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Summary

 

The current studies were initiated to investigate whether
excessive oxidative stress exerts its antisteroidogenic
action through modulation of oxidant-sensitive mitogen-
activated protein kinase (MAPK) signaling pathways.
Western blot analysis indicated that aging caused
increased phosphorylation and activation of rat adrenal
p38 MAPK, but not the ERK1/2 or JNK1/2. Lipid peroxidation
measurements (an index of cellular oxidative stress)
indicated that adrenal membranes from young animals
contained only minimal levels of endogenous thiobarbituric
acid-reactive substances (TBARS), and exposure of
membranes to enzymatic and non-enzymatic pro-oxidants
enhanced TBARS formation approximately 12- and 20-fold,
respectively. The adrenal membranes from old animals
showed much more susceptibility to lipid peroxidation
and exhibited roughly 4- to 6-fold higher TBARS formation
than young controls both under basal conditions and in
response to pro-oxidants. Qualitatively similar results were
obtained when lipid peroxide formation was measured
using a sensitive FOXRS (ferrous oxidation-xylenol orange-
reactive substances) technique. We next tested whether
aging-induced excessive oxidative insult alters steroido-
genesis through modulation of MAPK signaling pathway.
Treatment of adrenocortical cells from old rats with
specific p38 MAPK inhibitors restored Bt2cAMP-stimulated
steroidogenesis ~60–70% of the value seen in cells of

young animals. Likewise, pretreatment of cells with
reactive oxygen species (ROS) scavengers MnTMPyP and

 

N

 

-acetyl cysteine also partially rescued age-induced loss
of steroid production. In contrast, simultaneous treatment
of cells with ROS scavengers and p38 MAPK inhibitor did
not produce any additional effect suggesting that both
types of inhibitors exert their stimulatory action through
inhibition of p38 MAPK activation. Collectively, these
results indicate that p38 MAPK functions as a signaling
effector in oxidative stress-induced inhibition of steroido-
genesis during aging.
Key words: antioxidants, corticosterone, MnTMPyP, NAC,
oxidative stress, protein phosphorylation and cell signaling,
steroidogenesis.

 

Introduction

 

Aging in both humans (Lamberts 

 

et al.

 

, 1997; Harper 

 

et al.

 

, 1999;

Shifren & Schiff, 2000; Burger 

 

et al

 

., 2002; Arlt, 2004; Dharia

& Parker, 2004; Harman, 2005; Kaufman & Vermeulen, 2005;

Veldhuis 

 

et al.

 

, 2005) and experimental animals (Popplewell

 

et al

 

., 1986; Belloni 

 

et al

 

., 1992; Liao 

 

et al

 

., 1993; Zirkin & Chen,

2000; Cao 

 

et al

 

., 2004; Wang & Stocco, 2005 and references

therein) is associated with a significant decline in the synthesis

and secretion of steroid hormones. Work over the past several

years from this laboratory has led to the realization that inefficient

mobilization of stored cholesteryl esters and transport of free

cholesterol from the putative ‘cholesterol pool’ to mitochondrial

CYP11A1 (P450scc) sites for enzymatic conversion of cholesterol

to pregnenolone and other steroid hormones are the two

critical events responsible for age-related loss of steroidogenic

response (Popplewell & Azhar, 1987; Liao 

 

et al

 

., 1993). Advancing

age is also associated with reduced levels of the two cholesterol-

binding proteins, steroidogenic acute regulatory (StAR) protein and

peripheral-type benzodiazepine receptor (PBR) (Leers-Sucheta 

 

et al

 

.,

1999; Luo 

 

et al

 

., 2001; Culty 

 

et al

 

., 2002). These proteins in concert

with several other proteins have been implicated in the intramito-

chondrial transfer of cholesterol, the rate-limiting and regulated step

in steroid biosynthesis (Liu 

 

et al

 

., 2003; Manna & Stocco, 2005).

Additional studies from this laboratory further demonstrated

that aging also leads to excessive oxidative stress as a result of

increased reactive oxygen species (ROS) production, inactivation

of the enzymatic antioxidant system, and reduction in the levels

of low-molecular weight non-enzymatic antioxidants in adrenal

and testicular tissues (Azhar 

 

et al

 

., 1995; Cao 

 

et al

 

., 2004).

Furthermore, we reported a relationship between age and

inactivation of the adrenal oxidant-sensitive transcription
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factors, activator protein-1 (AP-1), and nuclear factor kappaB

(NF-

 

κ

 

B) (Medicherla 

 

et al

 

., 2001, 2002). These observations

were interpreted to suggest that excessive ROS generation and

macromolecular damage, especially lipid peroxidation-mediated

oxidative damage of cellular membranes involved in intracellular

cholesterol transport and steroidogenesis, may impair their

function leading to decreased steroidogenesis. The potential risk

for damage to macromolecules from excessive oxidative insult

is especially high for steroidogenic tissues, which use molecular

oxygen not only for energy (ATP) production, but also for steroid

biosynthesis, and thus exhibit high rates of oxidative metabolism

and generation of ROS (Azhar 

 

et al

 

., 1995; Hanukoglu, 2006).

Indeed, it has been shown that free radicals inhibit steroidogenesis

by interfering with cellular events connected with cholesterol

transport to mitochondria and/or catalytic function of P450

enzymes (Kodaman 

 

et al

 

., 1994; Musicki 

 

et al

 

., 1994; Diemer

 

et al

 

., 2003; Abidi 

 

et al

 

., 2004). Although the exact mechanism

by which excessive oxidative stress contributes to the age-

related loss of steroidogenic response is not well understood,

accumulating evidence in other systems now indicates that

persistent low-level, long-term oxidative stress especially during

aging can trigger activation of mitogen-activated MAP kinase

(MAPK) pathways leading to altered gene expression that may

potentially affect cellular metabolic processes and biological

responses (Finkel & Holbrook, 2000; Martindale & Holbrook,

2002; Matsuzawa & Ichijo, 2005; McCubrey 

 

et al

 

., 2006). Given

this, there is a likely possibility that chronic oxidative stress-

induced modulation of MAPK cascade(s) may be an important

event in the age-related decline in steroidogenesis. However,

until now the identity of such intracellular signaling cascade(s)

by which excessive oxidative stress may negatively impact

steroidogenesis during aging has not been evaluated.

In mammalian cells, several different subfamilies of MAPK

have been identified (Kyriakis & Avruch, 2001; Pearson 

 

et al

 

.,

2001). Among these, three best characterized MAPKs are the

extracellular signaling-regulated kinases (ERKs) p44 MAPK (ERK

1) and p42 MAPK (ERK2); c-Jun NH

 

2

 

-terminal kinases (JNKs),

also referred to as stress-activated protein kinases (SAPKs) that

include JNK2 (p54 SAPK, SAPK

 

α

 

/

 

β

 

) and JNK1 (p45 SAPK,

SAPK

 

γ

 

); and p38 MAPKs (

 

α

 

, 

 

β

 

, 

 

γ

 

, and 

 

δ

 

). Each of these MAPKs

is phosphorylated and catalytically activated by a signaling cas-

cade comprising a specific upstream MAPK kinase (MKKs),

which dually phosphorylates MAPKs on threonine (T) and

tyrosine (Y) residue separated by an intervening amino acid

characteristic for each MAPK subfamily (i.e. TEY for ERKs, TPY

for JNKs, and TGY for p38 MAPKs). MKK is activated by MKK

kinase (MKKK) through the phosphorylation of specific T and

Y residues in MKKs. Whereas ERKs are typically stimulated by

growth factors and mitogenic stimuli, p38 MAPK and JNK are

strongly activated by various cellular stresses including ROS

(Kyriakis & Avruch, 2001; Pearson 

 

et al

 

., 2001; Martindale &

Holbrook, 2002; Matsuzawa & Ichijo, 2005; McCubrey 

 

et al

 

.,

2006). The phosphorylated and fully activated MAPKs are

subsequently translocated to the cell nucleus where they

phosphorylate and activate multiple transcription factors,

ultimately resulting in the altered transcription of specific genes

(Edmunds & Mahadevan, 2004).

In an attempt to assess whether MAPKs facilitate oxidative

stress-dependent loss of steroidogenesis during aging, we have

investigated effects of aging, antioxidants and MAPK inhibitors

on steroidogenesis in adrenal and adrenal cells from old rats.

Our data indicate that expression of p38 MAPK is significantly

increased in response to aging. This effect appears to be specific

for p38 MAPK as the expression of neither ERKs nor JNKs was

altered during aging. We also present data showing that p38

inhibitors and antioxidants partially restore the steroidogenesis

in cells from old animals and that the observed rescue of

steroidogenesis is likely to stem from effects of the inhibitors

on p38 MAPKs. From these studies we conclude that p38 MAPK

signaling pathway facilitates the inhibitory actions of excessive

oxidative insult on adrenal steroid hormone production caused

by aging.

 

Results

 

Aging and corticosterone production by isolated rat 
adrenocortical cells

 

Initially, experiments were conducted to confirm the previous

observations that aging is associated with a decline in hormone-

stimulated corticosterone production by freshly isolated rat

adrenocortical cells. Figure 1 shows corticosterone production

by adrenocortical cells from the young mature (5 months old)

and old (24–27 months old) rats and incubated for 5 h in the

absence (basal) or presence of a maximally effective dose of

Bt

 

2

 

cAMP (2.5 m

 

M

 

) (the second messenger of ACTH action). The

addition of a maximally stimulating dose of Bt

 

2

 

cAMP to cells

from control animals (adequate circulating levels of cholesterol)

Fig. 1 Basal and cAMP-stimulated corticosterone production by isolated 
adrenocortical from young and old rats. Adrenocortical cell suspensions were 
prepared from young (5 months old) and old (4–27 months old) animals, 
and suitable aliquots (~5 × 105 cells) were incubated in the presence and 
absence of Bt2cAMP (2.5 mM) for 5 h at 37 °C. The amount of corticosterone 
produced was measured by RIA as described under ‘Materials and Methods’. 
Results are mean ± standard error of four separate experiments.
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resulted in a general increase in hormone production over basal

levels, but showed a significant reduction (~70%) in old vs.

young rats. In contrast, the corticosterone response to 20

 

α

 

-

hydroxycholesterol (20

 

α

 

-hydroxycholesterol, a freely diffusible

form of cholesterol) was unaffected by aging, further indicating

that the observed decline in steroidogenesis was related to an

inability of aging cells to effectively transport steroid substrate,

cholesterol to mitochondria and not due to alterations in second

messenger signaling or the enzymes involved in corticosterone

production (data not shown).

 

Effect of age on basal (endogenous) and pro-oxidant 
induced membrane lipidperoxidation

 

TBARS (thiobarbituric acid-reactive substances) and FOXRS

(ferrous oxidation-xylenol orange-reactive substances) assays

were employed to measure age-induced oxidative damage

(i.e. peroxidative damage or lipid peroxidation) in the isolated

adrenal cell membranes. These measurements were made both

under basal conditions and in response to enzymatic (Fe

 

2+

 

/ADP/

NADPH) or non-enzymatic (Fe

 

2+

 

/ascorbate) lipid-peroxidation

initiators. Although we realize that malondialdehyde-thiobarbituric

acid (MDA-TBA) (TBARS) technique as employed here has limited

specificity and sensitivity (Bird & Draper, 1984; Lykkesfeldt, 2007),

we used this technique to simply quantify for the oxidative

damage that may be occurring in aging adrenals. In the past,

we have used both a direct colorimetric method and a highly

specific but technically challenging HPLC method to quantify for

the formation of MDA-TBA products (TBARS) in the adrenal

homogenates (Azhar 

 

et al

 

., 1995). Interestingly, both methods

gave qualitatively similar results (Azhar 

 

et al

 

., 1995). The FOXRS

method also has limitation in that it not only measures lipid

hydroperoxides but also measures protein hydroperoxides

(Gay & Gebicki, 2003). Again, we used this technique to get an

independent estimate of age-related oxidative damage to

adrenal membranes. Moreover, measurement of protein and

lipid hydroperoxides by the modified ferric-xylenol orange

method of Gay & Gebicki (2003) indicated that in adrenal

homogenates from old animals, lipid hydroperoxides represent

> 90% of the total hydroperoxides formed (data not shown).

The results presented in Table 1 indicate that adrenal mem-

branes from young animals contained only minimal levels of

endogenous TBARS, and that exposure of membranes to

enzymatic and non-enzymatic pro-oxidants enhanced TBARS

formation by approximately 12- and 20-fold, respectively. The

adrenal membranes from old animals showed much more

susceptibility to oxidative damage and exhibited roughly 4- to

6-fold higher TBARS formation than young controls both under

basal conditions and in response to pro-oxidants. Qualitatively

similar results were obtained when lipid peroxide formation was

measured using a sensitive FOXRS technique (Table 1).

 

Activation of MAPK signaling pathways in 
response to aging

 

We next examined the effect of aging on the activation of ERKs,

JNKs and p38 MAPK, the three well-characterized members of

the MAP kinase family (Kyriakis & Avruch, 2001; Pearson 

 

et al

 

.,

2001) that are known to be activated by oxidative stress

(Martindale & Holbrook, 2002; Matsuzawa & Ichijo, 2005;

McCubrey 

 

et al

 

., 2006). As phosphorylation of residues Thr

 

202

 

and Tyr

 

204

 

 in ERK1/2, residues Thr

 

180

 

 and Tyr

 

182

 

 in p38 MAPKs,

and residues Thr

 

183

 

 and Tyr

 

185

 

 in JNKs results in enzymatic

activation, we employed Western blot analysis and phospho-

specific antibodies to monitor phosphorylation of these sites as

an index of kinase activation (Kelley 

 

et al

 

., 2004). Significant

levels of endogenous phosphorylation of all three MAPKs were

observed in whole adrenal homogenates from both young and

old rats (Fig. 2). Furthermore, we observed that aging significantly

increased the phosphorylation of p38 MAPK (~3-fold), but not

Conditions Young Old

TBARS

(nmol MDA equivalent formed mg−1 protein h−1 ± SE)

Basal 0.109 ± 0.026 0.463 ± 0.089*

Enzymatic (NADPH + FeSO4 + ADP) 1.330 ± 0.283 7.847 ± 1.268†

Non-enzymatic (FeSO4 + ascorbic acid) 2.171 ± 0.456 9.600 ± 1.120‡

FOXRS

(nmol lipid peroxides formed mg−1 protein h−1 ± SE)

Basal 3.112 ± 0.756 13.010 ± 1.867§

Enzymatic (NADPH + FeSO4 + ADP) 34.390 ± 8.800 183.000 ± 36.320¶

Non-enzymatic (FeSO4 + ascorbic acid) ND ND

*P = 0.0072; †P = 0.0024; ‡P = 0.0009; §P = 0.0027; ¶P = 0.0073.
Results are mean ± standard error (SE) of four separate experiments.
The incubation mixture in a final volume of 1.0–3.0 mL contained total adrenal membrane fraction 
(equivalent to 5 mg tissue mL–1) from young (5 months old) and old (24–27 months old) rats and 
1 mM NADPH + 50 µM FeSO4 + 5 mM ADP (enzymatic) or 5 µM FeSO4 + 500 µM sodium ascorbate 
(non-enzymatic). Following incubation at 37 °C for 60 min, 1 mL aliquots were analyzed for the formation 
of TBARS and FOXRS as described in Materials and Methods. ND, not determined; TBARS, thiobarbituric 
acid-reactive substances; FOXRS, ferrous oxidation-xylenol orange-reactive substances. 

Table 1 Effect of aging on TBARS and FOXRS 

formation in particulate fractions of adrenal glands 

from young mature (5 months old) and old rats 

(24–27 months old) with or without prior exposure 

to enzymatic or non-enzymatic pro-oxidants
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of ERK1/2 or JNK1/2 in adrenal samples (Figs 2 and 3). As the

phospho-p38 MAPK antibody used in our study does not

differentiate among the type of p38 MAPK isoforms expressed

in rat adrenals, specific age-related changes in the activation

and expression of individual isoforms could not be assessed.

 

Involvement of p38 MAPK during oxidant-mediated 
inhibition of steroidogenesis

 

Data shown in Figs 2 and 3 suggest possible involvement of

the p38 MAPK signaling cascade in age-related and oxidative

stress-mediated loss of adrenal steroid hormone production.

Here we sought to further examine the potential relationship

between oxidative stress-induced activation of p38 MAPK and

the ability of excessive oxidative stress to inhibit hormone-

stimulated steroid synthesis. One way to determine the involvement

of p38 MAPK in mediating the inhibitory actions of oxidative

stress on adrenal steroidogenesis is to examine the separate and

combined effects of cell-permeable chemical inhibitors of p38

MAPK (Lee 

 

et al

 

., 1994; Cueda 

 

et al

 

., 1995; Guan 

 

et al

 

., 1997;

Page 

 

et al

 

., 2001; Natale 

 

et al

 

., 2004) and non-enzymatic

antioxidants (Pimentel 

 

et al

 

., 2001; Uchida 

 

et al

 

., 2004).

Treatment of adrenal cells from old animals with 5.0 and

10 

 

µ

 

M

 

 concentrations of SB202190, SC68376 or SB220025

(structurally divergent inhibitors of p38 MAPK 

 

α

 

/

 

β

 

) resulted

in a significant increased production of corticosterone as

compared to vehicle control (Fig. 4B). In each case, however,

the addition of a higher concentration of inhibitor (10 

 

µ

 

M

 

)

produced slightly better stimulation relative to lower concentration.

In contrast, the biologically inactive inhibitor of p38 MAPK,

SB202474 at 10 

 

µ

 

M

 

 had no effect on steroidogenesis. To determine

the potential contribution of ERK1/2 and JNK1/2 in the regulation

of adrenal steroidogenesis during aging, two MEK 1/2 inhibitors

PD98059 (Alessi 

 

et al

 

., 1995) and U0126 (Favata 

 

et al

 

., 1998)

and a JNK1/2 inhibitor, SP600125 (Bennett 

 

et al

 

., 2001), were

utilized. (MEK1/2 is upstream kinase that activates ERKs).

Fig. 2 Age-dependent changes in the activation of 
rat adrenal ERKs, JNKs, and p38 MAPK. Whole 
adrenal extracts were prepared from young 
(5 months old ) and old (24–27 months old) rats 
as described under ‘Experimental Procedures’. 
Equal aliquots of solubilized samples (30–40 µg 
protein) were subjected to SDS-PAGE and 
immunoblotted with antibodies against ERK1/2 
phosphorylated at Thr202/Tyr204 (P-ERK1/2), against 
p38 MAPK phosphorylated at Thr180/Tyr182 (P-p38 
MAPK), or JNK1/2 phosphorylated at Thr183/Tyr185 
(P-JNK1/2). The blots were stripped and re-probed 
using the antibodies that recognize total (phospho- 
plus nonphospho-forms) ERK1/2, p38α MAPK, and 
JNK1/2 proteins. The blots shown represent four 
independent experiments. Numerical results were 
obtained by densitometric scanning of the 
individual bands.

Fig. 3 Activation of p38α MAPK in response to advancing age. Individual 
bands representing phospho- and total-forms of p38α MAPK from Fig. 2 
were analyzed by densitometric scanning. After scanning, data from four 
separate experiments (Fig. 2) were expressed as a ratio of phospho-p38α 
MAPK/total p38α MAPK and results are shown as mean ± standard error (SE).
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Treatments with either PD98059 (30 µM), U0126 (10 µM),

inactive analog U0124 (10 µM) or SP600125 were ineffective

in up-regulating either basal or Bt2cAMP-stimulated steroid

production in adrenal cells from old rats (Fig. 4B). Finally, none

of the various MAPK inhibitors tried had any significant effect

on the overall viability of the treated cells. In contrast, treatment

of adrenal cells from young mature (5 months old) rats with

p38 MAPK inhibitors had no significant effect on steroid secretion

(Fig. 4A). These latter studies provide additional support to the

notion that selective activation of p38 MAPK mediates the

age-related decline in adrenal steroidogenesis.

We next investigated the potential interaction between

excessive oxidative stress, p38 MAPK activation and age-related

decline in adrenal steroidogenesis by evaluating the separate

and combined actions of non-enzymatic antioxidants and p38

MAPK inhibitors. We reasoned that since excessive oxidative stress

mediates the activation of adrenal p38 MAPK during aging that,

in turn, leads to inhibition of corticosterone production, the use

of ROS scavengers, such as manganese (III) tetrakis(1-methyl-

4-pyridyl) porphyrin (MnTMPyP) and N-acetyl cysteine (NAC)

should rescue the adrenals from age-induced loss of corticosteroid

protection. We further predicted that under this scenario,

simultaneous addition of antioxidant and p38 MAPK inhibitor

should not produce an additive effect. MnTMPyP functions

as a cell-permeable superoxide-dismutase/catalase mimetic

(Pimentel et al., 2001), while NAC, an intermediary (along

with glutamic acid and glycine) in the conversion of cysteine

to glutathione (Wu et al., 2004) is known to interfere with

2-hydoxy-nonenal action (Uchida et al., 2004).

As shown in Table 2, pretreatment of adrenal cells from old

rats with MnTMPyP partially restored the aging-induced decline

in steroid production. To address the possibility that MnTMPyP

prevented the inhibition of steroidogenesis via a nonspecific effect,

control experiments were conducted with light-inactivated

Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP). As expected,

corticosterone production in old adrenal cells was unaffected

by treatment of cells pretreated with light-inactivated MnTBAP

(10 µM; data not shown). The results of these experiments suggest

that reversal of steroidogenesis is not due to a nonspecific effect of

MnTMPyP, but occurs because of the scavenging of superoxide and

H2O2 and provides additional support to the notion that excessive

oxidative stress impairs steroidogenic function. Likewise, addition

of NAC to the incubation medium also partially restored the

steroidogenic response in adrenal cells from old animals.

To investigate whether inhibition of the p38 MAPK cascade

contributed to the stimulatory effect conferred by ROS scavengers

and p38 MAPK inhibitors (Fig. 3) in response to aging, we

evaluated the combined actions of ROS and p38 MAPK inhibitors

on steroid production in old cells. As before, pretreatment with

SB202190 (10 µM), a highly potent inhibitor of p38 MAPK,

restored steroidogenesis in old adrenal cells to ~60–70% of

the level seen in adrenal cells from young animals (Table 2).

Likewise, use of MnTMPyP and NAC partially restored steroid

production in old adrenal cells (Table 2). In contrast, treatment

of cells with MnTMPyP + SB202190 or NAC + SB202190 did

not produce any additive or synergistic effect suggesting that

both types of inhibitors exert their stimulatory action through

inhibition of p38 MAPK activation.

Fig. 4 Effect of MAPK signaling pathway inhibitors and ROS inhibitors on Bt2cAMP-stimulated corticosterone production in isolated adrenal cells from young 
and old rats. Freshly isolated adrenal cells from young mature (5 months old) or old (24–27 months old) animals were incubated for 5 h in culture medium 
supplemented with ± Bt2cAMP (2.5 mM) ± SB202190 (SB190; 5.0 or 10 µM), ± SC68376 (SC376; 5.0 or 10 µM), ± SB220025 (SB025; 5.0 or 10 µM), ± SB202474 
(SB474; 10 µM), ± PD98059 (PD059; 30 µM), ± U0126 (10 µM), or ± SP600125 (SP125; 10 µM). At the end of incubation, medium samples were quantified for 
the production of corticosterone by RIA. In some cases, cell viability was determined using a sensitive MTT assay as described under Experimental Section. 
The results are mean ± standard error (SE) of four separate experiments. aP = 0.0246 vs. O-Bt2cAMP; bP = 0.0099 vs. O-Bt2cAMP; cP = NS vs. O-Bt2cAMP; 
dP = 0.0403 vs. O-Bt2cAMP; eP = 0.0034 vs. O-Bt2cAMP; fP = 0.0033 vs. O-Bt2cAMP; gP = 0.0267 vs. O-Bt2cAMP; hP = NS vs. O-Bt2cAMP; iP = NS vs. O-Bt2cAMP; 
jP = NS vs. O-Bt2cAMP.
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Discussion

In this report, we describe two key findings as follows. First,

oxidative stress-mediated inhibition of adrenal steroidogenesis

during aging is accompanied by a selective activation of p38

MAPK. Second, the inhibitory actions of enhanced oxidative

stress on adrenal steroidogenesis, such as that which occurs

during aging, are mediated by the p38 MAPK pathway. These

findings strongly suggest that p38 MAPK activity is a negative

determinant of adrenal steroidogenesis and that it plays a critical

role in age-related loss of steroidogenic function.

Our initial efforts were directed to find an association

between age-induced excessive oxidative stress and alterations

in the expression of MAPK signaling cascades. As reported earlier

and further confirmed here, aging decreased the corticosterone

production in isolated adrenocortical cells (Popplewell et al.,
1986). Aging-induced adrenal lipid peroxidation was also

significantly increased both under basal condition and following

exposure to either enzymatic or non-enzymatic pro-oxidants.

The latter observations were confirmed using a generally utilized

measure of lipid peroxide decomposition product, malondialde-

hyde (Ohkawa et al., 1979) as well as a sensitive assay utilizing

direct detection of lipid peroxides with ferric-xylenol orange

complex (Hermes-Lima et al., 1995). Under identical conditions,

we examined phosphorylation-dependent activation of ERK1/2,

JNK1/2 and p38 MAPK in order to clarify the signal transduction

pathway responsive to oxidative stress conditions during aging.

Activation of each of these MAPKs is mediated by a specific dual

phosphorylation of the threonine (T) and tyrosine (T) residues

of ERK, JNK and p38 MAPK (i.e. TEY for ERKs, TPY for JNKs,

and TGY for p38 MAPKs). The results showed significant levels

of endogenous phosphorylation of all three MAPKs in whole

adrenal extracts from both young and old rats (Fig. 2). Moreover,

we observed that phosphorylation-mediated activation of p38

MAPK, but not of ERK1/2 or JNK1/2, significantly increased in

adrenal glands from old animals. These data are consistent with

the recent findings reported in other systems, where increased

activation of p38 MAPK has been linked to various aging-induced

alterations in metabolic parameters (Haq et al., 2002; Davis

et al., 2005; Kang et al., 2005; Hsieh & Papaconstantinou,

2006; Ito et al., 2006). In the present study, we also observed

an association between oxidative stress and p38 MAPK

activation, raising the possibility that aging-induced enhanced

oxidative stress leads to activation of p38 MAPK, which, in turn,

attenuates the steroidogenic response seen during aging.

The functional consequences of a potential relationship

between oxidative stress and p38 MAPK were further investi-

gated using both cell-permeable chemical inhibitors of p38

MAPK as well as potent ROS scavengers. Treatment of adrenal

cells from old rats with specific but structurally divergent

inhibitors of p38 MAPK, SB202190, SB220025 or SC68376

significantly (60–70%) restored the age-related decline in

steroid production. In contrast, SB202474, a control compound

that does not inhibit p38 MAPK activity, had no effect on oxidant-

mediated inhibition of steroidogenic response (Lee et al., 1994).

To further establish the specificity of p38 MAPK inhibitors, we

also investigated the effects of PD98059 and U0126, structurally

unrelated, specific inhibitors of the ERK activators, MEK1 and

MEK2. Treatment of cells with either of the two inhibitors did

not up-regulate the steroidogenic function in old adrenal cells.

Likewise, a specific JNK inhibitor, SP600125, had no significant

effect on steroid synthesis in an adrenal cell model exposed to

a set of oxidants under in vitro conditions. Additional studies

demonstrated that the use of MnTMPyP, a cell-permeable

superoxide-dismutase/catalase mimetic (Pimentel et al., 2001),

partially restored the steroidogenic response in old adrenal cells.

Likewise, blockade of the inhibitory actions of lipid peroxidation

products (e.g. HNE) with antioxidant NAC also improved the

corticosterone production in adrenal cells derived from old

animals. Simultaneous addition of p38 MAPK inhibitor and ROS

inhibitors, however, did not yield any additional stimulatory

effect. These results suggest that the chosen antioxidant partially

nullifies the inhibitory action of aging on steroid hormone

production and, thus, enhanced oxidative stress is central to the

molecular mechanisms underlying the age-related decline in

adrenal steroidogenesis. Furthermore, the fact that both

antioxidants and p38 MAPK inhibitors can, to some extent,

restore steroidogenesis in old cells, and that the simultaneous

presence of two types of inhibitors yielded no additional

effect implies that activation of p38 MAPK by oxidative

stress is a necessary event in the oxidant-mediated inhibition

Table 2 Effect of non-enzymatic antioxidant, NAC and MnTMPyP and/or p38 

MAPK inhibitor (SB202190) on corticosterone production by primary 

adrenocortical cells isolated from old rats

Additions

Corticosterone 

(ng µg–1 DNA 5 h–1 ± SE)

Basal 7.3 ± 1.4

Bt2cAMP (2.5 mM) 131 ± 16

NAC (10 mM) 9.8 ± 1.4

MnTMPyP (10 µM) 11.5 ± 2.5

SB202190 (5 µM) 6.6 ± 0.96

Bt2cAMP + SB190 292 ± 31

Bt2cAMP + NAC 240 ± 27*

Bt2cAMP + MnTMPyP 208 ± 18†

Bt2cAMP + NAC + SB190 320 ± 29‡

Bt2cAMP + MnTMPyP + SB190 305 ± 27§

*P = 0.0130 vs. O-Bt2cAMP; †P = 0.0170 vs. O-Bt2cAMP; ‡P = 0.0012 vs. 
O-Bt2cAMP; §P = 0.0029 vs. O-Bt2cAMP.
Results are mean ± standard error (SE) of four separate experiments.
The incubation medium in a final volume 0.5 mL contained DME ± Bt2cAMP 
(2.5 mM), ± NAC (10 mM), ± MnTMPyP (10 µM) or ± SB202190 (SB190; 5 µM) 
and a suitable aliquot of adrenal cells isolated from individual old rats. Cell 
samples were preincubated with medium alone (basal), NAC or MnTMPyP 
for 1 h, and then ± Bt2cAMP was added and incubations were continued for 
an additional 5 h at 37 °C. At the end of incubation each medium sample 
was analyzed for corticosterone content by the radioimmunoassay. The data 
shown above were derived using adrenal cells isolated from old rats. Under 
identical experimental conditions, the basal and Bt2cAMP-stimulated 
corticosterone production rates by adrenal cells from young animals were in 
the range of 9.5 ± 1.7 and 565 ± 88 ng µg–1 DNA 5 h–1 (P = 0.0028 vs. 
O-Bt2cMP), respectively.
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of steroid production. This is the first report implicating p38

MAPK signaling cascade as a negative modulator of adrenal

steroidogenesis.

Precisely how p38 MAPK interferes with the steroidogenesis

is not clear. However, given that p38 MAPK is involved in a wide

spectrum of cellular processes and that multiple kinases and

transcription factors have been identified as p38 MAPK substrates

suggests that any of these processes could potentially contribute

to the negative actions of p38 MAPK on steriodogenesis

(McDermott & O’Neill, 2002; Pramanik et al., 2003). In this con-

text, there is evidence that oxidants such as superoxide anion,

H2O2 and HNE can cause induction of cyclooxygenase-2

(COX-2) (Nakamura & Sakamoto, 2001; Kiritoshi et al., 2003;

Kumagai et al., 2004; Yang et al., 2005, 2006). Furthermore,

oxidant-dependent activation of p38 MAPK is known to directly

regulate the expression of cycolooxygenase-2 (Guan et al.,
1998; Lasa et al., 2000; Hendrickx et al., 2003). Other studies

have also demonstrated that, when activated, COX-2 inhibits

steroidogenesis in several steroidogenic systems (Nakamura &

Sakamoto, 2001; Wang et al., 2003; Frungieri et al., 2006).

From this we speculate that COX-2 may be involved in the

negative regulation of steroidogenesis by p38 MAPK. This

possibility is consistent with findings reported for steroidogenic

cells, where cyclooxygenase-2 is shown to down-regulate

steroidogenic acute regulatory (StAR) gene expression (Wang

et al., 2003). [The StAR protein in concert with several other

proteins facilitates the rate-limiting transfer of cholesterol to the

mitochondrial inner membrane where the substrate cholesterol

is converted to steroid precursor, pregnenolone by CYP11A1

(P450scc) (Liu et al., 2003; Manna & Stocco, 2005).] Our own

unpublished preliminary data suggest that p38 MAPK functions

as a suppressor of StAR promoter activity in adrenal cells.

Additional studies are underway in this laboratory to further

evaluate the functional interactions between p38 MAPK and

COX-2 in an effort to delineate the exact mechanism by which

oxidative stress-mediated activation of p38 MAPK negatively

impacts steroidogenesis.

In conclusion, our data provide direct evidence that oxidative

stress is involved in the selective inhibition of steroidogenesis

both in vivo in response to aging and in vitro after treatment

with oxidants. Furthermore, we provide evidence that activation

of the p38 MAPK signaling pathway is functionally linked to the

oxidative stress response and mediates its inhibitory effect on

adrenal steroid production. This represents a novel cellular

mechanism that allows negative modulation of steroidogenesis

during aging-induced oxidative stress.

Experimental procedures

Animals

All experimental animal protocols were approved by the

Institutional Animal Care and Use Committee of the Department

of Veterans Affairs Palo Alto Health Care System. Sprague-

Dawley male rats were used for all studies. The animals had free

access to rodent chow and water. Young rats were obtained

at 2 months of age and were used 3 months later as young

mature (Y, 5 months old) rats. Old rats were obtained at

11–12 months of age and were maintained in our facility until

24–27 months of age (O, 24–27 months old). The 5-month-old

rat is a young mature animal whose weight is comparable

to that of the aged rats; the 24-month-old rat shows all the

age-related changes we are attempting to define. These two

groups are standard age groups commonly used in aging studies

(Cheng et al., 1998; Culty et al., 2002; Ivell et al., 2003). Animals

were monitored on a quarterly basis for various viruses and

infectious agents as described previously (Reaven et al., 1988).

All animals were checked for gross pathology before use. Those

with visible kidney, pituitary, adrenal, or testicular tumors, or

other apparent defects, were not used (~6% of 24- to 27-

month-old rats).

Reagents and antibodies

The following chemicals were purchased from Calbiochem

(La Jolla, CA, USA): MEK/ERK inhibitors PD098059 and U0126,

the p38 MAP kinase inhibitors SB202190 and SB202474

(inactive analog), the JNK inhibitor SP600125, MnTMPyP

[Mn(III)tetrakis1-methyl-4-pyridylporphyrin pentachloride] and

MnTBAP [Mn(III)tetrakis(4-benzoic acid)porphyrin], Bt2cAMP;

fatty acid-poor bovine serum albumin; hydrogen peroxide

(H2O2); and N-acetyl cysteine (NAC) were supplied by Sigma-

Aldrich (St. Louis, MO, USA). p38 MAPK inhibitors, SC68376

and SB220025, were purchased from Calbiochem (EMD Chemicals

Inc., San Diego, CA, USA). All other reagents used were of

analytical grade.

Polyclonal antibodies against total ERK1/ERK2, JNK1/JNK2,

and p38 MAPKα were purchased from Cell Signaling Technology

(Beverly, MA, USA). Phospho-specific antibodies that recognize

ERKs phosphorylated at Thr202 and Tyr204, and p38 MAPK

phosphorylated at Thr180 and Tyr182 were also supplied by Cell

Signaling Technology. Phospho-JNKs (Thr183 and Tyr185) antibody

was obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz,

CA, USA).

Isolation of primary rat adrenocortical cells and 
measurement of corticosterone secretion

Rat adrenocortical cells from young mature (5 months old) and

old (24–27 months old) rats were prepared by a procedure

described previously (Azhar et al., 1991). In brief, rats were

killed by cervical dislocation, and the adrenal glands aseptically

removed, decapsulated, and dissected free of fat. A group of

two adrenals from each rat was finely minced with scissors, and

tissue fragments were suspended in sterilized Medium 199

containing 40 mg mL–1 of bovine serum albumin, 3.7 mg mL–1

of collagenase, and 5 µg mL–1 DNAse and incubated with

shaking for 1 h in an atmosphere of 95% O2 to 5% CO2. The

tissue suspension was then dissociated by repeated pipetting

with a tuberculin syringe, the resulting suspension filtered
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through a nylon mesh, washed by centrifugation, and the final

pellet re-suspended in DME:F12 (1:1). These cell preparations

were used immediately for the measurement of steroid production

and secretion.

To assay steroidogenesis, triplicate samples of cells were

incubated for 5 h without (basal) or with Bt2cAMP (2.5 mM), and

subsequently samples of incubation medium were collected,

frozen, and stored frozen until analyzed for corticosterone

production by the radioimmunoassay technique (Reaven et al.,
1988).

To evaluate the effects of MAPKs and/or ROS inhibition to

modulate Bt2cAMP-stimulated steroidogenesis in adrenal cells

from old rats, we utilized specific MEK/ERK inhibitors

(PD098059 and U0126), the p38 MAP kinase inhibitors

(SB203580, SB202190 and SB202474 [inactive analog]), and

the JNK inhibitor (SP600125) either separately or in a specific

combination. Triplicate dishes of old-adrenal cells were pretreated

with vehicle alone (control), PD098059 (30 µM), U0126 (10 µM),

SB203580 (10 µM), SB202190 (10 µM), SB202474 (10 µM) or

SP60012 (10 µM) for 1 h, and incubations continued for an

additional 5 h following the addition of Bt2cAMP ± hHDL3

(500 µg protein mL–1). At the end of incubation, the media were

collected, frozen, and stored frozen until analyzed for 20α-

dihydroprogesterone levels as described above. Cell viability

after treatment was monitored using the MTT assay as described

above.

Cell viability was assessed by following the conversion of MTT

[3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide]

to formazan crystals (Mosmann, 1983), a reaction dependent

on mitochondrial respiratory chain activity and reflecting the

mitochondrial redox state. After treatment with antioxidants

and/or p38 MAPK inhibitors, MTT solution was added to the

dishes at a final concentration of 500 µg mL–1 and the induction

continued at 37 °C for 3 h. Following incubation, the medium

was aspirated and the accumulated formazan product was

solubilized with a 1:1 solution of dimethyl sulfoxide/absolute

ethanol. Cell viability was determined by the differences in

absorbance at wavelength 570 nm minus 690 nm using a

microplate reader.

Determination of lipid peroxidation by measurement 
of lipid hydroperoxides

We employed TBARS and FOXRS assay procedures for measure-

ment of lipid peroxides in untreated adrenal homogenates or

homogenates subjected to enzymatic or non-enzymatic pro-

oxidants. Freshly excised adrenals (two per sample) were

homogenized in buffer (0.15 M KCl, 5 mM Tris maleate, pH 7.4,

and 1 mM EDTA), and subsequently centrifuged at 800 × g for

15 min to sediment unbroken cells and nuclei. A total membrane

fraction was obtained by centrifugation of the supernatant at

105 000 × g for 60 min and was stored in liquid nitrogen until

assayed for in vitro lipid peroxidation.

To determine TBARS and FOXRS formation, aliquots of

adrenal membrane fractions were incubated with buffer alone

(endogenous), or in the presence of pro-oxidants, 1 mM NADPH

+ 50 µM FeSO4 (enzymatic), or 5 µM FeSO4 + 500 µM sodium

ascorbate (non-enzymatic) in a final volume of 1.0–3.0 mL as

described previously (Azhar et al., 1995; Abidi et al., 2004).

Following incubation at 37 °C for 60 min, 1.0 mL aliquots were

analyzed for the formation of TBARS and FOXRS. (Note: FOXRS

measurements were conducted either under basal conditions

or in the presence of enzymatic pro-oxidants; no measurements

were carried using non-enzymatic pro-oxidants as the presence

of ascorbate interferes with the color formation.)

To quantify TBARS formation, 0.8 mL aliquot of incubation

mixture was mixed with 3.2 mL of a stock TBA reagent to

achieve a final concentration of 0.3% TBA, 7.5% of acetic acid

buffered to pH 3.5, and 0.405% of sodium dodecyl sulfate

(Ohkawa et al., 1979). The tubes were covered with glass-

marbles, heated at 95 °C for 60 min, cooled and extracted with

1.0 mL distilled water + 5.0 mL of a mixture of n-butanol and

pyridine (15;1, v/v). The absorbance of the upper organic layer

was simultaneously determined at 510, 532 and 560 nm and

the concentration of TBARS (MDA equivalent) was calculated

as follows: MDA-A532 = 1.22[(A532) − (0.56)(A510) + (0.44)(A560)]

(Pyles et al., 1993). For FOXRS measurement, a 0.1 mL aliquot

of incubation mixture +0.4 mL of distilled water was mixed with

0.5 mL of 2× xylenol orange (XO) reagent containing 0.5 mM

FeSO4, 50 mM H2SO4 and 0.2 mM XO (Hermes-Lima et al.,
1995). Following incubation of the tubes in the dark for 60 min

at room temperature, the absorbance of each tube was measured

at 580 nm. Levels of lipid hydroperoxides are expressed as cumene

hydroperoxide equivalents.

Western blot analysis of total and phosphorylated 
forms of ERKs, p38 MAPK, and JNKs

Adrenals (two per sample, ~50 mg) were homogenized using

a Potter-Elvehjem homogenizer (Thomas Scientific, Swedesboro,

NJ, USA) in three volumes of lysis buffer A, and incubated for

30 min at 4 °C on an orbital shaker for complete lysis. The lysates

were cleared by centrifugation at 15 000 × g for 10 min, and

protein concentration of each solubilized lysate was determined.

All cell/tissue lysate samples were stored frozen until analyzed

by Western blotting (Kelley et al., 2004).

Samples containing an equal amount of protein (30–40 µg)

were fractionated by SDS-PAGE (10% polyacrylamide gel with

4% stacking gel) and transferred to Immobilon® polyvinyllidene

difluoride membrane (PVDF, Millipore Corp., Bedford, MA,

USA). After transfer, the membrane was washed in Tris-buffered

saline containing 0.1% Tween 20 (TBS) and incubated in blocking

buffer (TTBS containing 5% nonfat dry milk) for 90 min at room

temperature, followed by overnight incubation at 4 °C with

primary antibody in blocking buffer (total or phosphorylated

form of ERK1/ERK2, p38 MAPK, or JNK1/JNK2, or anti-FLAG

monoclonal antibody). Subsequently, the membrane was

washed in TTBS and incubated for 2 h with horseradish peroxidase-

conjugated antirabbit or antimouse IgG in blocking buffer. The

immunoreactive bands were then visualized using a LumiGLO
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Chemiluminescent Detection System (Kirkegaard and Perry

Laboratories Inc., Gaithersburg, MD, USA) followed by exposure

to X-ray film (10–30 min) and quantified by Fluor-S-MultiImager

scanning densitometry system (Bio-Rad, Hercules, CA, USA).

Analytical procedures

Protein was measured with a bicinchoninic acid protein assay

kit (Pierce Chemical Co., Rockford, IL, USA).

Statistics

The results were analyzed by GraphPad Prism version 3.00

software for Windows (GraphPad Software, San Diego, CA,

USA) on a Dell PC computer. Student’s t-test was used to compare

data between two groups. Multiple group comparisons were

performed using one- or two-way ANOVA with Bonferroni

post-test. All data are presented as mean ± standard error of

mean. The value of P < 0.05 was considered significant.
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