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Abstract

The density of states near zero energy in a graphene due to strong point defects with random

positions are computed. Instead of focusing on density of states directly, we analyze eigenfunctions

of inverse T-matrix in the unitary limit. Based on numerical simulations, we find that the squared

magnitudes of eigenfunctions for the inverse T-matrix show random-walk behavior on defect posi-

tions. As a result, squared magnitudes of eigenfunctions have equal a priori probabilities, which

further implies that the density of states is characterized by the well-known Thomas-Porter type

distribution. The numerical findings of Thomas-Porter type distribution is further derived in the

saddle-point limit of the corresponding replica field theory of inverse T-matrix. Furthermore, the

influences of the Thomas-Porter distribution on magnetic and transport properties of a graphene,

due to its divergence near zero energy, are also examined.

PACS numbers: 81.05.ue, 61.72.J-,71.15.-m
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I. INTRODUCTION

Recently, the isolation of single-layer graphene1 has revived much interest in studying

two-dimensional (2D) Dirac fermions. One of the peculiar properties associated with 2D

Dirac fermions is the unusual electronic properties in the presence of defects and disorders.

In the context of cuprate superconductors, where quasi-particles are also 2D Dirac fermions,

disorders have masked the d-wave nature and hindered its discovery. It was later realized

that point defects may change the density of states (DOS) near the Dirac point and strong

point defects may even induce quasi-localized states or magnetic moments near zero energy

in d-wave superconductors2. In the case of graphene, it is found that there is finite density

of states due to weak disorders3. For strong disorders, it was observed that ferromagnetic

state can be induced by bombarding a graphite with protons4. The induced magnetism is

further confirmed to be resulted from π-electrons5. This fact, together with recent obser-

vation of ferromagnetism in disordered graphene6,7, shows that graphene with defects could

become ferromagnetic. In addition to magnetism, graphene also reveals anomalous transport

properties in the presence of strong disorders, where in the presence of vacancies, instead

of decreasing, the conductivity is found to increase8. These observations clearly indicates

that in the presence of strong disorders, 2D Dirac fermions may behave very differently from

what is expected for clean or weak disordered graphene.

Experimentally, there are many possible forms of disorders in graphene9. For large de-

fects such as cracks, they tend to contain the so-called zig-zag edges, where localized states

would appear near the edge10 and induce magnetic behavior11. In this case, magnetic mo-

ments arise from localized states and interact via RKKY (Ruderman-Kittel-Kasuya-Yosida)

interaction, which tends to make graphene antiferromagnetic12. Hence the most possible

candidates for the observed ferromagnetism in graphene are defects of small sizes or sim-

ply point defects. Here the simplest point defects are single-atom vacancies or hydrogen

chemisorption defects. These kinds of defects generally create complicated disturbances in

graphene and may even form ordered structures13. However, for low density of quenched

defects, they can be simulated by a large potential u on a lattice point without distortion

of nearby lattice points14.

Theoretically, extensive studies on a single defect have been performed on d-wave

superconductors2. It is known that a zero-energy electronic state would arise near a point
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defect with u → ∞ or a circular disk in a 2D Dirac Hamiltonian15. Furthermore, the elec-

tronic wavefunction is semi-localized with amplitude decaying as 1/r at large distance r2,15,16.

The semi-localized behavior is clearly revealed in the observed STM images of long-range

(
√
3×

√
3)R30◦ superstructure in graphene17,18. For finite density of defects, one expects that

semi-localized electrons interact strongly and may form an impurity band2,19. Nonetheless,

conflicting results based on either perturbative or non-perturbative approaches are reported2.

The residual DOS near zero energy is predicted to be either finite20, infinite21,22, or vanishing

with different power laws in energy2. This issue remains unsolved.

While quasi-particles in both cuprate superconductors and graphenes are 2D Dirac

fermions, the situation is quite different for graphene. For neutral graphene, even though

excitonic effects are expected to be large23, for low energies and large distances, the screened

Coulomb interaction is shown be long-ranged24 with renormalized dielectric constant. Fur-

thermore, the electron itself is the quasi-particle and carries a definite charge. These differ-

ences make graphene behave totally different from that of cuprate superconductors in the

strong disorders. In particular, without being masked by superconductivity, direct manifes-

tation of the impurity band is possible in graphene. Therefore, investigation on graphene

with strong defects would provide an unique opportunity to clarify the issue of DOS near

zero energy for 2D Dirac fermions with strong disorders. This is recently pointed out in

Ref.[19]. In that paper, the wavefunction for finite density of defects is constructed. By us-

ing the wavefunction for two defects, it is shown that ferromagnetic state is favored for large

distances between two defects. However, for finite density of defects, the problem of finding

DOS is mapped to an equivalent problem of finding the DOS of a random matrix. One has

to assume that the matrix elements are independent random numbers to demonstrate the

induced ferromagnetism19. While the predicted DOS (Wigner semi-circle law) appears to be

consistent with results obtained by self-consistent Born approximation25, to confirm that the

observed ferromagnetism and anomalous transport properties of graphene are consequences

of the impurity band, one needs to go beyond self-consistent Born approximation and to

resolve the issue of how the DOS of 2D Dirac fermions changes in strong disorder limit.

In this paper, we re-examine the density of states of a graphene due to strong point

defects. In particular, we show that the inverse T-matrix for NI point defects can be exactly

mapped to a NI × NI symmetric Euclidean Random Matrix in which one cannot treat

the matrix elements as independent random numbers. Instead of focusing on the DOS
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directly, we analyze magnitudes distribution for eigenfunctions for the derived Random

Matrix. Remarkably, we find that squared magnitudes of eigenfunctions show random-

walk behaviors on defect positions. As a result, the distribution of squared magnitudes of

eigenfunctions for the Euclidean Random Matrix follows the Porter-Thomas distribution.

Further analysis shows that eigenvalues (λ) of the corresponding Euclidean Random Matrix

also follow the Thomas-Porter distribution26 and the DOS near zero energy for infinite u is

D(E) = nI

√

1

8π〈|λ|〉|λ(E)|e
− |λ(E)|

2〈|λ|〉

∣

∣

∣

∣

λ(E)

dE

∣

∣

∣

∣

. (1)

Here nI is the density of defects and 〈|λ|〉 is the average of |λ| over defect configurations.

λ(E) is given by λ(E) = −
√
3

2πD2E ln |E/D| with D = 3t/2 and t being the hopping amplitude

of the electron. This form of the density of states is valid when |E| ≪ t and we found that

〈|λ|〉 ∼ √
nI shows random-walk behavior. The resulting density of states has strong effects

on magnetic and transport properties of graphene. We re-examine the effect of the long-

range Coulomb interaction with renormalized dielectric constant and show that the resulted

DOS supports ferromagnetism for any finite density of defects. At finite temperature, the

linear extrapolation of magnetization curve indicates that Tc ∼ 600 − 700K, in agreement

with experimental observations.

This paper is organized as follows. In Sec. II, we lay down the theoretical formulation and

show that the inverse T-matrix for NI point defects can be exactly mapped to a NI × NI

Euclidean Random Matrix. In Sec. III, we use both analytic arguments and numerical

simulations to derive the density of resonant states. In Sec. IV, we reexamine effects of

the screened long-range Coulomb interaction. We show that the competition between the

exchange energy and kinetic resonant energy leads to ferromagnetism for infinite on-site

potentials. The magnetizations both at zero and finite temperatures are also calculated. In

Sec. V, we conclude and discuss possible effects for weak impurities. Appendix A is devoted

to more rigorous derivation of the Porter-Thomas distribution in the saddle-point limit.

II. THEORETICAL FORMULATION

We start by setting up the framework for investigating the effects of defect. It is known

that electrons in the π band of an infinite graphene can be well described by a tight-binding

Hamiltonian H0
1. As shown in Fig. 1, the lattice of graphene is bi-partite. If we label
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the bi-partite lattice points by A and B, H0 consists of hopping only for nearest A and B

with a hopping amplitude t. Hence if defects are located at ~ri with i = 1, 2, 3, · · · , NI , the

wavefunction ψ for an electron then satisfies

(

H0 + u

NI
∑

i=1

δ~r,~ri

)

ψE(~r) = EψE(~r). (2)

Here and in the following, both ~r and ~ri are restricted to points on the honeycomb lattice

shown in Fig. 1. To find the effects of defects on the electronic state, it is sufficient to

A

AA

AA

A

B

B

BB

B

B

a

A

FIG. 1: Honeycomb lattice of graphene. The lattice is bi-partite, labeled by A and B , with hopping

amplitude between nearest A and B being t ∼2.7eV. The lattice constant a = 2.46Å is the distance

between two nearest B points.

calculate the Green’s function G(~r, ~r′, E), which describes the amplitude for the electron to

propagate from ~r′ to ~r and satisfies

(E −H)G(~r, ~r′, E) = δ~r,~r′, (3)

where H = H0 + u
∑NI

i=1 δ~r,~ri. For clean graphene, the Green’s function will be denoted by

G0(~r, ~r′, E). In the Fourier k space, it is convenient to reorganize the wavefunction into ψA

and ψB for A and B sublattices. Then G0(k) is the inverse of the 2×2 matrix, E+i0+−H0(k),

with H0(k) being given by

H0(k) =





0 ∆(k)

∆∗(k) 0



 , (4)
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where ∆(k) = −t[2eikya2
√
3 cos(kxa/2) + e−ikya/

√
3]. More explicitly, one finds

G0
AA = G0

BB

=
1

2

[

1

E + i0+ − |∆(k)| +
1

E + i0+ + |∆(k)|

]

(5)

G0
AB

=
∆(k)

2|∆(k)|

[

1

E + i0+ − |∆(k)| −
1

E + i0+ + |∆(k)|

]

G0
BA

=
∆∗(k)

2|∆(k)|

[

1

E + i0+ − |∆(k)| −
1

E + i0+ + |∆(k)|

]

(6)

In real space, it is more convenient to use lattice vectors ~r to carry indices for A and B

sublattice. Therefore, G is no longer a 2× 2 matrix and can be expressed in terms of G0 as

G(~r, ~r′, E) = G0(~r, ~r′, E) + u

NI
∑

i=1

G0(~r, ~ri, E)G(~ri, ~r
′, E). (7)

Clearly, to find G(~r, ~r′, E), one needs to find G(~ri, ~r
′, E) in Eq. (7). For this purpose, one

sets ~r to ~ri with i = 1, 2, 3, · · · , NI in Eq. (7) and solves G(~ri, ~r
′, E) in terms of G0(~ri, ~r

′).

If we replace the notation G(~ri, ~r
′, E) by G~ri,~r′ with E being suppressed, we obtain



























G~r1,~r′

G~r2,~r′

G~r3,~r′

·
·

G~rNI ,~r
′



























= 1/u





























1/u−G0
~r1,~r1

−G0
~r1,~r2

−G0
~r1,~r3

· · −G0
~r1,~rNI

−G0
~r2,~r1

1/u−G0
~r2,~r2

−G0
~r2,~r3

· · −G0
~r2,~rNI

−G0
~r3,~r1

−G0
~r3,~r2

1/u−G0
~r3,~r3

· · −G0
~r3,~rNI

· · · · ·
· · · · ·

−G0
~rNI ,~r1

−G0
~rNI ,~r2

−G0
~rNI ,~r3

· · 1/u−G0
~rNI ,~rNI





























−1


























G0
~r1,~r′

G0
~r2,~r′

G0
~r3,~r′

·
·

G0
~rNI ,~r

′



























.(8)

Here the matrix on the right hand side is the T-matrix whose inverse determines resonant

energies and can be separated into real and imaginary parts
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T−1 =



























1/u− G11 −G12 · · −G1NI

−G21 1/u− G22 · · −G2NI

−G31 −G32 · · −G3NI

· · · · ·
· · · · ·

−GNI 1 −GNI 2 · · 1/u− GNINI



























− i



























I11 I12 · · I1NI

I21 I22 · · I2NI

I31 I32 · · I3NI

· · · · ·
· · · · ·

INI1 INI2 · · ININI



























, (9)

where Gij and Iij are the real and imaginary parts of G0
ij . Note that due to the Kramers-

Kronig relation, Gij and Iij are related by

Iij(E) = P
∫ Gij (E

′)

E − E ′dE
′. (10)

Therefore, real (T−1
R ) and imaginary parts (T−1

I ) of T−1 can be diagonalized simultaneously.

In particular, their eigenvalues are also related by the Kramers-Kronig relation

λI(E) = P
∫

λG(E
′)

E − E ′dE
′. (11)

It is thus clear that the resonant energies of the Green’s function G are determined by zeros

of eigenvalues of TR. Therefore, resonant energies due to defects are determined by

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1/u− G11 −G12 · · −G1NI

−G21 1/u− G22 · · −G2NI

−G31 −G32 · · −G3NI

· · · · ·
· · · · ·

−GNI 1 −GNI 2 · · 1/u− GNINI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (12)

Note that the above condition is exactly the same as the one obtained via the constructed

wavefunction for defects19 and should be compared to the similar equation obtained in the

context of d-wave superconductors21. Since a graphene without defect is translationally

invariant, one has G0
ij = G0(~ri− ~rj). Therefore, diagonal terms in Eq.(12) are identical and

are equal to λ(E) ≡ 1/u−ReG0 (0,E ). Hence if the positions of defects are random, solving
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Eq.(12) is equivalent to finding eigenvalues of the random matrix

HI =



























0 G12 · · G1NI

G21 0 · · G2NI

G31 G32 · · G3NI

· · · · ·
· · · · ·

GNI 1 GNI 2 · · 0



























. (13)

Furthermore, if one defines the density of eigenvalues for HI by

D(λ) =
1

M

∑

n

δ(λ− λn), (14)

withM being the total number of lattice points and λn being the n-th eigenvalue, the density

of resonant states is given by

D(E) = D(λ(E ))

∣

∣

∣

∣

dλ(E )

dE

∣

∣

∣

∣

. (15)

Therefore, it is sufficient to find the distribution of eigenvalues for HI . We note in passing

that if values of λG form a band after averaging over defect configurations, it implies that the

averaged 〈λG〉 is independent of E. Eq.(11) then implies that except for contributions from

diagonal terms Inn, off-diagonal terms do not contribute to the imaginary part of eigenvalues.

Hence if values of λ form a band, one has T−1
I = −ImG0 (0,E )I. Since ImG0 (0,E ) ∝ E , this

result implies that the inverse of lifetime for resonant states is proportional to E, consistent

with experimental observation27.

III. DENSITY OF RESONANT STATES

In the last section, it is shown that the density of resonant states is determined by the

spectrum of HI . Since each element, Gij , depends on positions of defects, they fluctuate

randomly. In the simplest approximation, one treats each element as an independent ran-

dom number. The density of states is characterized by the Wigner semi-circle law19. As

indicated earlier, this approximation appears to be equivalent to the self-consistent Born

approximation25. A closer examination of HI shows that the dependence of each matrix

element on the position ~ri makes them correlated. Hence one cannot treat each element as
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an independent random number. Indeed, it was realized in different context by Mezard et

al.28 that such random matrices form distinct classes known as Euclidean Random Matrices,

whose spectrum depends on the functional form of the matrix element on ~ri .

It is generally difficult to find the exact spectrum for any given Euclidean Random Matri-

ces. For defects on graphene, however, it turns out that the spectrum of HI follows a simple

form known as the Porter-Thomas distribution26. In this section, we shall focus on the study

of the spectrum by numerical simulation. An analytical derivation based on saddle-point

approximation will be relayed to the Appendix.

We start by noting that since one expects that the energies of resonant states are close

to zero, as a first step, we can approximate each matrix element by Gij (E = 0 ). We shall

see later that the error due to this approximation is small for E ∼ 0. In this approximation,

by using Eqs.(5) and (6), one finds GAA(r, E = 0) = GBB(r, E = 0) = 0 and GBA(j, i) =

G∗
AB(i, j). Hence HI is a symmetric matrix. Furthermore, since in the second quantization

form, HI =
∑

ij Gijc
†
AicBj + h.c., we find that HI goes to −HI under the particle-hole

transformation: c†Ai → −cAi and cBj → c†Bj . Therefore, the spectrum is particle-hole

symmetric, i.e., D(−λ) = D(λ). In addition of being particle-hole symmetric, HI itself

also supports energy states exactly at zero energy due to the unbalance in the number of

lattice points in A and B29. Since the number of zero energy states is equal to |NA − NB|,
if lattice points are randomly assigned to A or B, one finds |NA − NB| ∼

√
NI and hence

their contribution is negligible in the limit of M → ∞ with NI/M being fixed at the defect

density nI . Therefore, in the following, we shall focus on density of resonant states for the

case with NA = NB to avoid complications due to extra zero energy states.

For high density of defects, because the positions of defects sample sufficient lattice points,

HI can be diagonalized by Fourier transformation. Hence eigenvalues of HI are proportional

to the Fourier transformation of Gij . We find that

D(λ) ∝
∫ ∫

d2q

(2π)2

[

δ

(

λ− 1

|∆(q)|

)

+ δ

(

λ+
1

|∆(q)|

)]

.

(16)

In this case, because 0 ≤ |∆(q)| ≤ 3t, we obtain λ ≥ 1/3t. Therefore, there is no resonant

defect state near zero energy for sufficient high density of defects.

For low density of defects, the separation between any two defects is large. In this case,
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FIG. 2: (Color on-line) Participation number (p = 1/
∑

i |φ(~ri)|4) and histogram of |φλ|2 of different

λ’s and p’s (indicated by sub-indices of λ) for a typical defect configuration simulated with NI =

1000 and M = 1000 × 1000, i.e., nI = 0.001. Here red solid lines are the fitted Boltzmann

distributions.

by using Eqs.(5) and (6), we find that for 0 < |E|r/v ≪ 121,

GAA(r, E) = GBB(r, E) =
√
3a2

2πv2
cos

(

4πx

3a

)

E ln
r|E|
v
,

(17)

GAB(r, E) = GBA(r, E) =
√
3a

2πv

1

r/a
sin

(

4πx

3a

)

. (18)

Here v = 3ta/2. While for E = 0, as we indicated earlier, GAA(r, E = 0) = GBB(r, E = 0) =

0 but GAB(r, E = 0) is given by Eq.(18). For r = 0, we obtain

GAA(0, E) = GBB(0, E) =
√
3a2

2πv2
E ln

a|E|
v

. (19)

To motivate it, instead of focusing on DOS directly as done in the d-wave

superconductors2,21, we analyze the distribution of the eigenfunction amplitudes φλ(~ri) of

HI at a fixed eigenvalue λ

P (|φ|2) = 1

M

∑

i

δ(|φ|2 − |φλ(~ri)|2). (20)

Here φλ(~ri) is normalized so that

∑

i

|φλ(~ri)|2 = 1. (21)
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Hence if there is no bias on partitioning |φ|2, one expects |φ|2 follows the Boltzmann type

distribution, P (|φ|2) ∝ e−α|φ|
2
. Indeed, in the limit M → ∞, Porter and Thomas26 derived

the following distribution

P (t) =
1

2πs〈s〉e
− s

2〈s〉 , (22)

where s = |φ|2 and 〈s〉 is the average of |φ|2. The same distribution can also be derived in

the non-linear sigma model30. The Porter-Thomas distribution, however, is not universal

and is valid only when the system is sufficiently chaotic31. Since the matrix element Gij
decays slowly (1/r), φλ at each point ~ri is determined by all other defects with random

positions. In other words, HI is a random hopping model in which φi characterizes density

of random walkers on defect position ~ri. Since the probability for finding a random walker at

the traveling distance r is proportional to e−r
2/2〈r2〉, by comparison with Eq.(22), one expects

that the Porter-Thomas distribution works for HI with φ playing the role of distance. More

explicitly, for a random walker described by ~r(t), one finds 〈r2〉 ∝ t at time t. Here t

characterizes the number of attempts in a random walk. By analogy, NI would be the

number of attempts. Therefore, we expect

〈|φ|2〉 ∝ √
nI . (23)

Based on Eq.(18), we perform extensive numerical analysis on the statistics of eigenstates

of HI . To see if there is correlation between distribution and localization of φλ, we also

analyze the participation number p = 1/
∑

i |φ(~ri)|4 and find the distribution for different

participation numbers. Fig. 2 shows the statistics of wavefunction amplitudes for a typical

defect configuration. It is clear that regardless of whether the eigenfunction is localized or

not, distribution of amplitudes follow the Porter-Thomas distribution for all participation

numbers.

For different λ, in addition to Eq.(21), partition of eigenfunction amplitudes φ has an

addition constraint
∑

ij

φi(HI)ijφj = λ, (24)

where (HI)ij = Gij for i 6= j and (HI)ii = 0. It is clear that for different λ, φ ∝
√
λ. Hence

by replacing φ by
√

|λ| in Eq. (22) with appropriate normalization, we expect that the

distribution for λ also follows the Porter-Thomas distribution

D(λ) = nI

√

1

8π〈|λ|〉|λ|e
− |λ|

2〈|λ|〉 . (25)
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Here according to Eq.(23), we expect 〈|λ|〉 ∝ √
nI . The proportional constant will be deter-

mined numerically. The normalization D in Eq.(25) is chosen by requiring
∫∞
−∞ dλD(λ) = nI .

Note that for later use in the calculation of magnetization, the normalization of D has to

be done by taking into account the presence of Dirac band.

Fig.3(a) shows a typical spectrum of our numerical simulations of the spectrum averaged

over 1000 defect configurations. It shows that the spectrum can be well described by the
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FIG. 3: (Color on-line) (a) Averaged spectrum of HI (with Gij(E = 0) as the matrix element)

over 1000 defect configurations. Here nI = 1000, M = 1000 × 1000 and we have set t = 1.

Black circles are numerical results while the red line is the fitted Porter-Thomas distribution with

D(λ) = 2.17e−45.438|λ|/
√

|λ|. Inset: The corresponding density of electronic states for u = ∞.

(b) Random-walk behavior of φ: The dependence of 〈λ〉 on the defect density
√
nI shows linear

behavior with a slope 0.464. Here open circles are numerical results obtained by the fitted Porter-

Thomas distribution while the red line is the linear curve of slope 0.464. There is a small error

offset by −0.0038.

Porter-Thomas distribution. Fig.3(b) shows the fitted parameter 〈λ〉 versus density of de-

fects. It indicates that 〈λ〉 follows a simple form of nI by 〈λ〉 ≈ √
nI . Once one knows the

spectrum of HI , by using Eq.(19), the density of resonant energies can be found by setting

λ = 1/u − GAA/BB(0, E). This results in Eq.(1). In the inset of Fig.3(a), we show the

corresponding electronic DOS for u = ∞. It is clear that the DOS diverges at E = 0.

We close this section by checking the validity of setting E = 0 in Gij(E). For a given

finite E, because λ = 1/u−G(0, E), there is only one value of λ corresponding to the given

E. Hence for a given E, only the spectrum at λ = 1/u − G(0, E) is correct. To get the

12



whole spectrum, it is necessary to vary E and obtain the spectrum at each λ(E) one by

one. Note that by using Eqs.(5) and (6), one finds that Gij(−E) = −Gij(E) and hence the

resulting spectrum is still particle-hole symmetric. In Fig.4, we show the comparison of the

spectrum for HI by using Gij(E) and Gij(E = 0). It is clear that the difference is small and

both spectra follow the Porter-Thomas distribution, in agreement with the derivation in the

Appendix that is based on saddle-point approximation.

-0.002 -0.001 0 0.001 0.002
λ
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40

80

120

160
D

(λ
)

FIG. 4: (Color on-line) Comparison of the spectrum of HI determined by using Gij(E) (open

circles) and Gij(E = 0) (red crosses) as matrix elements. Here nI = 1000, M = 1000 × 1000 and

we have set t = 1. Both spectra can be fitted with the Porter-Thomas distributions with slightly

different 〈|λ|〉.

IV. EFFECTS OF COULOMB INTERACTION AND FERROMAGNETISM

In this section, we discuss effects of the Coulomb interaction due to the change of density

of states. To include the effects of Coulomb interaction, we note that for neutral graphene,

even though excitonic effects are expected to be large23, for low energies and long distances,

screening can be taken into consideration by the renormalization of v and the dielectric

constant ǫ24. Hence for low density of defects in which separation between any two defects

is large, one needs to replace v by vR in Eqs. (17) and (18). This would effectively replace

the hopping amplitude t by tR.

As indicated in the introduction, strong disorders in a graphene are a possible source

for the observed ferromagnetism. To examine whether the Porter-Thomas type distribution

supports ferromagnetism, we first note that the normalization adopted in Eq.(25) has to

13



be corrected by taking into account the conservation of states. As indicated in Fig.5, since

resonant states replaces states in Dirac band, it requires a cutoff Λ in the impurity band

so that numbers of states for the impurity band and the Dirac band are equal. Since

E

D(E)

1/u

Λ-Λ

FIG. 5: Schematic plot of the impurity band and the original Dirac band. Here the solid lines

at center represent the impurity band when u = ∞. For a small finite u, the impurity band

(represented by the dash line) is shifted into the Dirac band and disappears

number of states for the impurity band per site is nI , integration of the Dirac band yields

Λ =
√

π/4vRnI . By including the cutoff Λ, appropriate normalized DΛ is given by

DΛ(λ) =
nI

√

8π〈|λ|〉erf(
√

λΛ/2〈|λ|〉)
e
− |λ|

2〈|λ|〉 . (26)

Here erf is the error function and λΛ = λ(Λ). Note that when v is renormalized to vR, both

〈|λ|〉 and λΛ are renormalized by the same factor vR/v.

To investigate the magnetism, we note that the electron wavefunction ψE is related to

the eigenfunction φ of HI as follows
19

ψE(~ri) =
∑

j=defectpositions

GijAjE. (27)

Here AjE is proportional to φj. The normalization of AjE is determined by 〈∑i ψ
2
E(~ri)〉 =

1. The applicability of the Porter-Thomas distribution implies that φj (thus AjE) follows

Gaussian statistics26. Hence we have

〈AiEAjE〉 = Γδij . (28)

By expressing Gij = 1
M/2

∑

~q G(~q)ei~q·(~ri−~rj) and using the fact that GAA(r, E = 0) =

GBB(r, E = 0) = 0, we find Γ = 1/(NIγ) with

γ =
1

M/2

∑

~q

GAB(~q)GAB(−~q). (29)

14



We shall include the Coulomb interaction by calculating the exchange energy. For a neutral

graphene, it is known that screened Coulomb interaction is still long-ranged1,24

HC =
e2

8πǫ

∑

i,j,σ,σ′

C†
iσCiσ

1

|~ri − ~rj |
C†
jσ′Cjσ′, (30)

where ǫ is the renormalized dielectric constant and is roughly 2.3ǫ0. To obtain the exchange

energy, Eq.(27) is replaced by C†
iσ =

∑

E,j A
j
EGij(E)C

†
Eσ. By setting any pair of C†

EσCE′σ′

by its average value 〈C†
EσCE′σ′〉, using the fact 〈AiE1

AjE2
AkE2

AlE1
〉 = 〈AiE1

AlE1
〉〈AjE2

AkE2
〉 and

approximating Gij(E) by Gij(0), we find that the exchange energy is given by

Eex = −
e2(n2

↑ + n2
↓)

8πǫγ2
B (31)

with

B =
∑

i,j

1

|~ri − ~rj|

(

NI
∑

k=1

GikGjk
)2

, (32)

where nσ = Nσ/NI are fractions of electrons in the spin state σ. By approximating Gij(E)
by Gij(0) and expressing Gij in Fourier space, we find

B

M
=

16πn2
I√

3a2M2
×

∑

q,q′

1

|~q + ~q′|GAB(~q)GAB(−~q)GAB(~q
′)GAB(−~q′) (33)

where only the i and j in the same sublattice would contribute. Since for E ∼ 0, Eq.(6)

implies GAB diverges near Dirac points ~qD. The main contribution in the integral of B comes

from regions of ~qD. By setting ~q to any one of the Dirac points in the factor 1/|~q + ~q′|, we
find

B

M
=

2 +
√
3

4a
n2
Iγ

2. (34)

In the ferromagnetic state, we have n↑ 6= n↓ with Eσ being the corresponding Fermi energy

for the spin state σ. The net spin moment is proportional to m ≡ n↑ − n↓. Substituting

Eq.(34) back to Eex, we find that the exchange energy per site due to m is given by

Eex
M

= −e
2m2

16πǫ

2 +
√
3

4a
n2
I . (35)

For an undoped graphene, E↓ = −E↑. In this case, the net spin m can be expressed as
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FIG. 6: (Color on-line) Magnetization per defect for u = ∞ with screened (ǫ = 2.3ǫ0, vR = 1.3v)

and unscreened (ǫ = ǫ0, vR = v) Coulomb interactions. (a) Magnetization versus defect density at

zero temperature (b) A typical temperature dependence of magnetization for nI = O(10−3). There

is no sharp transition temperature. However, by linear extrapolation, one finds that Tc is around

600 − 700K.

m = 2
∫ E↑

0
dEDΛ(E), while the change of the total energy in the impurity band per site is

∆k = 2
∫ E↑

0
dEEDΛ(E). The minimization of ∆k+Eex/M with respect to E↑ then leads to

(2 +
√
3)e2nI

16πǫa

∫ λ(E↑)

0

DΛ(λ)dλ = E↑. (36)

Solving Eq.(36) yields E↑ which in turn determines the magnetization per defect at zero

temperature. The same calculation can be easily generalized to any finite temperature T .

In this case, the magnetization is still determined by the minimization of ∆k+Eex/M with

respect to E↑ except that now m and ∆k are replaced by

m =

∫ ∞

−∞
dEDΛ(E) [n↑(E)− n↓(E)] , (37)

∆k =

∫ ∞

−∞
dEDΛ(E) [n↑(E) + n↓(E)− 2n0(E)] , (38)

where nσ(E) = 1/(eβ(E+Eσ)+1) are the Fermi-Dirac distributions for σ =↑ or ↓ and n0(E) =

1/(eβE + 1) with β = 1/kBT .

In Fig.6(a), we show the magnetization at zero temperature for u = ∞ with screened and

unscreened Coulomb interaction by solving Eq.(36). It is seen that screening reduces the

magnetization. Furthermore, due to the divergent DOS at E = 0, ferromagnetism persists

down to zero defect density and magnetization increases as defect density increases. Fig.6(b)
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shows a typical temperature dependence of magnetization for nI = O(10−3). The temper-

ature dependence shows a quasi-linear behavior with a Boltzman tail. To compare with

experiments, we perform the linear extrapolation of magnetization curve, which indicates

that Tc ∼ 600− 700K, in agreement with experimental observations32.

V. SUMMARY AND DISCUSSION

In summary, in this work we have shown that in the strong disorder limit, a resonant

impurity band is induced in a graphene. By combining analytic arguments and numerical

calculations, we show that the density of resonant states is governed by the principle of

equal a priori probabilities for squared magnitudes of eigenfunctions of a Euclidean Random

Matrix. For large on-site defect potential, the principle of equal a priori probabilities shows

that the density of resonant states is characterized by the Thomas-Porter distribution and

is divergent near zero energy. Furthermore, we show that the observed ferromagnetism

is due to the combination of strong disorder and long-range Coulomb interaction. The

linear extrapolation of magnetization curve indicates that Tc ∼ 600− 700K, as observed in

experiments.

In addition to the magnetism, the impurity band enhances the transport19. This is

consistent with experimental observations8 but is quite different from ordinary impurity

states even though in the calculated participation number ofHI in Fig.2, some eigenfunctions

φ are localized. The crucial difference lies in the semi-localized nature of the electronic states

as revealed in Eq.(27). Here even though AjE (thus φj) is localized, due to that G ∼ 1/r,

ψE will not be exponentially localized around defect positions. The participation number

for ψE itself is of the order of (lnM)2, indicating its semi-localized nature.

While so far in this work we only consider the strong disorder limit, the results also pro-

vide some insight into the weak disorder region. As illustrated in Fig.5, for weak disorders,

u is small, the impurity band is shifted into the Dirac band. In this case, while the majority

weight of the impurity band disappears, its tail still sweeps through zero energy and con-

tributes small but finite DOS. As indicated above, these density of states generally enhances

the transport. This explains why when graphene is made cleaner, the conductivity, instead

of increasing, decreases and appears to approach an universal constant1. While the impurity

band cannot account for the exact value of the universal conductivity, our results serve as a

17



useful starting point for obtaining corrections to the conductivity.
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Appendix A: Saddle-point limit and Porter-Thomas distribution

In this appendix, we shall show that the eigenvalue distribution for HI follows the Porter-

Thomas distribution in the limit of NI → ∞ but with the defect density nI being fixed. We

start by noting that the spectrum of HI can be found by calculating the resolvent

R(z) = 〈 1

M
Tr

1

z −HI
〉, (A1)

where M is the total number of lattice points and 〈·〉 is the average over the random config-

urations of defects. Clearly, we have D(λ) = −1
π
ImR(λ + i0+). As shown in the text, since

the spectrum has particle-hole symmetry, we shall set λ to |λ| and consider only positive

λ. The evaluation of R(z) can be reformulated by a replica field theory28 via the following

identity

R(z) = lim
n→0

−1

nM

∂

∂z
〈e−nTr log(z−HI )〉

= lim
n→0

−1

nM

∂

∂z

〈

1

det(z −HI)n

〉

. (A2)

The term 1/ det(z −HI)
n can be re-expressed by n replica complex fields φa (a=1,2,3,..,n)

as follows
〈

1

det(z −HI)n

〉

=

〈

∫ NI
∏

i=1

n
∏

a=1

Dφe−
∑
ij φ

a
i
∗(HI)ijφ

a
j

〉

.

(A3)

Up to now φa is only defined on defect sites. To remove this constraint, one introduces the

field ψ̂a defined on every lattice site and impose δ[ψ̂a(~r) −
∑

i φ
a
i δ~r,~ri]. The constraint of

the delta function can be removed by using the identity δ(F ) =
∫

dψae
iψaF . Here ψa is the

replica field. After integrating out φai and ψ̂a, the resolvent can be expressed as28

R(z) = − lim
n→0

1

nM

∂ logZ

∂z
, (A4)
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where the partition function Z is given by Z =
∫

Dψe−S with S being given by

S = −
n
∑

a=1

∑

i,j

ψ∗
a(~ri)Fijψa(~rj)− nI

∑

i

e−
1
z

∑
a |ψa(~ri)|2 . (A5)

Here Fij = G−1
ij − δijG−1

ii . Note that because G0 = 1/(E − H), we have that for E ∼ 0,

Fij = −(H0)ij. In other words, −F has the same form as the tight-binding Hamiltonian for

graphene except that it only acts on defect sites.

After substituting Z back to R, we find

R(z) = − lim
n→0

nI
nM

∫

Dψ 1
z2

∑

a,i |ψa(~ri)|2e−
1
z

∑
b |ψb(~ri)|2e−S

∫

Dψe−S

= − lim
n→0

nI
M

∫

Dψ 1
z2

∑

i |ψ1(~ri)|2e−
1
z

∑
b |ψb(~ri)|2e−S

∫

Dψe−S .

(A6)

Here we have made use of the equivalence among different replica component a and the

equivalence among different positions ~ri in the second equality.

It is clear that in Eq.(A6), the replica symmetry is broken. One needs to perform inte-

grations for ψ1 and ψa with a 6= 1 separately. For ψ1, the integrand can be rewritten as
∑

i e
−Si1 with Si1 given by

Si1 =
|ψ1(~ri)|2

z
− ln |ψ1(~ri)|2 + S. (A7)

Since we shall be interested in z ∼ 0, i.e., energy near zero, in the saddle-point approxi-

mation, integration over ψ1 is dominated by the maximum of Si1, which is determined by

∂
∂ψ∗

1 (~ri)
Si1 = 0 for all ~ri. We find that maximum of Si1 satisfies

|ψ0
1(~ri)|2
z

(1 + nIe
− 1
z

∑
a |ψa(~ri)|2)− 1

−ψ0∗
1 (~ri)

∑

j

Fijψ
0
1(~rj) = 0. (A8)

It is clear that for low density, we can expand ψ0
1 in term of nI . We find |ψ0

1(~ri)|2/z =

1−nIe−
1
z

∑
a |ψa(~ri)|2−ψ0∗

1 (~ri)
∑

j Fijψ
0
1(~rj)+ · · · . Because Fij is finite, we obtain ψ0

1(~ri) ∼
√
z

for all ~ri. As a result, the integration of ψ1 in Eq.(A6) can be approximated as

1

M

∫

Dψ1
1

z2

∑

i

|ψ1(~ri)|2e−
1
z

∑
b |ψb(~ri)|2e−S

∼ 1

M

∑

i

√

2π

(Si1)
′′

z

z2
e−zbIi ∼

1

M

∑

i

e−bz√
z
Ii. (A9)
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Here b is a constant that results from Fij and (Si1)
′′
is the 2nd derivative of Si1 with respect

to ψ0
1 and is proportional to 1/z. Ii is the integration over ψa(~ri) with a 6= 1 and is given by

Ii =

∫

Dψa(~ri)e−
1
z

∑
a 6=1 |ψa(~ri)|2e−S

′

= 〈e− 1
z

∑
a 6=1 |ψa(~ri)|2〉′Z ′

n−1, (A10)

where 〈〉′ is the average with respect to S ′ and Z ′
n−1 =

∫

Dψae−S′
with S ′ being given by

S ′ = −
n
∑

a=2

∑

i,j

ψ∗
a(~ri)Fijψa(~rj)− nIe

−1
∑

i

e−
1
z

∑
a |ψa(~ri)|2 . (A11)

It is clear that different a and i are equivalent. Therefore, we obtain

1

M

∑

i

Ii = 〈e−n−1
z

|ψb(~ri)|2〉′Z ′
n−1. (A12)

Combing Eqs. (A9) and (A12) gives the limiting behavior of the numerator for small z. To

obtain the spectrum for small λ, one needs to find the analytical continuation by replacing

z by λ+ i0+. Clearly, the factor e−bz/
√
z only contributes the real part. Together with the

fact that the denominator is Z = e−nTr log(z−HI ), which goes to one when n approaches zero,

we find that

D(λ) = nI
e−bλ√
λ

lim
λ→0,n→0

Im〈e
|ψb(~ri)|

2

λ+i0+ 〉′Z ′
−1. (A13)

Both 〈e 1
z
|ψb(~ri)|2〉′ and Z ′

−1 can be calculated perturbatively with finite results in the limit

λ→ 028. After appropriate normalization, one finds the spectrum of λ follows the form

D(λ) = nIe
−b|λ|

√

b

4π|λ| . (A14)
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L. Schlapbach, and P. Gröning, Phy. Rev. Lett. 84, 4910, 2000.

18 M. M. Ugeda, I. Brihuega, F. Guinea, and J. M. Gomez-Rodriguez, arXiv: 1001.3081 (2010).

19 B.-L. Huang and C.-Y. Mou, Eur. Phys. Lett. 88, 68005 (2009).

20 K. Ziegler, M. H. Hettler, and P. J. Hirschfeld, Phys. Rev. Lett. 77, 3013, (1996).

21 C. Pepin and P.A. Lee, Phys. Rev. Lett. 81, 2779 (1998); Phys. Rev. B 63, 054502 (2001).

22 Jian-Xin Zhu, D. N. Sheng, C. S. Ting, Phys. Rev. Lett. 85, 4944 (2000).

23 Li Yang, J. Deslippe, C.-H. Park, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 103, 168802

(2009).

21



24 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 93, 197402 (2004); D. E. Sheehy and J. Schmalian,

Phys. Rev. Lett. 99, 226803 (2007).

25 N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B 73, 125411(2006).

26 C. E. Porter and R. G. Thomas, Phys. Rev. 104, 483, (1956); C. E. Porter, Statistical Theories

of Spectra: Fluctuations(Academic Press, New York, 1965).

27 S. Xu, J. Cao, C. C. Miller, D. A. Mantell, R.J.D. Miller, and Y. Gao, Phys. Rev. Lett. 76, 483

(1996).

28 M. Mezard, G. Parisi and A. Zee, Nucl. Phys. B 559, 689 (1999); A. Zee and Ian Affleck, arXiv:

cond-mat/0006342.

29 P. W. Brouwer, E. Racine, A. Furusaki, Y. Hatsugai, Y. Morita, and C. Mudry, Phys. Rev. B

66, 014204 (2002).

30 V. I. Fal’ko and K. B. Efetov, Phys. Rev. B 50 11267, (1994).

31 K. Müller, B. Mehlig, F. Milde, and M. Schrieber, Phys. Rev. Lett. 78, 215 (1997).

32 J. Barzola-Quiquia, P. Esquinazi, M. Rothermel, D. Spemann, T. Butz, and N. GarciaPhys.

Rev. B 76, 161403(R) (2007).

22

http://arxiv.org/abs/cond-mat/0006342

	I Introduction
	II Theoretical Formulation 
	III Density of resonant states
	IV Effects of Coulomb interaction and ferromagnetism
	V Summary and discussion
	 Acknowledgments
	A Saddle-point limit and Porter-Thomas distribution
	 References

