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Abstract. Enumeration of molecules is one of the fundamental problems in
bioinformatics and plays an important role in drug discovery, experimental
structure elucidation (e.g., by using NMR or mass spectrometry), molecular
design and virtual library construction. We consider the enumeration of tree-like
polyphenyls (C6nH4n+2). For this purpose, we define two generating functions
T (x) and R(x) involving the numbers tn and rn of tree-like polyphenyls (TL-
polyphenyls) and monosubstituted tree-like polyphenyls (MTL-polyphenyls),
respectively. By characterizing the symmetry groups with respect to TL-
polyphenyls and MTL-polyphenyls, we establish two functional equations for
these two generating functions. This yields for the first time an efficient recursion
formula for calculating the numbers tn and rn. The two functional equations are
also the fundamentals for analyzing their asymptotic behaviors, from which we
derive the precise asymptotic values for both rn and tn. The resulting asymptotic
values are shown to fit well to the numerical results obtained by using our
recursion formula. Finally, we give an explicit enumerating expression for TL-
polyphenyls of a particular type: the linear polyphenyls.
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1. Introduction

Enumeration of molecules is one of the fundamental problems in bioinformatics
and chemoinformatics, and has attracted the interest of chemists, biologists and
mathematicians for more than a century [1, 2]. It is also important from a practical
viewpoint because it plays an important role in drug discovery, experimental structure
elucidation (e.g., by using NMR or MS), molecular design [3], virtual library construction,
hypothesis testing and experiment optimization [4].

We consider the problem of tree-like polyphenyl enumeration. Tree-like polyphenyls
are tree-like (linear or branched) polymers with chemical formula C6nH4n+2 consisting of
benzene rings any two of which are connected by at most one single bond. In practice,
tree-like polyphenyls are starting materials for producing all kinds of derivatives which are
widely used in organic synthesis, drug synthesis, heat exchangers, etc [5]. In particular,
the tree-like polyphenyl of lowest weight, i.e., biphenyl, which forms colorless crystals
and occurs naturally in coal tar, crude oil and natural gas, is the parent compound
of the polychlorinated biphenyls (PCBs) and, therefore, extensively applied in printing
and dyeing [6, 7]. Biphenyl is also an intermediate for the production of a host of some
emulsifiers, optical brighteners, crop protection products and plastics [8].

In 1960s, Kovacic et al synthesized a series of p-polyphenyls by using molybdenum
pentachloride [9]. Since then, a large number of various tree-like (linear or branched)
polyphenyls and their derivatives have been successively synthesized in the past fifty
years, e.g., we refer the reader to [10]–[13] for details. Recently, by taking advantage of
modern developments in aryl–aryl cross-coupling reactions, Mathew et al established a
unified synthetic approach that allows the stepwise synthesis of oligomers of arbitrary
length and synthesized o-phenylene oligomers up to the octamer [14].

In addition to the interest in the synthesis, chemists also paid attention to studying
their chemical and physical properties such as the zero-field splitting parameters [15],
structural features [16], electrical conductivity response [17] and thermodynamic
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properties [18, 19] etc. As regards mathematical aspects, the Wiener index [20, 21], the
edge-Wiener index [22], the Merrifield–Simmons index and Hosoya index [23], k-matchings
and k-independent sets [24] and the degree distance index [25] for their chemical graphs
were studied.

Enumerating tree-like molecules or acyclic chemical compounds may date from 1857
when Cayley [1] successfully found a recursive formula for the number of trees or rooted
trees. In 1931, Henze and Blair [26] improved Cayley’s method and established a recursive
procedure for calculating the number of quartic trees, i.e., the number of branches at each
vertex is at most 4, which would be the first solution to the counting problem for alkane
isomers in chemistry [27]. In 1937, Pólya [2] developed a powerful theory for treating the
symmetries of certain kinds of configurations under a given permutation group, which
nowadays is known as Pólya’s theorem or the Redfield–Pólya theorem and represents
one of the cornerstones of modern combinatorics. Using this theory, Pólya obtained the
recursion formulas of Cayley, Henze and Blair, and was the first to develop the technique
for analyzing the asymptotic behaviors for the numbers of trees and rooted trees. In
Pólya’s paper, purely combinatorial methods are employed for the developing of relations
between the generating functions in which trees are treated as centered and bicentered.

The more perfectly improved technique for counting trees was introduced by Otter [27]
in 1948. This technique is based on his dissimilarity characteristic theorem, by means of
which the generating function for trees can be exactly expressed in terms of that for rooted
trees and, therefore, the methods used in the past are simplified both theoretically and
practically. On the basis of his theory, Otter also established a general method of analysis
which yields asymptotic values for the coefficients involved in each of the generating
functions and, moreover, the trees are not necessarily treated as centered or bicentered.

In general, it is difficult to get an explicit expression for the number of tree-like
configurations. Instead, finding a recursion counting formula to deal with the problem
has been shown to be an effective approach. For this reason, when a recursion formula is
established, its asymptotic behavior is analyzed as well. Pólya and Otter’s methodology
for analyzing the asymptotic behavior was systematically summarized by Harary et al [28],
as the so-called ‘twenty-step algorithm’.

Following the enumerating theories and techniques mentioned above, lots of tree-
like molecules beyond alkanes have also been discussed, e.g.: tree-like polyhexes
(with asymptotic analysis) [29]; phenylenes [30]; tree-like polymers [31]; radicals,
monoalcohols, glycols and esters [32]; aliphatic cyclopropane derivatives [33]; etc. As
regards mathematical aspects, a large number of trees or tree-like graphs with some
specific requirements were also discussed; we refer the reader to, for example, [34]–[42]
and the references cited therein.

We note that in the above enumeration problems, all the molecules are modeled, in
terms of graph theory, as unlabeled trees. In practice, however, some enumeration problems
in other areas are often modeled as those of certain kinds of labeled trees; we refer the
reader to, for example, Friedberg’s work [43].

To deal with the problem of tree-like polyphenyl (TL-polyphenyl) enumeration, we
define two generating functions R(x) and T (x): i.e., two power series whose coefficients
represent the numbers rn and tn of monosubstituted tree-like polyphenyls (MTL-
polyphenyls) and TL-polyphenyls with n benzene rings, respectively. We determine the
symmetry groups arising from the symmetry around the benzene rings and the single
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Figure 1. (a) A tree-like polyphenyl (left) and its contracted tree (right); (b) a
monosubstituted tree-like polyphenyl (left) and its contracted rooted tree (right),
where the black vertex represents the root benzene ring; (c) the general structure
of a monosubstituted tree-like polyphenyl in which some Ti may be empty.

bonds connecting two benzene rings. Using these specified symmetry groups and Otter’s
dissimilarity characteristic theorem, we establish two functional equations for these two
generating functions. This yields for the first time an efficient recursion formula for
calculating the numbers rn and tn, by which the numerical results for n up to 100 are
tabulated as examples. The above two functional equations are also the fundamentals
of the ‘twenty-step algorithm’ for analyzing the corresponding asymptotic behaviors, by
means of which we derive the precise asymptotic values for both rn and tn. The asymptotic
values are shown to fit well to the numerical results obtained by using our recursion
formulas. Finally, we give an explicit enumerating expression for TL-polyphenyls of a
particular type: the linear polyphenyls.

2. Results and discussion

2.1. Terminology and definitions

In the graph theoretical language, the molecular graph (i.e., the graph representing the
skeleton of its carbon atoms and C–C bonds) of a TL-polyphenyl is modeled as a hexagonal
system in which any two hexagons are connected by at most one edge (which represents a
single bond), and its contracted graph, obtained from the molecular graph by contracting
each hexagon to a vertex, is a tree, called the contracted tree; see figure 1(a). In particular,
if the contracted tree is a path, then it is called a linear polyphenyl.

A monosubstituted tree-like polyphenyl (MTL-polyphenyl, C6nH4n+1Z) is obtained
from a TL-polyphenyl by replacing an H atom by a substituted ligand Z (e.g., a chlorine
atom). We call this C–Z bond and the corresponding substituted benzene ring the root
bond and the root ring, respectively. Consequently, we call the resulting contracted tree,
the corresponding edge and the corresponding vertex the rooted tree, the root edge and
the root vertex, respectively; see figure 1(b).

2.2. The recursion counting formula for monosubstituted tree-like polyphenyls

It would be more helpful to consider an MTL-polyphenyl with n benzene rings as one
constructed by fusing a C–H bond of a ‘smaller’ TL-polyphenyl or nothing to each of the
five numbered C–H bonds of the root ring such that the total number of benzene rings
is equal to n; see figure 1(c). We call these smaller TL-polyphenyls the branches of the
root ring. Since each branch has a specified C–H bond to be fused to the root ring, we
may treat this branch as an MTL-polyphenyl with this C–H bond as its root bond. In

doi:10.1088/1742-5468/2012/12/P12018 4

http://dx.doi.org/10.1088/1742-5468/2012/12/P12018


J.S
tat.M

ech.(2012)
P

12018

Enumerating tree-like polyphenyl isomers

this way, a large MTL-polyphenyl can be constructed recursively, which provides us with
an effective approach for determining the number of MTL-polyphenyls.

Let T1, T2, . . . , T5 be five branches (some of which may be empty). We denote
by (T1, T2, . . . , T5) the MTL-polyphenyl with Ti (i ∈ {1, 2, . . . , 5}) as the ith branch
of its root ring. We note that the MTL-polyphenyl obtained from (T1, T2, . . . , T5) by
twisting the root bond of a branch by 180◦ represents the same MTL-polyphenyl.
This means that, for any permutation α on {1, 2, . . . , 5}, two MTL-polyphenyls
(T1, T2, . . . , T5) and (Tα(1), Tα(2), . . . , Tα(5)) represent the same one if and only if α ∈ G1 =
{(1)(2)(3)(4)(5), (15)(24)(3)}.

Before continuing our discussion, let us recall some elementary concepts of the classic
Pólya and Burnside enumeration theories. For a permutation g of a permutation group
G on an m-element set S, it is well known that g can be split into cycles in a unique
way, say b1 cycles of length 1, b2 cycles of length 2, . . ., and bm cycles of length m
(m = b1 + 2b2 + · · · + mbm). Then we form the product xb11 x

b2
2 · · · xbmm and denote it by

pg(x1, x2, . . . , xm). The cycle index of G is therefore defined by

PG(x1, x2, . . . , xm) =
1

|G|
∑
g∈G

xb11 x
b2
2 · · ·xbmm =

1

|G|
∑
g∈G

pg(x1, x2, . . . , xm). (1)

A coloring C of S with color set C is an assignment to each element s ∈ S of a color
C(s) ∈ C. Two colorings C and C ′ are said to be equivalent if there is a permutation g ∈ G
such that C(g(s)) = C ′(s) for any s ∈ S. By Burnside’s enumeration theory, the number
of equivalent coloring classes of S is given by

1

|G|
∑
g∈G

Ψ(g),

where Ψ(g) is the number of the colorings left fixed by g [44]. In particular, if each element
in S can use any color without any constraint, then Ψ(g) = pg(t, t, . . . , t), where t = |C|
is the number of colors.

To study the enumerating problem for MTL-polyphenyls, we need to impose some
constraints on the colorings: each color c has a weight w(c) and the weight of a coloring
C is defined as the sum of the weights of all the colors of s ∈ S assigned by C,
i.e., w(C) =

∑
s∈Sw(C(s)). Thus, the number of equivalent coloring classes with weight

k is given by

1

|G|
∑
g∈G

Ψk(g), (2)

where Ψk(g) is the number of the colorings with weight k and left fixed by g:

Ψk(g) = |{C : w(C) = k, C(g(s)) = C(s) for any s ∈ S}|.

Denote by rn the number of MTL-polyphenyls with n benzene rings. It is obvious that
r1 = 1, r2 = 3. Let R(x) be the generating function of rn in x, i.e.,

R(x) =
∞∑
n=0

rnx
n,

where we set r0 = 1 for the sake of recursion.
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Theorem 1.

R(x) = 1 + xPG1(R(x), R(x2), . . . , R(xm)) = 1 +
x

2
[R5(x) +R(x)R2(x2)]. (3)

Proof. We treat each MTL-polyphenyl (T1, T2, T3, T4, T5) as a coloring of the root benzene
ring defined as follows: the ith of its five C–H bonds is assigned color Ti, i = 1, 2, . . . , 5.
Furthermore, we define the weight of Ti as the number of benzene rings in Ti. Thus,
the number of MTL-polyphenyls with n benzene rings equals the number of equivalent
coloring classes with weight n− 1, i.e.,

rn =
1

|G1|
∑
g∈G1

Ψn−1(g). (4)

On the other hand, recalling that Ti can be regarded as an MTL-polyphenyl, the
number of colors with weight k is exactly rk, i.e., the number of MTL-polyphenyls with k
benzene rings. Thus, Ψn−1(g) in (4) is exactly the coefficient of xn−1 in

Rb1(x)Rb2(x2) · · ·Rbm(xm) = pg(R(x), R(x2), . . . , R(xm))

and, therefore, rn equals the coefficient of xn−1 in

1

|G1|
∑
g∈G1

pg(R(x), R(x2), . . . , R(xm)) = PG1(R(x), R(x2), . . . , R(xm)).

In other words,

R(x) = 1 + xPG1(R(x), R(x2), . . . , R(xm)).

On the other hand, note that the cycle index of G1 is

PG1(x1, x2, . . . , x5) = 1
2
(x5

1 + x1x
2
2),

as desired. This completes our proof. �

2.3. The recursion counting formula for tree-like polyphenyls

We denote by tn the number of TL-polyphenyls (tree-like polyphenyls) with n benzene
rings and by T (x) the generating function of tn in x, i.e.,

T (x) =
∞∑
n=1

tnx
n.

The connection between the generating functions for trees and ‘rooted’ trees suggests
an effective way of dealing with the enumeration problem of trees, which has been
extensively used for various species of trees. In this section we will establish the connection
between R(x) and T (x) by applying Otter’s dissimilarity characteristic theorem given
below, which will also be helpful in our further discussion for analyzing the asymptotic
behavior of the number tn.

Two vertices or two edges in a tree T are called similar if there is an automorphism
of T which takes one to the other. An edge e is called symmetric if its two branches (the
two rooted trees of T − e with the two end vertices of e as their roots) are isomorphic; see
figure 2(c). We denote by v(T ) and e(T ) the number of nonsimilar vertices and nonsimilar
edges (except the possible symmetric edge) in T , respectively.

doi:10.1088/1742-5468/2012/12/P12018 6
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Figure 2. (a) A benzene ring and its six branches in a tree-like polyphenyl; (b) the
corresponding vertex and six branches in the contracted tree; (c) an edge and its
two branches.

Theorem 2 (Theorem on page 588 of Otter [27]). In any tree T , the number of nonsimilar
vertices minus the number of nonsimilar edges (except the possible symmetric edge) is equal
to 1, i.e.,

v(T )− e(T ) = 1. (5)

To apply Otter’s approach, it is convenient to consider a TL-polyphenyl as its
contracted tree (see section 2.2). Otter’s theorem originally treats the normal trees where
the branch of each vertex is ‘freely interconvertible’, i.e., the branch of each vertex x is
interconvertible under the symmetry group Sd, where d is the degree of x. Equivalently,
for the branches T1, T2, . . . , Td of a vertex x in a tree T and a permutation π ∈ Sd, the
tree obtained from T by replacing the branches T1, T2, . . . , Td by Tπ(1), Tπ(2), . . . , Tπ(d),
respectively, represents T itself. However, things are different here for the contracted tree
of a TL-polyphenyl, since a vertex in a contracted tree represents a benzene ring whose
branches are interconvertible only under the operation of the dihedral group D6 (with the
center of the benzene ring as its symmetry point); see figure 2(a). Therefore, the notion
of being ‘similar’ for the vertices in a contracted tree is different in meaning from that for
a normal tree.

For a vertex x of a contracted tree T , we denote by T1(x), T2(x), . . . , T6(x) (some of
which may be empty) the branches of x in clockwise order; see figure 2(b). Under the
operation of an automorphism α of T , Ti(x) will be transferred to being a branch of α(x),
say Tiα(α(x)) where iα ∈ {1, 2, . . . , 6}. We denote by αx the permutation on {1, 2, . . . , 6}
(with respect to x) satisfying

αx(i) = iα, i = 1, 2, . . . , 6.

We call an automorphism α of a tree T the D6-restricted automorphism if αx ∈ D6 for
each vertex x in T . Then from the above discussion, we can now give the exact meaning of
the notion of being ‘similar’ for the vertices in a contracted tree: two vertices x and x′ in
a contracted tree T are called similar if and only if there is a D6-restricted automorphism
α such that α(x) = x′.

It is easy to see that the product of any two D6-restricted automorphisms is still
D6-restricted. This means that all the D6-restricted automorphisms of T form a subgroup
of Aut(T ) (the automorphism group of T ). We denote this subgroup by Aut∗(T ). Thus,
two vertices in a contracted tree are similar if they can be transferred from one to another
via an automorphism in Aut∗(T ) and, consequently, the similarity of two edges in a

doi:10.1088/1742-5468/2012/12/P12018 7
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contracted tree as well as the notions of v(T ) and e(T ) for a contracted tree T are defined
correspondingly.

Since Aut∗(T ) is a group, then the vertices (edges) in a contracted tree T can be
partitioned into equivalent classes under the operation of Aut∗(T ), and vertices (edges) in
different classes are nonsimilar. Therefore, theorem 2 is still appropriate for a contracted
tree with the similarity of vertices and edges defined as above, the proof of which follows
word by word from the original one (replacing ‘homeomorphism’ in the original proof by
‘D6-restricted automorphism’) and is omitted here.

Now let Tn be the set of all the different contracted trees (with respect to Aut∗(T )) of
order n. We denote by vn (n ≥ 1) and en (n ≥ 1) the sum of the numbers of the nonsimilar
vertices and nonsimilar edges (except the possible symmetric edges) over all the different
contracted trees in Tn, respectively:

vn =
∑
T∈ Tn

v(T ) and en =
∑
T∈ Tn

e(T ). (6)

Combining (6) with (5), we get that

vn − en = |Tn| = tn, (7)

where we recall that tn is the number of TL-polyphenyls with n rings, i.e., the number of
different contracted trees. Let V (x) and E(x) be the generating functions of vn and en,
respectively, i.e.,

V (x) =
∞∑
n=1

vnx
n and E(x) =

∞∑
n=1

enx
n.

Then we may rewrite (7) as the form

T (x) = V (x)− E(x). (8)

We now try to deduce the expressions of V (x) and E(x) in terms of
R(x), R(x2), R(x3), . . .. For a contracted tree T and a vertex x ∈ T , we denote by Tx
the rooted tree of T with root x. Note that a root here has six branches (some of which
may be empty), which is different from the case for an MTL-polyphenyl. An edge rooted
tree Te with root edge e is defined analogously. We note that each of the two end branches
of a root edge contains at least one benzene ring.

For a contracted tree T with k nonsimilar vertices x1, x2, . . . , xk, one can see that
Tx1 , Tx2 , . . . , Txk are pairwise different (with respect to Aut∗(T )). Furthermore, any two
rooted trees of two different contracted trees are different. This implies that the number
of different rooted trees of order n is exactly the number vn. Note that two rooted trees
are identical if there is a permutation α ∈ D6 on the six branches of the root which takes
one to the other. On the other hand, the cycle index of D6 is

PD6(x1, x2, . . . , x6) = 1
12

(x6
1 + 3x2

1x
2
2 + 4x3

2 + 2x2
3 + 2x6).

Like in the discussion in the proof of theorem 1, we have the following relation:

V (x) = xPD6(R(x), R(x2), . . . , R(x6))

=
x

12
[R6(x) + 3R2(x)R2(x2) + 4R3(x2) + 2R2(x3) + 2R(x6)]. (9)

doi:10.1088/1742-5468/2012/12/P12018 8
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For the number en, recall that e(T ) is the number of nonsimilar edges of T excepting
the possible symmetric edge. This implies that en + sn is exactly the number of edge
rooted trees of order n, where sn is the number of the edge rooted trees of order n whose
root edges are symmetric. On the other hand, notice that each branch of an root edge has
at least one vertex. Moreover, they are freely interconvertible from each other, i.e., they
are interconvertible under the operation of the symmetry group S2 (with the center of the
edge as its symmetry point). Note that the cycle index of S2 is PS2(x1, x2) = 1

2
(x2

1 + x2).
Thus, we have the following relation:

E(x) + (R(x2)− 1) = 1
2
[(R(x)− 1)2 + (R(x2)− 1)], (10)

where we notice that (R(x2)− 1) is regarded as the generating function of sn.
By (8)–(10), we have the following result immediately.

Theorem 3.

T (x) =
x

12
[R6(x) + 3R2(x)R2(x2) + 4R3(x2) + 2R2(x3) + 2R(x6)]

− 1
2
R2(x) + 1

2
R(x2) +R(x)− 1. (11)

2.4. The explicit enumerating expression for linear polyphenyls

In this section we will give an explicit enumerating expression for TL-polyphenyls of a
particular type: the linear polyphenyls. A linear polyphenyl is called odd (resp., even)
if it contains an odd (resp., even) number of benzene rings, and called monosubstituted
if one of the C–H bonds in its end benzene rings is substituted by a new ligand. More
specifically, we call this substituted bond and the corresponding benzene ring the root
bond and the root ring, respectively.

Let mn be the number of monosubstituted linear polyphenyls and let an and bn be
the numbers of odd and even linear polyphenyls with n benzene rings, respectively. It is
easy to see that mn = 3n−1, since when we start from the root ring and trace along the
linear polyphenyl, the (i− 1)th ring has three inequivalent candidate positions for being
fused by the ith ring, i = 2, 3, . . . , n. Furthermore, the two branches of the central ring
in an odd linear polyphenyl have three unequal types of fusing, in each of which the two
branches are freely interconvertible, i.e., interconvertible through the symmetry group S2

(with the center of the central ring as its symmetry point); see figure 3. Recall that the
cycle index of S2 is PS2(x1, x2) = 1

2
(x2

1 + x2). So we have

a2k+1 = 3×
(

1
2
(m2

k +mk)
)

= 1
2
(32k−1 + 3k).

Similarly, the two branches of the central bond in an even linear polyphenyl are
interconvertible through the symmetry group S2, which gives that

b2k = 1
2
(m2

k +mk) = 1
2
(32(k−1) + 3k−1).

Thus, the number of linear polyphenyls with n benzene rings is given by

ln =

{
1
2
(3n−2 + 3(n−1)/2), if n is odd,

1
2
(3n−2 + 3n/2−1), if n is even.
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Figure 3. Three unequal types of fusing to form an odd linear polyphenyl, where
x is the central benzene ring.

2.5. Asymptotic analysis

In this section, we give an asymptotic analysis for the numbers of MTL-polyphenyls and
TL-polyphenyls by applying the ‘twenty-step algorithm’ summarized by Harary et al [28].
The relations (3) and (11) obtained in the previous sections are the bases for implementing
the twenty steps. The key points are as follows:

(1) Show that 0 < σ < 1, where σ is the radius of convergence of R(x).

(2) From (3) we define a function F (x, y) = xy5+[xR2(x2)−2]y+2 and prove that F (x, y)
is analytic for all y and x with |x| < σ1/2. Moreover, F (x,R(x)) = 0 for all x with
|x| ≤ σ.

(3) Show that Fy(σ,R(σ)) = 0 and, consequently, 2σR5(σ) = 1, from which we can
compute σ recursively to any desired degree of accuracy:

σ = 0.119 318 643 775 455 832 594 539 050 847 225 042 1 · · · .

(4) Show that σ is the unique singularity of R(x) on the circle of convergence [45] and a
branch point of order 2 for R(x), from which we can rewrite R(x) as the form

R(x) = R(σ)− b1(σ − x)1/2 + b2(σ − x) + b3(σ − x)3/2 + · · · ; (12)

(5) From (12), the coefficient b1 can be expressed in terms of R(σ), R(σ2) and R′(σ2) and
therefore could be estimated by replacing R′(σ2) by R′100(σ

2), which gives that

b1 ≈ 1.491 311 088 719 675 463 3 · · · ,

where, for a function f(x), f ′(x) is the derivative of f(x).

(6) Applying a result of Pólya (lemma on page 84 of [2]), we finally get the asymptotic
value of rn:

rn ∼
b1
2

(σ
π

)1/2

n−3/2σ−n, as n→∞.

The discussion for tn is analogous, and gives that

tn ∼
3a3

4

(
σ3

π

)1/2

n−5/2σ−n, as n→∞,

where 3
4
a3 ≈ 2.3372764105425946 · · ·.

The detailed process of the above arguments is included in the supplementary data
(available at stacks.iop.org/JSTAT/2012/P12018/mmedia).
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Table 1. The numerical results for the numbers rn, tn and their asymptotic values
r̃n, t̃n for number n of benzene rings from 1 to 23.

n rn r̃n tn t̃n

1 1 1 1 0
2 3 4 1 1
3 15 16 3 2
4 81 90 9 8
5 492 537 39 40
6 3145 3426 187 214
7 21012 22788 1046 1218
8 144541 156320 6141 7308
9 1017871 1097941 38220 45626
10 7298810 7856595 245535 293842
11 53116790 57073834 1622148 1940548
12 391288147 419803350 10943458 13084128
13 2912132714 3120286214 75155413 89769997
14 21863332200 23399635848 523839906 625116836
15 165383748136 176830003465 3698202776 4409048023
16 1259274408565 1345254835192 26399302377 31445949441
17 9643959089075 10294442809810 190291425727 226482190433
18 74235684124345 79187961145484 1383511856495 1645382178342
19 574054976392095 611968698708013 10136274995498 12046357318285
20 4457335413282002 4749045262233035 74776100157898 88808890809005
21 34738042885894512 36992531460316219 555065449754974 658832310757199
22 271640637393431750 289134998555360951 4143538912470558 4915391524724526
23 2130661325140862984 2266911800430671924 31090452713611304 36862681168161090

3. Conclusions and numerical results

Theorem 1 gives an efficient counting formula for MTL-polyphenyls: rn is recursively given
by the coefficient of xn in

1 +
x

2
[R5

n−1(x) +Rn−1(x)R2
n−1(x

2)], (13)

where Rk(x) =
∑k

i=0rix
i, k = 1, 2, . . .. By (13) together with theorem 3, we can also get the

counting formula for the number of TL-polyphenyls in terms of that for MTL-polyphenyls.
In table 1 we list the numerical results for the numbers of MTL-polyphenyls and

TL-polyphenyls, and their asymptotic values with n benzene rings, for n from 1 up to
23. To give a better understanding of their asymptotic behaviors, we also illustrate the
numerical results and the asymptotic values for n up to 52 in figure 4, from which we
can see that the logarithms of the asymptotic values fit well to those of our numerical
results.

The numbers of MTL-polyphenyls and TL-polyphenyls with n benzene rings for n
from 24 up to 100, and all the MTL-polyphenyls with n ≤ 4 and the TL-polyphenyls with
n ≤ 5 are tabulated in the supplementary data (available at stacks.iop.org/JSTAT/2012/
P12018/mmedia).
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Figure 4. The horizontal axis represents the number of benzene rings and the
vertical axis represents the logarithms of the numbers of TL-polyphenyls and
MTL-polyphenyls.
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