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Abstract. Wu, Wang, Chang and Shrock initiated the study of zeros of the
Jones polynomial since it was the special case of partition functions of the Potts
model in physics. The Homfly polynomial is the generalization of the Jones
polynomial. Let L be an oriented link, and PL(v, z) be its Homfly polynomial.
In this paper, we study zeros of PL(v, z) with z fixed. We prove the so-called
unit-circle theorem for a family of generalized Jaeger’s links {Dn(G)|n = 1, 2, . . .}
which states that |v| = 1 is the limit of zeros of Homfly polynomials of generalized
Jaeger’s links {Dn(G)|n = 1, 2, . . .} if G is bridgeless. Similar to the result of the
Jones polynomial, we also prove that zeros of Homfly polynomials are dense in
the whole complex plane.
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1. Introduction

The study of zeros in physics originated from two very well-known papers [21, 37] on phase
transitions of Ising model [5] by Lee and Yang. Zeros of the Jones polynomial [16, 17] are
interesting since it is the special case of partition functions of the Potts model, which
generalizes the Ising model in physics; see [18, 34]. In [36] and [7], Wu, Wang, Chang
and Shrock initiated the study of zeros of the Jones polynomial; they studied some link
families and obtained some results by numerical experiments and theoretical analysis at
the same time. Since then many works have been carried out, see [6, 9, 10, 12, 14, 15, 24].
The distribution of zeros of the Alexander polynomial [1] has also been studied; see [23, 25].
The Homfly polynomial [8, 26] is the generalization of both the Jones and the Alexander
polynomials. The Homfly polynomial can also be generated by the q-state spin-conserving
model and IRF models [35]. Let L be an oriented link. We denote by PL(v, z) the Homfly
polynomial of L. In this paper, we shall concentrate on the study of zeros of PL(v, z),
with z fixed, of generalized Jaeger’s links.

In [11], Jaeger associated an oriented link to a plane graph by replacing each edge of
the graph by an oriented clasp as shown in figure 1. In figure 2, we provide an example
of Jaeger’s links. Given a connected plane graph G, we cover each edge e of G by an
oriented vertical integer tangle [2ne] as shown in figure 3, and obtain an oriented link.
We call it the generalized Jaeger’s link, denoted by Dn(G), since Jaeger’s link is the
case of ne = 1 for each edge e. Note that generalized Jaeger’s links have s(G) + 1
components, where s(G) is the nullity of G. Thus, given a connected plane graph G
with edge set E(G) = {e1, e2, . . . , em}, we define a family of generalized Jaeger’s links
{Dn(G)|n = (n1, n2, . . . , nm); ni = ±1,±2, . . . ; i = 1, 2, . . . , m}.

The unit-circle phenomenon also appears in zeros of the chromatic polynomial [4],
which is the zero-temperature partition function of the q-state Potts antiferromagnet.
In [15], the present authors defined multiple crossing twisted links and proved that the
limits of the zeros of their Jones polynomials are the unit circle and some isolated limits.
Motivated by results on the chromatic polynomial and the characteristic polynomial in [30]
and [38] respectively, the present authors, together with Dong and Tay, proved that zeros
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Figure 1. Replacing an edge by an oriented clasp.

Figure 2. An example of Jaeger’s links.

Figure 3. Vertical integer tangles [2n] with n > 0 and 2n half twists (left) and
n < 0 and −2n half twists (right).

of Jones polynomials are dense in the whole complex plane [14]. In this paper, we use
mathematical analytic results to study similar problems to those in [15] and [14]. Let G
be a connected plane graph. Let Dn(G) be the generalized Jaeger’s link obtained from
G by covering each edge with the vertical integer tangle [2n]. Two results are obtained,
one is the so-called unit-circle theorem which states that |v| = 1 is the limit of zeros of
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Homfly polynomials of {Dn(G)|n = 1, 2, . . .} when G is bridgeless, and the other is that
zeros of Homfly polynomials of {Dn(Sm)|n = ±1,±2, . . . ; m = 1, 2, . . .} are dense in the
whole complex plane, where Sm is the graph which consists of two vertices connected by
m parallel edges.

2. Homfly and chain polynomials

The main purpose of this section is to convert the Homfly polynomial of Dn(G) to the
chain polynomial [27] of G. Let G = (V, E) be a graph. We denote by k(G) the number
of connected components of G. We use r(G) = |V | − k(G) and s(G) = |E| − |V | + k(G)
to denote the rank and nullity (i.e. cyclomatic number) of the graph G, respectively.

A weighted graph is a graph G together with a function w mapping E into some
commutative ring R with unity 1. If e is an edge of G then w(e) is called the weight of
the edge e. The dichromatic polynomial for weighted graphs was introduced by Traldi
in [31], which is one of the edge-weighted versions of the celebrated Tutte polynomial in
graph theory [33].

Definition 2.1. The dichromatic polynomial QG(t, z) of a weighted graph G is defined
as

QG(t, z) =
∑

F⊂E

(
∏

f∈F

w(f)

)
tk〈F 〉zs〈F 〉,

where k〈F 〉 and s〈F 〉 are the number of connected components and the nullity of the
spanning subgraph 〈F 〉, induced by the edge subset F of G, respectively.

Theorem 2.2 ([13]). Let G be a connected plane graph with edge set E =
{e1, e2, . . . , em}. Let Dn(G) be the associated generalized Jaeger’s links. Let the weight of

ei be v−1−v
z

v2ni

1−v2ni
. Then the Homfly polynomial of Dn(G)

PDn(G)(v, z) =

(
z

v−1 − v

)m+1
(

m∏

i=1

(1 − v2ni)

)
QG

(
v−1 − v

z
,
v−1 − v

z

)
.

Remark 2.3. From theorem 2.2, we can see that the degree of v of PDn(G)(v, z) is relevant
to n, while the degree of z is independent of n. Furthermore, if G is bridgeless, then the
highest and the lowest degrees of PDn(G)(v, z), with respect to z, are s(G) and −s(G),
respectively.

Let e be an edge of the graph G, we shall use G − e and G/e to denote the graphs
obtained from G by deleting the edge e and contracting the edge e (i.e. deleting the edge e
first and then identifying its two end vertices), respectively. When e is a loop, G−e = G/e.
The following recursive relations hold, which may be taken as an alternative definition of
the polynomial, see [32].

(i) If G is an edgeless graph with n ≥ 1 vertices, then

QG = tn. (1)

(ii) Otherwise, let e be an edge of G. If e is a loop of G, then

QG = (1 + w(e)z)QG−e. (2)

doi:10.1088/1742-5468/2011/07/P07011 4
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If e is not a loop of G, then

QG = QG−e + w(e)QG/e. (3)

To study the chromatic polynomial [28] for the homeomorphism class of graphs, Read
and Whitehead Jr introduced a multilinear polynomial of a graph in 1999, the chain
polynomial [27], which is associated with a graph whose edges have been labeled with
elements of a commutative ring with unity 1.

Let G be a labeled graph. We usually identify the edges with their labels for
convenience.

Definition 2.4. The chain polynomial Ch[G] of a labeled graph G is defined as

Ch[G] =
∑

Y ⊂E

FG−Y (1 − w)
∏

a∈Y

a,

where the sum is over all subsets of E = E(G), FG−Y (1−w) denotes the flow polynomial
in λ = 1 − w of G − Y , the graph obtained from G by deleting the edges in Y .

The chain polynomial of a labeled graph can be defined by the following recursive
rules [31].

(i) If G is edgeless, then

Ch[G] = 1. (4)

(ii) Otherwise, let a be an edge of G.

(a) If the edge a is a loop of G, then

Ch[G] = (a − w)Ch[G − a]. (5)

(b) If the edge a is not a loop, then

Ch[G] = (a − 1)Ch[G − a] + Ch[G/a]. (6)

Comparing (1)–(3) with (4)–(6), we obtain the following lemma.

Lemma 2.5. Let G = (V, E) be a connected graph, and Gw and Gl be the associated
weighted graph and labeled graph, respectively. If, in Ch[Gl], we let w = 1 − tz and
a = 1 + t

w(a)
for each edge a, then

QGw(t, z) = t|V |−|E|
(

∏

a∈E

w(a)

)
Ch[Gl].

Proof. By induction of the number of edges of G. It is a routine exercise and hence we
omit the details here. ��

We shall not add the superscripts w and l when they are clear in the context.
Combining theorem 2.2 and lemma 2.5, we obtain the following theorem.

Theorem 2.6. Let G be a connected labeled plane graph with edge set E =
{a1, a2, . . . , am}. Let Dn(G) be the associated generalized Jaeger’s link. In Ch[G], if

we let w = 1 − (v−1−v
z

)2 and ai = 1
v2ni

, then

PDn(G)(v, z) =

(
z

v−1 − v

)s(G)
(

m∏

i=1

v2ni

)
Ch[G].

doi:10.1088/1742-5468/2011/07/P07011 5
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Proof. Let δ = v−1−v
z

and recall that w(ai) = δ v2ni

1−v2ni
in theorem 2.2. Then, by lemma 2.5,

we have

QG(δ, δ)|
w(ai)=δ v2ni

1−v2ni

= δ|V |−m

(
m∏

i=1

δ
v2ni

1 − v2ni

)
Ch[G]|w=1−δ2;ai=

1

v2ni
.

By theorem 2.2, we have

PDn(G)(v, z) = δ−m−1

(
m∏

i=1

(1 − v2ni)

)
QG(δ, δ)|

w(ai)=δ v2ni

1−v2ni

= δ−s(G)

(
m∏

i=1

v2ni

)
Ch[G]|w=1−δ2;ai=

1

v2ni
.

This completes the proof of theorem 2.6. ��

3. Two analytic results

In this section we review two analytic results on zeros of polynomials, which will be used
in the next two sections.

Definition 3.1. Suppose that {fn(x)|n = 1, 2, . . .} is a family of polynomials. A complex
number z is said to be the limit of zeros of {fn(x)|n = 1, 2, . . .} if either fn(z) = 0 for
all sufficiently large n or z is a limit point of the set �({fn(x)}), where �({fn(x)}) is the
union of the zeros of the fn(x)s.

Beraha–Kahane–Weiss’s theorem

In [2], the authors proved the Beraha–Kahane–Weiss’s theorem. If {fn(x)|n = 1, 2, . . .} is
a family of polynomials such that

fn(x) = α1(x)λ1(x)n + α2(x)λ2(x)n + · · ·+ αl(x)λl(x)n,

where the αi(x) and λi(x) are fixed nonzero polynomials, such that no pair i �= j has
λi(x) ≡ ωλj(x) for some complex number ω of unit modulus, then z is a limit of zeros of
{fn(x)|n = 1, 2, . . .} if and only if

(1) two or more of the λi(z) are of equal modulus, and strictly greater in modulus than
the others; or

(2) for some j, the modulus of λj(z) is strictly greater than those of the others, and
αj(z) = 0.

This theorem can also be found in section 3 of [7] and [4]. We call the limits of zeros
in (2) of Beraha–Kahane–Weiss’s theorem the isolated limits.

The following Sokal’s lemma [30] will be used to prove one of main results of the
paper.

doi:10.1088/1742-5468/2011/07/P07011 6
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Sokal’s lemma

Let F1(z), F2(z), G(z) be analytic functions on a disc |z| < R satisfying |G(0)| ≤ 1 and
G(z) not constant. Then, for each ε > 0, there exists s0 < ∞ such that for all integers
s ≥ s0 the equation

|1 + F1(z)G(z)s| = |1 + F2(z)G(z)s|
has a solution in the disc |z| < ε.

4. The unit-circle theorem

Let G be a connected plane graph. Let Dn(G) be the generalized Jaeger’s link obtained
from G by covering each edge with the vertical integer tangle [2n]. In this section we
shall study zeros of Homfly polynomials (with z fixed) of the link subfamily {Dn(G)|n =
1, 2, . . .}.
Theorem 4.1. Let G be a connected plane graph with edge set E = {e1, e2, . . . , em}. Then

PDn(G)(v, z) =

(
z

v−1 − v

)s(G) m∑

i=0

v2in
∑

Y ⊂E,|Y |=i

F〈Y 〉

((
v−1 − v

z

)2
)

, (7)

where 〈Y 〉 is the spanning subgraph of G induced by the edge subset Y .

Proof. Let δ = v−1−v
z

. By theorem 2.6, we have

PDn(G)(v, z) = δ−s(G)v2mnCh[G]|w=1−δ2;a= 1
v2n

= δ−s(G)v2mn
∑

Y ⊂E

FG−Y (δ2)(v−2)n|Y |

= δ−s(G)

m∑

j=0

v2(m−j)n
∑

Y ⊂E,|Y |=j

FG−Y (δ2)

= δ−s(G)

m∑

i=0

v2in
∑

Y ⊂E,|Y |=i

F〈Y 〉(δ2).

��

Remark 4.2. Note that in equation (7), for each i = 0, 1, . . . , m, the summation∑
Y ⊂E,|Y |=i F〈Y 〉((v−1−v

z
)2) is a Laurent polynomial in v and z in general and is independent

of n.

Before analyzing zeros of Homfly polynomials (with z fixed) of the link subfamily
{Dn(G)|n = 1, 2, . . .}, we first give a review of properties of the flow polynomial FG(λ) of
the graph G [29].

(P1) If G has no edges, then FG(λ) = 1.

(P2) If G has a bridge, then FG(λ) = 0.

(P3) If e is a loop of G, then FG(λ) = (λ − 1)FG−e(λ); if e is not a loop of G, then
FG(λ) = FG/e(λ) − FG−e(λ).

doi:10.1088/1742-5468/2011/07/P07011 7
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(P4) If G is bridgeless, then FG(λ) is a polynomial of degree s(G), with coefficient 1.

(P5) If G consists of two graphs H and K which are either disjoint or have a single vertex
in common, then FG(λ) = FH(λ)FK(λ).

Theorem 4.3. Let G be a connected bridgeless plane graph. Then, for any fixed nonzero
z, the limits of zeros of Homfly polynomials of {Dn(G)|n = 1, 2, . . .} are the unit circle
|v| = 1 and some isolated limits.

Proof. By theorem 4.1, we have

PDn(G)(v, z) =

m∑

i=0

v2in

(
z

v−1 − v

)s(G) ∑

Y ⊂E,|Y |=i

F〈Y 〉

((
v−1 − v

z

)2
)

=

m∑

i=0

v2in
∑

Y ⊂E,|Y |=i

(
z

v−1 − v

)s(G)

F〈Y 〉

((
v−1 − v

z

)2
)

=
m∑

i=0

v2inαi(v, z).

By (P2) and (P4), F〈Y 〉(λ) is either 0 or a polynomial of degree s(〈Y 〉). Note that
s(〈Y 〉) ≤ s(G) for every edge subset Y of G; this is because the cycle space of 〈Y 〉 is
a subspace of the cycle space of G and s(〈Y 〉) and s(G) are ranks of the corresponding
cycle spaces; for details, see chapter 12 of [3]. Thus, if we view αi(v, z) as a polynomial in
v−1−v

z
, then its highest degree is no more than s(G) and its lowest degree is no less than

−s(G).
Now we let

P̃Dn(G)(v, z) =

(
v − v3

z

)s(G)

PDn(G)(v, z) =
m∑

i=0

v2inα̃i(v, z).

Bearing in mind that we have supposed z is a fixed nonzero number, then α̃i(v, z) is a
polynomial in v in the common sense.

Now we apply Beraha–Kahane–Weiss’s theorem to the family {P̃Dn(G)(v, z)|n =
1, 2, . . .}. In order to apply Beraha–Kahane–Weiss’s theorem, we shall show that

α̃0(v, z) =

(
v − v3

z

)s(G) (
z

v−1 − v

)s(G)

F〈∅〉

((
v−1 − v

z

)2
)

= v2s(G) (by (P1))

and

α̃m(v, z) =

(
v − v3

z

)s(G) (
z

v−1 − v

)s(G)

FG

((
v−1 − v

z

)2
)

= v2s(G)FG

((
v−1 − v

z

)2
)

doi:10.1088/1742-5468/2011/07/P07011 8
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Figure 4. The oriented pretzel link diagram P̃ (2n1, 2n2, . . . , 2nm).

are both nonzero polynomials. It is clear that α0(v, z) is nonzero and αm(v, z) are nonzero
since G is bridgeless.

Applying (1) of Beraha–Kahane–Weiss’s theorem to the family {P̃Dn(G)(v, z)|n =
1, 2, . . .}, we immediately get the limits |v| = 1. Applying (2) of Beraha–Kahane–Weiss’s

theorem, we obtain v = 0 and zeros of v2s(G)FG((v−1−v
z

)2) outside |v| = 1.

Note that, for any fixed nonzero z, zeros of PDn(G)(v, z) are zeros of P̃Dn(G)(v, z),
minus 0, ±1 with multiplicity s(G). Since ±1 are on the unit circle |v| = 1, thus they
must be limits of {PDn(G)(v, z)|n = 1, 2, . . .}. This completes the proof of theorem 4.3. ��

Remark 4.4. The conclusion of theorem 4.3 also holds for {Dn(G)|n = (n, . . . , n,
1, . . . , 1); n = 1, 2, . . .} and {D−n(G)|n = 1, 2, . . .}.

5. Density in the plane

For m ≥ 3, an oriented pretzel link P (2n1, 2n2, . . . , 2nm) is an oriented link that has
the oriented pretzel link diagram P̃ (2n1, 2n2, . . . , 2nm) as shown in figure 4, where
n1, n2, . . . , nm are all nonzero integers. If ni is positive, the crossings are in the sense
shown; if ni is negative, the crossings are in the opposite sense.

In [20], Landvoy studied the computation of the Jones polynomial of the pretzel link
P (k1, k2, . . . , km), where ki is nonzero integer for each i = 1, 2, . . . , m. He first obtained
a recursive relation of Kauffman bracket polynomials of pretzel links, then introduced
a notation to describe the orientation of pretzel links and calculated the writhe using
his notation, and finally provided a Maple program by combining the two. In [19], Kim
and Lee calculated the Conway (hence, Alexander) polynomial of pretzel links using a
computation tree. Now we use theorem 2.2 to compute the Homfly polynomial of the
subfamily P (2n1, 2n2, . . . , 2nm).

doi:10.1088/1742-5468/2011/07/P07011 9
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Theorem 5.1. Let P (2n1, 2n2, . . . , 2nm) be the oriented pretzel link. Then

PP (2n1,2n2,...,2nm)(v, z) =

(
z

v−1 − v

)m+1
(

c

m∏

i=1

(1 − v2ni) +

m∏

i=1

(1 + cv2ni)

)
,

where c = (v−1−v
z

)2 − 1.

Proof. Let Sm be the graph which consists of two vertices connected by m parallel edges
e1, e2, . . . , em. Note that P (2n1, 2n2, . . . , 2nm) can be obtained from Sm by replacing the
edge ei by the vertical integer tangle [2ni] for each i = 1, 2, . . . , m. Now we compute the
dichromatic polynomial of Sm. According to definition 2.1, we have

QSm

(
v−1 − v

z
,
v−1 − v

z

)
=

∑

F⊂E(Sm)

(
∏

f∈F

w(f)

)(
v−1 − v

z

)k〈F 〉+s〈F 〉

=
∑

F⊂E(Sm)

(
∏

f∈F

w(f)

)(
v−1 − v

z

)|F |−2+2k〈F 〉
.

Note that k〈∅〉 = 2 and k〈F 〉 = 1 for any nonempty subset F . Hence,

QSm

(
v−1 − v

z
,
v−1 − v

z

)
=

(
v−1 − v

z

)2

+
∑

F �=∅

(
∏

f∈F

w(f)

)(
v−1 − v

z

)|F |

=

(
v−1 − v

z

)2

+
∑

F �=∅

(
∏

f∈F

v−1 − v

z
w(f)

)

=

(
v−1 − v

z

)2

− 1 +
∑

F

(
∏

f∈F

v−1 − v

z
w(f)

)

=

(
v−1 − v

z

)2

− 1 +
∏

e∈E(Sm)

(
1 +

v−1 − v

z
w(e)

)
.

Applying theorem 2.2, we have

PP (2n1,2n2,...,2nm)(v, z) =

(
z

v−1 − v

)m+1
(

m∏

i=1

(1 − v2ni)

)

×
((

v−1 − v

z

)2

− 1 +
m∏

i=1

(
1 +

(
v−1 − v

z

)2
v2ni

1 − v2ni

))

=

(
z

v−1 − v

)m+1
(

c
m∏

i=1

(1 − v2ni) +
m∏

i=1

(1 + cv2ni)

)
.

This completes the proof of theorem 5.1. ��
Remark 5.2. It is not difficult to obtain that

Ch[Sm] =
1

1 − w

(
m∏

i=1

(ei − w) − w

m∏

i=1

(ei − 1)

)
.

We can also apply theorem 2.6 and the chain polynomial of Sm to obtain theorem 5.1.
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Theorem 5.3. Let Sm be the graph which consists of two vertices connected by m
parallel edges. For any fixed nonzero z, zeros of Homfly polynomials of {Dn(Sm)|n =
±1,±2, . . . ; m = 1, 2, . . .} are dense in the whole complex plane.

Proof. Note that Dn(Sm) = P (

m︷ ︸︸ ︷
2n, 2n, . . . , 2n). By theorem 5.1, we have

PDn(Sm)(v, z) =

(
z

v−1 − v

)m+1 [
c(1 − v2n)m + (1 + cv2n)m

]
,

where c = (v−1−v
z

)2 − 1. Thus

PDn(Sm)(v, z) =

(
z

v−1 − v

)m+1 (
1

v2

)m+1

× [
(z−2(1 − v2)2 − v2)(v2 − v2n+2)m + v2(v2 + (z−2(1 − v2)2 − v2)v2n)m

]
.

By Beraha–Kahane–Weiss’s theorem, for any nonzero integer n, points satisfying the
equation |v2 − v2n+2| = |v2 + (z−2(1 − v2)2 − v2)v2n| and, hence, the equation

|1 − v2n| =

∣∣∣∣∣1 +

((
v−1 − v

z

)2

− 1

)
v2n

∣∣∣∣∣ (8)

are limits of zeros of Homfly polynomials of {Dn(Sm)|m = 1, 2, . . .}. Let v0 be any fixed
complex number with |v0| ≤ 1 and v0 �= 0. Setting x = v − v0, equation (8) becomes

|1 − (x + v0)
2n| =

∣∣∣∣∣1 +

((
1 + (x + v0)

2

z(x + v0)

)2

− 1

)
(x + v0)

2n

∣∣∣∣∣ . (9)

By Sokal’s lemma (F1(x) = −1, F2(x) = (1+(x+v0)2

z(x+v0)
)2 − 1, G(x) = (x + v0)

2), for any

sufficiently small ε > 0, there exists n0 such that for any n ≥ n0, equation (9) has a zero
x satisfying |x| < ε/2, i.e. equation (8) has a zero v = x+ v0 satisfying |v− v0| < ε/2. For
the special case that v0 = 0, by the above result, there exists n0 such that for any n ≥ n0,
equation (8) has a zero v satisfying |v − ε/4| < ε/4, implying that |v| < ε/2.

Therefore, for any fixed x with |x| ≤ 1 in the complex plane, there is a v satisfying
equation (8) for some n such that |v− x| < ε/2. By the definition of limits of zeros, there
is a zero t of the Jones polynomial of Dn(Sm) for some large m such that |t − v| < ε/2.
Thus |t − x| < ε, which means that given a fixed nonzero z, zeros of Homfly polynomials
of {Dn(Sm)|n = 1, 2, . . . ; m = 1, 2, . . .} are dense inside the unit circle |x| = 1. By the
well-known property [22]

PLM(v, z) = PL(−v−1, z),

where LM is the mirror image of L, zeros of the Homfly polynomial of {Dn(Sm)|n =
−1,−2, . . . ; m = 1, 2, . . .} are also dense outside the unit circle |x| = 1, which completes
the proof of theorem 5.3. ��
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6. Concluding remarks

In this paper, we chose the generalized Jaeger’s links as our case study and obtained the
unit-circle theorem and density-in-the-plane theorem on zeros of their Homfly polynomials
with z fixed. Zeros of the Homfly polynomial with v fixed deserve study. In particular, the
case of v = 1 of the Conway polynomial (hence, Alexander polynomial) is especially worth
studying. However, as remark 2.3 shows, generalized Jaeger’s links are not appropriate
examples for this study.
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[9] Jablan S, Radović Lj and Sazdanović R, 2011 MATCH Commun. Math. Comput. Chem. 65 541
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