dx-  R" l h(x)  12dx ~>O" 

Then T < 0o , i. e. u ( x ,  t)  may blow up in finite time. 

P r o o f  The (H2) - (H4) implies the existence of a unique classical solution to problem 

( 1 ) .  We will estimate 

w(t) A f su2(x,t)dx 
R 

by using method similar to Ref. [ 2 ] .  First, multiplying Eq. (1 )  by u (x ,  t) and integrating 

over R Iv , we have 

~-w ( t )  = p - I u IP+Xdx + 
p + l  R ~ p + l  R ~ 

fR~, I it, IZdx - fRsaijOiuDjttdx. 

Next, multiplying Eq. ( 1 )  by u, and integrating 

1 
(Notice aliDiuDju, = -~( ai/ Di uD7 u ), ) 

fR N lZ t IZdx - 

I u IP§ + 

over R N 

(2) 

x [ 0 , t ] ,  we have 

2f f p + 1 R ~' I u IP+ldx - RS aijDiuDjudx + 

fRN h2(x) dx - 2--X--f p + 1 rd I g ( x )  IP+ldx, 

' ut l2dx - 2 f fR.a~D, p + 1 R ~ I u I P+ldx - uD iudx - I. 

fR ~ ai/D~ gDj gdx + 

f 
i .  e . ,  j (3) 

R u 
Eqs. (2)  and (3) yield 

-~-w kt)  = p - I u Ip+ldx + I ut 12dx + I u, 12dx + l .  
p + 1 R ' R N 

By (H5) we obtain 

1 , , .  s N I u I ' + ' d x  ( 4 )  ~-w ( t )  >I P + 1JR 

Thus w" ( t )  >t 0 and w' ( t )  is monotone nondecreasing. Therefore w' ( t )  ~> w' (0)  ~> 0 by (H4) 

and w ( t )  is also monotone nondecreasing. 

Thus by (H4) ,  we have 

w(t) >~ w(0) > 0. (5) 

Now, by finite speed of propagation and by ( H 3 ) ,  we have 
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,u,2d =f ,u 2dx<_ 
R Ir I x l ~ t + d  

2 

1 �9 dx~ v+l 
~t+d J 

or 

f 
w( t ) ' i - "  < c l ( t  + d)  NCp-1)n �9 | I u ip+ldx. 

R M d 

Combining this with Eq. (4 ) ,  we obtain 

w " ( t )  ~ c2(t + d)  -N(p-1)/2 ~+1 �9 , o ( t )  2 , 

or 

w"( t )  >~ Co _ ( t  + d)  -NCp-1)/2" w ( t )  2 . (6) 

Thus w"( t )  > 0 by (5) .  Therefore there exists a positive constant v such that w " ( t )  > u. This 

yields 

1 2 
w ( t )  >~ ~ t  + w ' ( o )  �9 t + w ( O ) ,  

or 

where/z is a positive constant. 

Again by Eq. (6) we have 

w ( t )  >I /a(t  + d ) ,  (7) 

i .  e .  

2w' [w"  coP + 3 ( t  + d)_N(p_l)/Z p_2_!1 --  . 1 0 2 1 +  
p - 1  

4Co . N ( p  - 1) �9 ( t  + d)-N--~':~z -1-1 �9 w2~ 
p + l  2 

> 0 ,  

at ( w ' ( t )  - ~ ( t  + d)  - N ~ - ~ n .  , , , ( t)  > 0. (8) 
p + l  

Because w' (to) > 0 for' arbitrary fixed to to > 0 we can take a sufficiently small Co > 0 in Eq. 

(6) such that 

[ w ' ( t o ) ] 2 -  4c...__~o , .,+3 
P + l ( t0  + d)  -NCp-1)/2 �9 wkto) 2 > O. 

Thus Eq. (8) yields 

or 

[ w , ( t ) ]  2 - 4C__._.~0 
p + l  

( t  + d)  -N(p-1)n.  w ( t ) ~  > 0 (for t ~ to) ,  

W ' ( t )  >~ c3(t  + d )  = N ( p - I ) / 4 .  w ( t )  +~43 = 

~3( t  + d )  -Nc~-~)~4 ' w ( t ) ,  ~ ~ ' - ~  �9 w ( t )  , ( 9 )  
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where 0 E (0 ,1 )  is sufficiently small constant such that 0 < [ N - (1 - 0 ) ]  �9 p - 1 
4 

N 4 by (H1) )  Thus Eqs. (7)  and (9) yield Notice0 < p - 1 < - 1 

w ' ( t )  >I c5(t + d)-"~,- '  + ~  ~'-~ . w(t) ,~~ 

Denotea  = N ( p -  1) 
4 

< 1. 

- 1 . ( 1 - 0 ) , / 3 = - -  P - 1 0 + l  t h e n 0 <  a < l a n d / ~ >  1 Therefore ~ P 

4 4 ' " 

w' ( t )  >~ cs( t  + d) -*  �9 w( t )~ .  

This differential inequality implies that for some time to T O < + ~ �9 

w(t )  = f Mu2(x, t)dx--"+ oo (when t---,- T~) .  

Thus, the solution u ( x ,  t)  of Eq. (1) may blow up in finite time. 
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