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Abstract
The problem of enumerating close-packed dimers, or perfect matchings, on two
types of lattices (the so-called 8.8.4 and 8.8.6 lattices) embedded on the Klein
bottle is considered, and we obtain the explicit expression of the number of
close-packed dimers and entropy. Our results imply that 8.8.4 lattices have the
same entropy under three different boundary conditions (cylindrical, toroidal
and Klein bottle) and 8.8.6 lattices have the same property.

This article is part of ‘Lattice models and integrability’, a special issue of
Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu’s
80th birthday.

PACS numbers: 05.50.+q, 04.20.Jb, 02.10.Ox

1. Introduction

A central problem in statistical physics and combinatorial mathematics is the enumeration of
close-packed dimers, often referred to as perfect matchings in the mathematical literature or
Kekulé structures in quantum chemistry, on lattices [19]. In 1961, Kasteleyn [4, 5] found a
formula for m × n quadratic lattice graph with both free and toroidal boundary conditions.
Temperley and Fisher [17] used a different method and arrived at the same result at almost
exactly the same time. They also considered the entropy of the quadratic lattice graph. Sachs
and Zeritz [15] studied the problem involving the enumeration of close-packed dimers of
another type of quadratic lattice with different boundary conditions and a different entropy
was obtained. This fact showed that the entropy of the quadratic lattice is strongly dependent
on the boundary conditions.

The exact solution of the dimer problem was obtained for many other lattices such as 8.8.4
lattice, hexagonal lattice, triangular lattice, kagome lattice, 3.12.12 lattice, union Jack lattice,
etc with the toroidal boundary condition [2, 4, 6, 13, 19]. Also, this problem has been extended
to the cylindrical condition [10, 13]. Wu and Wang [20] obtained the exact result on the
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Figure 1. (a) G1(m, n); (b) G2(m, n).

enumeration of close-packed dimers on a finite kagome lattice with general asymmetric dimer
weights under the cylindrical boundary condition. The result by Wu and Wang implies that the
kagome lattices with the cylindrical and toroidal boundary conditions have the same entropy.
This phenomenon also occurred for some other lattices with cylindrical and toroidal boundary
conditions [3]. In view of the connection with conformal field theory, where the boundary
conditions play a crucial role, there has been considerable renewed interest in considering
lattice models on nonorientable surfaces. Lu and Wu [11, 12] have obtained the generating
function for simple quadratic lattices embedded on a Klein bottle. In this paper, two types of
lattice with the Klein bottle boundary condition are considered.

Two bulk lattices, denoted by G1(m, n) and G2(m, n), are illustrated in figures 1(a) and
1(b), respectively, where G2(m, n) is a finite subgraph of an edge-to-edge tiling of the plane
with two types of vertices—8.8.6 and 8.8.4 vertices—and G1(m, n) is a finite subgraph of 8.8.4
tiling in the Euclidean plane which has been used to describe phase transitions in the layered
hydrogen-bonded SnCl2·2H2O crystal [17] in physical systems [1, 14, 16]. The 8.8.6 lattice
G2(m, n), whose fundamental part is a hexagon, is composed of mn hexagons. Similarly, the
8.8.4 lattice G1(m, n), whose fundamental part is a quadrangle, is composed of mn quadrangles.

If we add edges (at, a∗
t ) for 1 � t � m in G1(m, n) (resp. G2(m, n)), we obtain a graph

with the cylindrical boundary condition, denoted by Gc
1(m, n) (resp. Gc

2(m, n)). Adding edges
(at, a∗

t ), (b j, b∗
j ) for 1 � t � m, 1 � j � n in G1(m, n), 8.8.4 lattice with the toroidal

boundary condition, denoted by Gt
1(m, n), can be obtained. Salinas and Nagle [16] and Wu

[19] showed that the entropy of Gt
1(m, n) is

lim
m,n→∞

2

4mn
log[wGt

1(m,n)] = 1

2π

∫ π
2

0
log

5 + √
25 − 16 cos2 x

2
dx ≈ 0.3770.

Yan et al [21] showed that the entropy of Gc
1(2m, n) is 0.3770 too.

Similarly, by adding edges (at, a∗
t ), (b j, b∗

j ) for 1 � t � m, 1 � j � 2n in G2(m, n),
8.8.6 lattice with the toroidal boundary condition, denoted by Gt

2(m, n), can be obtained. Yan
et al [21] showed that both Gc

2(2m, n) and Gt
2(2m, n) have the same entropy, i.e.

lim
m,n→∞

2

12mn
log wGc

2(2m,n) = lim
m,n→∞

2

12mn
log wGt

2(2m,n)

= 2

3π

∫ π
2

0
log(cos x +

√
4 + cos2 x) dx ≈ 0.3344.
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In this paper, the close-packed dimers of the 8.8.4 lattice Gk
1(m, n) and 8.8.6 lattice

Gk
2(m, n) with the Klein bottle boundary condition, where Gk

1(m, n) (resp. Gk
2(m, n)) is

obtained from G1(m, n) (resp. G2(m, n)) by adding edges (at, a∗
m+1−t )) (b j, b∗

j ) for 1 �
t � m, 1 � j � n (resp. 1 � j � 2n), are considered. We also obtain the entropies for those
lattices. In section 2, we introduce the method of Tesler, and we enumerate the close-packed
dimers and entropies in section 3.

2. Tesler’s method and crossing orientation

In this section, we review the method of Tesler [18]. It can also be found in [8, 9]. Given an
undirected graph G = (V (G), E(G)) with a vertex set V (G) = {1, 2, ..., 2p}, we allow each
edge {u, v} to have a weight w{u,v}. In unweighted graphs, set weight to 1 for all edges. Let Ge

be an arbitrary orientation of G. Denote the arc of Ge by (u, v) if the direction of it is from u
to v. The skew adjacency matrix of Ge, denoted by A(Ge), is defined as follows:

A(Ge) = (au,v )2p×2p,

where

au,v =
⎧⎨
⎩

w{u,v} if (u, v) is an arc of Ge,
−w{u,v} if (v, u) is an arc of Ge,
0 otherwise.

Let PM = {{u1, u′
1}, . . . , {up, u′

p}} range over the partitions of 1, ..., 2p into p sets of size
2 and define the signed weight of PM as

wPM = sign

(
1 2 · · · 2p − 1 2p
u1 u′

1 · · · up u′
p

)
· au1,u′

1
· · · aup,u′

p
,

where the sign is of the permutation expressed in two-line notation. The Pfaffian of A is defined
as

Pf A =
∑
PM

wPM.

Theorem 1 (Cayley’s theorem [7]). Let A = (au,v )2p×2p be a skew symmetric matrix of order
of 2p. Then the determinant of A, det(A) = (Pf A)2.

When PM is a partition that is not a dimer covering, wPM = 0, so the nonzero terms of
Pf A correspond to the dimer coverings of G. We call wPM the signed weight of the dimer
coverings PM and define the sign of PM to be the sign of wPM . Generally speaking, the terms
in the Pfaffian do not possess the same sign; the evaluation of the Pfaffian does not necessarily
produce the desired dimer covering number. In order to obtain all dimer configurations correctly
counted, we use the method of Tesler.

Any compact boundaryless two-dimensional surface S can be represented in the plane by
a plane model [18]. Draw a 2l-sided polygon P and form l pairs of sides p j, p′

j, j = 1, . . . , l.
Paste together pj and p′

j. Any S can be represented by a suitable polygon and pastings. Now
take an embedding of a graph G on this surface and draw it within this plane model of the
surface. Edges wholly contained inside the polygon P do not cross and are called 0-edges. The
edges that go through sides p j, p′

j of P are called j-edges. We say a face of a planar graph is
clockwise odd when it has an odd number of edges pointing along its boundary when traversed
clockwise.

To Gk
1(m, n) and Gk

2(m, n) lattices, the graphs embedded on the Klein bottle, we draw its
planar subgraph containing all vertices in a four-polygon and label the vertices by 1, 2, . . .,
shown in figures 2 and 3.

3
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(a) (b)

Figure 2. A crossing orientation of Gk
1(m, n). (a) The orientation of the subgraph consisted of

0-edges and 1-edges; (b) the orientation of the subgraph consisted of 0-edges and 2-edges.

(a) (b)

Figure 3. A crossing orientation of Gk
2(m, n) when n is odd, m is even. (a) The orientation of the

subgraph consisted of 0-edges and 1-edges; (b) the orientation of the subgraph consisted of 0-edges
and 2-edges.

Crossing orientation rule [18]. Orient the subgraph of 0-edges so that all its faces are
clockwise odd. Orient each j-edge e ( j > 0) as follows. Ignoring all other non-0-edges, there
is a face formed by e and certain 0-edges along the boundary of the subgraph of 0-edges.
Orient e so that this face is clockwise odd.

4
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Orient the edges of Gk
1(m, n) as shown in figure 2. Let the directions of the edges in

Gk
2(m, n) be the same as shown in figure 3 (reversing the 2-edges when n is even, reversing

the 1-edges when m is odd). It can be easily checked that those are crossing orientations.
Introduce two new variables: x1 and x2. Multiply the weights of all j-edges by x j ( j �= 0),

and let X (x1, x2) be the x-adjacency matrix, where the element of matrix X (x1, x2) in row u,
column v is

Xu,v =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if (u, v) is a 0-edge;
−1 if (v, u) is a 0-edge;
x j if (u, v) is a j-edge ( j �= 0);
−x j if (v, u) is a j-edge ( j �= 0);
0 otherwise.

Let x1 = ±1, x2 = ±i, and set the weight to be 1 for all 0-edges. Then the number of
close-packed dimers is given in [9, 18] as

wG = |Re(Pf X (1, i))| + |Im(Pf X (−1, i))|. (1)

3. The number of close-packed dimers

To obtain the numbers of close-packed dimers of Gk
1(m, n) and Gk

2(m, n), we first introduce
some notation. Let B−1 be the inverse matrix of B, BT be the transpose of B and δt, j be the
Kronecker delta equal to 1 if t = j and 0 otherwise. Let Im denote the m × m identity matrix.
Set

R =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 0 · · ·
...

...
. . .

. . .
. . .

0 0 · · · 0 1
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

n×n

, K1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 0
. . .

...
...

...
. . .

. . .
0 0 0 · · · 1
1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

m×m

,

K2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 0
. . .

...
...

. . .
. . .

. . .
0 0 · · · 0 1

−1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

m×m

, K3 =

⎡
⎢⎢⎢⎣

1
1

...
1

⎤
⎥⎥⎥⎦

m×m

.

Let U and V be the m × m matrices with elements

Ut, j =
√

1

m
ei 2 jtπ

m ; Vt, j =
√

1

m
ei (2 j−1)tπ

m ; t, j = 1, 2, . . . , m,

respectively. It is not difficult to check that the elements of the U−1 and V −1 ( m × m matrices)
are

(U−1)t, j =
√

1

m
e−i 2t jπ

m ; (V −1)t, j =
√

1

m
e−i (2t−1) jπ

m .

The elements of the m × m matrices U−1K1U, U−1(−KT
1 )U and U−1K3U are

(U−1K1U )t, j = eiθt δt, j,
(
U−1

(−KT
1

)
U
)

t, j = −e−iθt δt, j, (U−1K3U )t, j = e−iθt δt+ j,n+1

(2)

5
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and the elements of the m × m matrices V −1K2V, V −1
(−KT

2

)
V and V −1K3V are

(V −1K2V )t, j = eiφt δt, j,
(
V −1

(−KT
2

)
V
)

t, j = −e−iφt δt, j, (V −1K3V )t, j = −e−iφt δt+ j,n,

(3)

where θt = 2tπ
m and φt = (2t−1)π

m for t, j = 1, 2, . . . , m.

3.1. The lattice Gk
1(m, n)

For an even value of m, consider the labelling of vertices of Gk
1(m, n) shown in figure 2. The

x-adjacency matrices X (−1, i) and X (1, i) can be written in terms of a linear combination of
direct products of the smaller ones:

X (−1, i) = A ⊗ Im + B ⊗ K1 − BT ⊗ KT
1 + C ⊗ K3,

X (1, i) = A ⊗ Im + B ⊗ K2 − BT ⊗ KT
2 + C ⊗ K3,

where

A =

⎡
⎢⎢⎣

0 1 −1 0
−1 0 0 −1
1 0 0 −1
0 1 1 0

⎤
⎥⎥⎦⊗ In +

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦⊗ R −

⎡
⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦⊗ RT,

B =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

⎤
⎥⎥⎦⊗ In, C =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 i
0 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
−i 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

4n×4n

.

We first evaluate the determinant of X (±1, i).
Let

D1(x) =

⎡
⎢⎢⎣

0 1 −1 0
−1 0 −e−ix −1
1 eix 0 −1
0 1 1 0

⎤
⎥⎥⎦ and D2(x) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
x 0 0 0

⎤
⎥⎥⎦ .

Note that K1 commutes with −KT
1 and K2 commutes with −KT

2 . As a result, X (−1, i) and
X (1, i) can be diagonalized by applying a common similarity transformation, respectively. By
(2), we have

(I4n ⊗ U )−1X (−1, i)(I4n ⊗ U )

= (I4n ⊗ U )−1(A ⊗ Im + B ⊗ K1 − BT ⊗ KT
1 + C ⊗ K3)(I4n ⊗ U )

= A ⊗ (U−1ImU ) + B ⊗ (U−1K1U ) − BT ⊗ (U−1(−KT
1 )U ) + C ⊗ (U−1K3U )

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A′
1 C′

1 0
A′

2 C′
2

. . . . .
. ...

A′
m/2 + C′

m/2

. .
. . . .

...
C′

m−2 A′
m−2

C′
m−1 A′

m−1 0
0 · · · · · · 0 A′

m + C′
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

6
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where for t = 1, 2, . . . , m,

A′
t = A + eiθt B − e−iθt BT (4)

= D1(θt ) ⊗ In + D2(1) ⊗ R − (D2(1))T ⊗ RT, (5)

C′
t = e−iθtC, (6)

A similar calculation using (3) gives

(I4n ⊗ V )−1X (1, i)(I4n ⊗ V ) =

⎡
⎢⎢⎢⎢⎢⎣

A′′
1 C′′

1
A′′

2 C′′
2

...
C′′

m−1 A′′
m−1

C′′
m A′′

m

⎤
⎥⎥⎥⎥⎥⎦ ,

where for t = 1, 2, . . . , m,

A′′
t = A + eiφt B − e−iφt BT

= D1(φt ) ⊗ In + D2(1) ⊗ R − (D2(1))T ⊗ RT,

C′′
t = −e−iφtC.

Interchanging rows and columns, those matrices can be changed into a block-diagonal
form having the same determinants:

det X (−1, i) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A′
1 C′

1
C′

m−1 A′
m−1

A′
2 C′

2
C′

m−2 A′
m−2

. . .
A′

m/2−1 C′
m/2−1

C′
m/2+1 A′

m/2+1

A′
m/2 + C′

m/2 0
0 A′

m + C′
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

det X (1, i) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A′′
1 C′′

1
C′′

m A′′
m

A′′
2 C′′

2
C′′

m−1 A′′
m−1

. . .
A′′

m/2 C′′
m/2

C′′
m/2+1 A′′

m/2+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Let Y be a subset of the row/column index set of P. For convenience, let PY denote the
determinant of the matrix obtained from P by deleting all rows and columns whose indices

are in Y . Note that θt = −θm−t . Expanding the determinant L = ∣∣ A′
t C′

t
C′

m−t A′
m−t

∣∣ along the first row

and then expanding the resulting determinants along the first column, we have

7
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L =
∣∣∣∣D1(θt ) ⊗ In + D2(1) ⊗ R − (D2(1))T ⊗ RT e−iθt C

e−iθm−t C D1(θm−t ) ⊗ In + D2(1) ⊗ R − (D2(1))T ⊗ RT

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D1(θt ) D2(1) D2(ie−iθt )T

−D2(1)T D1(θt ) D2(1)

. . .
. . .

. . .
−D2(1)T D1(θt ) D2(1)

−D2(1)T D1(θt ) −D2(ie−iθt )

D2(ieiθt )T D1(−θt ) D2(1)

−D2(1)T D1(−θt ) D2(1)

. . .
. . .

. . .
−D2(1)T D1(−θt ) D2(1)

−D2(ieiθt ) −D2(1)T D1(−θt )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 4L{1,2,3,4} + 2i sin θt L{1,2,3,4,5} − L{1,8n} + 2(2 cos θt )

2n. (7)

Now we turn to calculate L{1,2,3,4}, L{1,2,3,4,5}, L{1,8n}. By the Laplace expansion theorem, we
obtain several expansions. First, an expansion by rows 1, 2, . . . , 4(n − 1):

L{1,2,3,4} = |A′
t |{1,2,3,4}|A′

m−t | − |A′
t |{1,2,3,4,4n}|A′

m−t |{1}; (8)

then an expansion by rows 1, 2, . . . , 4n − 5 :

L{1,2,3,4,5} = |A′
t |{1,2,3,4,5}|A′

m−t | − |A′
t |{1,2,3,4,5,4n}|A′

m−t |{1}; (9)

and then an expansion by rows 1, 2, . . . , 4n − 1:

L{1,8n} = |A′
t |{1}|A′

m−t |{4n} − |A′
t |{1,4n}|A′

m−t |{1,4n}. (10)

Let αt = −2i sin θt . Recall that A′
t defined in (5) is a 4n×4n matrix. We consider the following

minors of it:

F ′
n = |A′

t |{1}, L′
n = |A′

t |, M′
n = |A′

t |{1,4n}, J′
n = |A′

t |{4n},
F ′′

n = |A′
m−t |{1}, L′′

n = |A′
m−t |, M′′

n = |A′
m−t |{1,4n}, J′′

n = |A′
m−t |{4n}.

Also, set � j−1 = �
{1,2,3,4}
j , j = 2, . . . , n, �n ∈ {F ′

n, J′
n, L′

n, M′
n, F ′′

n , J′′
n , L′′

n, M′′
n }.

It can be checked that

L′
n = 4L′

n−1 + αtF
′

n−1,

F ′
n = F ′

n−1 − αtL
′
n−1.

(11)

The recursion relation (11) gives

L′
n = 5L′

n−1 − (4 + α2
t )L′

n−2,

F ′
n = 5F ′

n−1 − (4 + α2
t )F ′

n−2.
(12)

Note that

F ′
1 =

⎡
⎣ 0 −eiθt −1

e−iθt 0 −1
1 1 0

⎤
⎦ = −αt, F ′

2 = −5αt,

L′
1 =

⎡
⎢⎢⎣

0 1 −1 0
−1 0 −eiθt −1
1 e−iθt 0 −1
0 1 1 0

⎤
⎥⎥⎦ = 4, L′

2 = 16 − α2
t .

8
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Making use of the initial conditions, respectively, solving (12), we obtain

F ′
n = −5αt − αt

√
9 − 4α2

t

2
√

9 − 4α2
t

(
5 +

√
9 − 4α2

t

2

)n−1

−−5αt + αt

√
9 − 4α2

t

2
√

9 − 4α2
t

(
5 −

√
9 − 4α2

t

2

)n−1

,

L′
n = 6 − α2

t + 2
√

9 − 4α2
t√

9 − 4α2
t

(
5 +

√
9 − 4α2

t

2

)n−1

−6 − α2
t − 2

√
9 − 4α2

t√
9 − 4α2

t

(
5 −

√
9 − 4α2

t

2

)n−1

. (13)

Similarly, a recursion relation can be obtained: �n = 5�n−1 − (
4 + α2

t

)
�n−2, where

� j−1 = (� j)
{1,2,3,4}, j = 2, . . . , n, �n ∈ {J′

n, M′
n, F ′′

n , J′′
n , L′′

n, M′′
n }.

Note that

J′
1 = αt, J′

2 = 5αt, M′
1 = 1, M′

2 = 1 − α2
t , F ′′

1 = αt, F ′′
2 = 5αt,

J′′
1 = −αt, J′′

2 = −5αt, L′′
1 = 4, L′′

2 = 16 − α2
t , M′′

1 = 1, M′′
2 = 1 − α2

t .

We obtain

J′
n = 5αt + αt

√
9 − 4α2

t

2
√

9 − 4α2
t

(
5 +

√
9 − 4α2

t

2

)n−1

− 5αt − αt

√
9 − 4α2

t

2
√

9 − 4α2
t

(
5 −

√
9 − 4α2

t

2

)n−1

,

M′
n =

√
9 − 4α2

t − 3 − 2α2
t

2
√

9 − 4α2
t

(
5 +

√
9 − 4α2

t

2

)n−1

+
√

9 − 4α2
t + 3 + 2α2

t

2
√

9 − 4α2
t

(
5 −

√
9 − 4α2

t

2

)n−1

,

F ′′
n = J′

n, J′′
n = F ′

n, L′′
n = L′

n, M′′
n = M′

n. (14)

By combining (7)–(10), (13) and (14), we obtain

det

[
A′

t C′
t

C′
m−t A′

m−t

]
= L =

(
5 +

√
9 − 4α2

t

2

)2n

+
(

5 −
√

9 − 4α2
t

2

)2n

+ 2 (2 cos θt )
2n .

Similarly calculating as above, we have

det

[
A′′

t C′′
t

C′′
m−t A′′

m−t

]
=
(

5 +
√

9 − 4β2
t

2

)2n

+
(

5 −
√

9 − 4β2
t

2

)2n

+ 2 (2 cos φt )
2n ,

where βt = −2i sin φt . Note that αt = 0 (t = m, m/2), expanding the determinant along the
first row and then expanding the resulting determinants along the first column, we have

det[A′
t + C′

t ] = 4L′
n−1 − M′

n − 4 (2 cos θt )
n−1 i = (4n − 1) − 4 (2 cos θt )

n−1 i(t = m/2, m).

So

det X (−1, i) = det[A′
m/2 + C′

m/2] · det[A′
m + C′

m] ·
m/2−1∏

t=1

det

[
A′

t C′
t

C′
m−t A′

m−t

]

=
(
(4n − 1)

2 + 4n+1
) m/2−1∏

t=1

9
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×
⎡
⎣(5 +

√
9 − 4α2

t

2

)2n

+
(

5 −
√

9 − 4α2
t

2

)2n

+ 2 (2 cos θt )
2n

⎤
⎦

det X (1, i) =
m/2∏
t=1

det

[
A′′

t C′′
t

C′′
m+1−t A′′

m+1−t

]

=
m/2∏
t=1

⎡
⎣
(

5 +
√

9 − 4β2
t

2

)2n

+
(

5 −
√

9 − 4β2
t

2

)2n

+ 2 (2 cos φt )
2n

⎤
⎦ .

Note that det X (1, i) � 0, det X (−1, i) � 0, so |Re(Pf X (1, i))| = √
det X (1, i),

Im(Pf X (−1, i)) = 0, by (1) we have the following.

Theorem 2. If m is even, then the number of close-packed dimers of Gk
1(m, n) can be expressed

as

wGk
1(m,n) =

m/2∏
t=1

[⎛⎝5 +
√

9 + 16 sin2 (2t−1)π

m

2

⎞
⎠

2n

+
⎛
⎝5 −

√
9 + 16 sin2 (2t−1)π

m

2

⎞
⎠

2n

+ 2

(
2 cos

(2t − 1) π

m

)2n
] 1

2

.

Similarly, when m is odd, then we have

det X (−1, i) = det[A′
m/2 + C′

m/2]

m−1
2∏

t=1

det

[
A′

t C′
t

C′
m−t A′

m−t

]

= (2n + i)2

m−1
2∏

t=1

⎡
⎣
(

5 +
√

9 − 4α2
t

2

)2n

+
(

5 −
√

9 − 4α2
t

2

)2n

+ 2 (2 cos θt )
2n

⎤
⎦ ,

det X (1, i) = det[A′′
m + C′′

m]

m−1
2∏

t=1

det

[
A′′

t C′′
t

C′′
m+1−t A′′

m+1−t

]

= (2n − i)2

m−1
2∏

t=1

⎡
⎣(5 +

√
9 − 4β2

t

2

)2n

+
(

5 −
√

9 − 4β2
t

2

)2n

+ 2 (2 cos φt )
2n

⎤
⎦ .

By (1) we have the following.

Theorem 3. If m is odd, then the number of close-packed dimers of Gk
1(m, n) can be expressed

as

wGk
1(m,n) = (2n + 1)

m−1
2∏

t=1

⎡
⎢⎣
⎛
⎝5 +

√
9 + 16 sin2 (2t−1)π

m

2

⎞
⎠

2n

+
⎛
⎝5 −

√
9 + 16 sin2 (2t−1)π

m

2

⎞
⎠

2n

+ 2

(
2 cos

(2t − 1) π

m

)2n

⎤
⎥⎦

1
2

.

10



J. Phys. A: Math. Theor. 45 (2012) 494012 F Lu and L Zhang

By theorems 2 and 3, we can calculate the entropy of Gk
1(m, n):

lim
m,n→∞

2

4mn
log wGk

1(m,n) = lim
m,n→∞

1

2mn

m
2∑

t=1

log

⎛
⎝5 +

√
9 + 16 sin2 (2t−1)π

m

2

⎞
⎠

n

= 1

2π

∫ π
2

0
log

5 +
√

9 + 16 sin2 x

2
dx ≈ 0.3770.

3.2. The lattice Gk
2(m, n)

Introduce 6 × 6 matrices

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 −1 0 0
−1 0 −1 0 0 0
0 1 0 0 0 1
1 0 0 0 −1 0
0 0 0 1 0 −1
0 0 −1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, H2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

H3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

If m is even, then labelling the vertices of Gk
2(m, n) as shown in figure 3, the x-adjacency

matrices of it, X (−1, i), X (1, i), can be written in terms of a linear combination of direct
products of the smaller ones:

X (−1, i) = A ⊗ Im + B ⊗ K1 − BT ⊗ KT
1 + C ⊗ K3,

X (1, i) = A ⊗ Im + B ⊗ K2 − BT ⊗ KT
2 + C ⊗ K3,

where

A = H1 ⊗ In + H2 ⊗ R − HT
2 ⊗ RT,

B = H3 ⊗ In,

C =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 i
0 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
−i 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

6n×6n

.

In the following, we evaluate the determinant of X (±1, i). Note that K1 commutes with
−KT

1 and K2 commutes with −KT
2 . As a result, X (−1, i) and X (1, i) can be block diagonalized

by applying a common similarity transformation. By (2) and (3), we have

11
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(I6n ⊗ U )−1X (−1, i)(I6n ⊗ U )

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A′
1 C′

1 0
A′

2 C′
2

. . . . .
. ...

A′
m/2 + C′

m/2

. .
. . . .

...
C′

m−2 A′
m−2

C′
m−1 A′

m−1 0
0 · · · · · · 0 A′

m + C′
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(I6n ⊗ V )−1X (1, i)(I6n ⊗ V ) =

⎡
⎢⎢⎢⎢⎢⎣

A′′
1 C′′

1
A′′

2 C′′
2

...
C′′

m−1 A′′
m−1

C′′
m A′′

m

⎤
⎥⎥⎥⎥⎥⎦ ,

where for t = 1, 2, . . . , m,

A′
t = A + eiθt B − e−iθt BT, C′

t = e−iθtC,

A′′
t = A + eiφt B − e−iφt BT, C′′

t = −e−iφtC.

Similar to section 3.2, we can obtain

det[A′
t + C′

t ] = −2i(−4)n cos θt (t = m, m/2),

det

[
A′

t C′
t

C′
m−t A′

m−t

]
=
(

8 − α2
t +

√
α4

t − 16α2
t

2

)2n

+
(

8 − α2
t −

√
α4

t − 16α2
t

2

)2n

+ 2 × 4n,

det

[
A′′

t C′′
t

C′′
m−t A′′

m−t

]
=
(

8 − β2
t +

√
β4

t − 16β2
t

2

)2n

+
(

8 − β2
t −

√
β4

t − 16β2
t

2

)2n

+ 2 × 4n,

where αt = −2i sin θt = −2i sin 2tπ
m , βt = −2i sin φt = −2i sin (2t−1)π

m .

Hence,

det X (−1, i) = det[A′
m/2 + C′

m/2] · det[A′
m + C′

m] ·
m/2−1∏

t=1

det

[
A′

t C′
t

C′
m−t A′

m−t

]

= 42n+1
m/2−1∏

t=1

⎡
⎣
(

8 − α2
t +

√
α4

t − 16α2
t

2

)2n

+
(

8 − α2
t −

√
α4

t − 16α2
t

2

)2n

+ 2 × 4n

⎤
⎦ ;

det X (1, i) =
m/2∏
t=1

det

[
A′′

t C′′
t

C′′
m+1−t A′′

m+1−t

]

=
m/2∏
t=1

⎡
⎣(8 − β2

t +
√

β4
t − 16β2

t

2

)2n

+
(

8 − β2
t −

√
β4

t − 16β2
t

2

)2n

+ 2 × 4n

⎤
⎦ .

Note that det X (1, i) � 0, det X (−1, i) � 0, so |Re(Pf X (1, i))| = √
det X (1, i),

Im(Pf X (−1, i)) = 0, by (1) we have the following.

12
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Theorem 4. If m is even, then the number of close-packed dimers of Gk
2(m, n) can be expressed

as

wGk
2(m,n) =

m/2∏
t=1

⎡
⎣(8 − β2

t +
√

β4
t − 16β2

t

2

)2n

+
(

8 − β2
t −

√
β4

t − 16β2
t

2

)2n

+ 2 × 4n

⎤
⎦

1/2

,

where βt = −2i sin (2t−1)π

m .

Similarly, when m is odd, we have

det X (−1, i) = det[A′
m/2 + C′

m/2]

m−1
2∏

t=1

det

[
A′

t C′
t

C′
m−t A′

m−t

]

= (2 × (−4)ni)

m−1
2∏

t=1

×
⎡
⎣
(

8 − α2
t +

√
α4

t − 16α2
t

2

)2n

+
(

8 − α2
t −

√
α4

t − 16α2
t

2

)2n

+ 2 × 4n

⎤
⎦ ,

det X (1, i) = det[A′′
m + C′′

m]

m−1
2∏

t=1

det

[
A′′

t C′′
t

C′′
m+1−t A′′

m+1−t

]

= (−2 × (−4)ni)

m−1
2∏

t=1

×
⎡
⎣
(

8 − β2
t +

√
β4

t − 16β2
t

2

)2n

+
(

8 − β2
t −

√
β4

t − 16β2
t

2

)2n

+ 2 × 4n

⎤
⎦ .

By (1) we have the following.

Theorem 5. If m is odd, then the number of close-packed dimers of Gk
2(m, n) can be expressed

as

wGk
2(m,n) = 2n+1

m−1
2∏

t=1

⎡
⎣
(

8 − β2
t +

√
β4

t − 16β2
t

2

)2n

+
(

8 − β2
t −

√
β4

t − 16β2
t

2

)2n

+ 2 × 4n

]1/2

,

where βt = −2i sin (2t−1)π

m .

By theorems 4 and 5, the entropy of Gk
2(m, n) can be obtained:

lim
m,n→∞

2

6mn
log wGk

2(m,n) = lim
m,n→∞

1

3mn

m
2∑

t=1

log

(
8 − β2

t +
√

β4
t − 16β2

t

2

)n

= 1

3π

∫ π
2

0
log

8 + 4 sin2 x +
√

16 sin4 x + 64 sin2 x

2
dx ≈ 0.3344.
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4. Concluding remarks

Fisher and Lebowitz [3] gave examples suggesting that the thermodynamic limit of the free
energy (including the entropy) is independent of boundary conditions in statistical mechanics.
Kasteleyn [4] discussed the related problem of quadratic lattices with free and toroidal
boundary conditions. In this paper, we computed the entropies of the 8.8.6 and 8.8.4 lattices
with a Klein bottle boundary condition. Comparing with the results by Salinas and Nagle [16],
Wu [19] and Yan et al [21], we can see that the 8.8.4 lattices have the same entropy with three
different boundary conditions (cylindrical, toroidal and Klein bottle). Also 8.8.6 lattices have
the same property.
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