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Abstract. Let G be a simple graph. A function / from the set of orientations of G to the
set of non-negative integers is called a continuous function on orientations of G if, for any
two orientations O1 and O2 of G, \ f ( O 1 ) — f(O2)| ^ 1 whenever O1 and O2 differ in the
orientation of exactly one edge of G.

We show that any continuous function on orientations of a simple graph G has the
interpolation property as follows:

If there are two orientations O1 and O2 of G with f(O1) = p and f ( O 2 ) = q, where
p < q, then for any integer k such that p < k < q, there are at least m orientations O of G
satisfying f(O) = k, where m equals the number of edges of G.

It follows that some useful invariants of digraphs including the connectivity, the arc-
connectivity and the absorption number, etc., have the above interpolation property on the
set of all orientations of G.

1. INTRODUCTION

A variety of research has been devoted to the orientations of a graph. For example,
it is well known that every graph without self loops admits an acyclic orientation;
Stanley [22] studied the set of acyclic orientations of a simple graph G and counted the
number of acyclic orientations of G by using the chromatic polynomial of G; Robbins
[16] proved that a nontrivial graph G admits a strongly connected orientation if and
only if G is 2 edge-connected; Chvatal and Thomassen [5] further showed that every
2 edge-connected graph of radius r admits an orientation of radius at most r2 + r;
Gerards [7] established an orientation theorem characterizing the class of graphs in
which the edges can be oriented in such a way that going along any circuit in the
graph, the number of forward edges minus the number of backward edges is equal
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to 0, -1 or 1. Roberts and Xu [17-20] considered optimizing the orientations of
grid graphs with respect to various measures; Donald and Elwin [6] investigated the
structure of the set of strongly connected orientations of a graph G and showed that
any two strongly connected orientations of G can be connected by a sequence of
operations called simple transformations.

The above indicates one half of the background for our present work. The other
half comes from a number of research related to the interpolation property for some
invariants of spanning subgraphs of a given graph. In 1980, at the fourth Interna-
tional Conference on Graph Theory and Applications held in Kalamazoo, G. Char-
trand asked [see [3], p. 610]: If a graph G contains spanning trees having n and m
end-vertices, with m < n, does G contain a spanning tree with k end-vertices for
every integer k with m < k < n? This problem piqued the interest of many graph
theorists. It was first affirmatively settled by Schuster [21] in 1983. In 1984 and
1985, Cai [2] and Lin [13] gave different proofs (Lin's is the shortest). Several differ-
ent generalizations also appeared in Schuster [21], Liu [14], Barefoot [1], and Zhang
and Chen [23]. Zhang and Guo [24] further considered similar problem for directed
graphs and got the corresponding interpolation theorems. Harary et al. [8, 10, 11]
and Lewinter [12] obtained interpolation theorems for more invariants of spanning
trees. Recently, Harary and Plantholt [9] classified many known interpolation theo-
rems for spanning trees in [8, 10, 11, 12, 21], obtained interpolation results for new
invariants and generalized to other families of spanning subgraphs. More recently,
S. Zhou [25] used the same idea as in Lin [13] to give a short proof of interpolation
theorems for many invariants on spanning subgraphs with equal size.

In this paper, we shall consider the set of all orientations of a simple graph G
and establish a general interpolation theorem. It follows that some useful invariants
of digraphs (including the connectivity, the arc-connectivity, the absorption number
and some other invariants introduced in this paper) have the interpolation property
on the set of all orientations of a simple graph G.

Throughout the paper, G = (V(G),E(G)) is always assumed to be a simple graph
with the vertex set V(G) and the edge set E(G). An orientation of G is the digraph
obtained from G by assigning a direction to each edge of G. The essential concepts
in this paper are introduced in the following two definitions.

Definition 1.1 (Graph of orientations of G). For any two distinct orien-
tations O1 and O2 of G, we say that O1 and O2 are adjacent if they differ in the
orientation of exactly one edge of the underlying graph G. This adjacency relation
determines a simple graph G with the vertex set V(G) representing all the orienta-
tions of G.We call G the graph of orientations of G.
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Definition 1.2 (Continuous functions on G). Let / be a function from the
vertex set V(G) to the set of non-negative integers. We say that / is a continuous
function on G if, \f(u) - f(v)\ < 1 for any two adjacent vertices u,v, of G. This
definition was motivated by Lovacz [15].

For simplicity, a continuous function on the graph of orientations of G will be
called a continuous functio on orientations of G. For other general graph theoretical
terminology, the reader is refered to the book of Chartrand and Lesniak [4].

2. MAIN RESULTS

Theorem. Any continuous function f on orientations of a simple graph G has
the following interpolation property:

If there are two orientations O1 and O2 of G with f ( O 1 ) = p and f(O2) = q, where
p < q, then for any integer k such that p < k < q, there are at least m orientations
O of G satisfying f(O) = k, where m equals the number of edges of G.

P r o o f . Let G be the graph of orientations of G. We first show that G is
isomorphic to the m-cube Im where m = \E(G)\. (Recall that the m-cube Im is the
graph whose vertices are the m-climensional vectors of O's and 1's, two vertices being
adjacent if and only if they differ in exactly one coordinate.) In fact, for any edge
of G, it can be assigned exactly two distinct directions. We may correspond them
to 0 and 1, respectively, Then a vertex of G (i.e., an orientation of G) corresponds
to an m-dimensional vector of O's and 1's. It is easily seen that this is a one-to-one
correspondence from V(G) to V(Im) and preserves adjacency relation. Therefore it
gives an isomorphism between the graphs G and Im.

Notice that Im is m-regular. So its connectivity k(Im) < m. On the other hand,
since Im is the product of m paths of length 1, we may use Menger's Theorem to
show k(Im] > m by induction on m. Thus we have k(Im) = m and so k(G) = m.
Therefore, there are m internally disjoint paths P between O1 and O2 in G. Since /
is continuous, there must exist at least one O with f(O) = k on every such path P,
and the theorem follows. D

In order to apply the theorem, we recall and introduce some invariants for a
digraph D = (V(D),A(D)) with the vertex set V(D) and the arc set A(D). (Note
that the counterparts of these invariants for undirected graphs are familiar and have
been extensively studied.)

Definition 2.1. The connectivity k 1 ( D ) of D is defined to be the minimum
number of vertices whose removal from D leaves the remaining digraph not strongly
connected or reduces D to a single vertex.
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Definition 2.2. The arc-connectivity k2(D) of D is defined to be the minimum
number of arcs whose removal from D leaves the remaining digraph not strongly
connected or reduces D to a single vertex.

Definition 2.3. The directed arboricity k3(D) of D is the minimum number of
subsets into which A(D) can be partitioned so that each subset induces a directed
forest. (A directed forest is a digraph of which every component is a rooted ditree,
where a rooted ditree is a digraph T in which there is a vertex, called the root of
T, being able to reach any other vertex of T by a directed path and the underlying
undirected graph of T is a tree.)

Definition 2.4. The directed vertex arboricity k 4 ( D ) of D is the minimum num-
ber of subsets into which V(D) can be partitioned so that each subset induces a
directed forest.

Definition 2.5. The directed linear arboricity k 5 ( D ) of D is the minimum num-
ber of subsets into which A(D) can be partitioned so that each subset induces a
directed linear forest. (A directed linear forest is a directed forest of which each
component is a directed path.)

Definition 2.6. The directed linear vertex arboricity k 6 ( D ) of D is the minimum
number of subsets into which V(D) can be partitioned so that each subset induces
a directed linear forest.

Definition 2.7. The absorption number k 7 ( D ) is the minimum of the cardinal-
ities |5| over all such subsets 5 of V(D) of which each 5 satisfies the following: for
any v £ V(D) — S, there is an arc in D from v to a vertex of S.

Now we give the following result on the above invariants.

Corollary. For any simple graph G, each of the invariants ki (i = 1 ,2 , . . . , 7 )
has the interpolation property on the orientations of G. That is, if there are two
orientations O1 and O2 of G with k i(O1)= p and ki(O2) = q, where p < q, then for
any integer k such that p < k < q, there are orientations O of G satisfying ki(O) = k.
And the number of such O's is not less than the number of edges of G.

P r o o f . For any given i = 1 , 2 , . . . , 7, the function defined by f ( O ) = k i(O) for
each O € V(G) is easily seen to be a continuous function on G. Then the result
immediately follows from the Theorem. D

Remark. There are other invariants, such as maximum (in-, out-)degree, mini-
mum (in-, out-)degree, and the number of disjoint directed cycles, etc., which can
also be included in the corollary.
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