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Abstract. This paper considers the non-axisymmetric three-dimensional problem of a penny-shaped
crack with permeable electric conditions imposed on the crack surfaces, subjected to a pair of point
normal forces applied symmetrically with respect to the crack plane. The crack is embedded in
an infinite transversely isotropic piezoelectric body with the crack face perpendicular to the axis
of material symmetry. Applying the symmetry of the problem under consideration then leads to a
mixed–mixed boundary value problem of a half-space, for which potential theory method is employed
for the purpose of analysis. The cases of equal eigenvalues are also discussed. Although the treatment
differs from that for an impermeable crack reported in literature, the resulting governing equation still
has a familiar structure. For the case of a point force, exact expressions for the full-space electro-
elastic field are derived in terms of elementary functions with explicit stress and electric displacement
intensity factors presented. The exact solution for a uniform loading is also given.

Key words: Exact point force solution, penny-shaped crack, permeable crack, piezoelectric medium,
potential theory.

1. Introduction

The fracture of piezoelectric materials has gained intense research interest in recent
decades due to the susceptibility of piezoceramics, the most commercial piezoelec-
tric materials of practical importance, to cracking. The review papers of Zhang
et al. (2002), Chen and Lu (2003) and Zhang and Gao (2004) have given an excellent
description of the state-of-the-art of fracture mechanics of piezoelectric materials in
various aspects including thermodynamic approaches, two-dimensional cracks, inter-
face cracks, three-dimensional cracks, fracture criteria, electric conditions along the
crack face, and experimental observations, etc. The readers are referred to the above
three papers for a long list of relevant references. Those mentioned here are the elec-
tric conditions at crack surfaces adopted in the literature. According to Chen and Lu
(2003), there are currently five types of boundary conditions at the crack surfaces,
i.e. (a) impermeable cracks with traction-free surfaces; (b) permeable cracks with trac-
tion-free surfaces; (c) cracks with exact electric boundary and traction-free surfaces;
(d) impermeable cracks with near-tip microstructural features; and (e) impermeable
(or permeable) cracks with contacting surfaces. The last two types of conditions are
generally non-linear and are introduced to study more complicated effects such as
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electric-field induced yielding and crack closure. The first three types of conditions
are linear, and the impermeable crack and the permeable crack are actually two lim-
iting cases of the crack with exact electric boundary conditions (Zhang and Tong,
1996). Although it is more reasonable to adopt the exact electric boundary conditions
in linear fracture analysis of piezoelectric materials, as evidenced by the recent exper-
imental observation (Schneider et al., 2003), the corresponding theoretical analysis is
very complicated, and it is very difficult to obtain an exact solution for a general
three-dimensional crack. On the other hand, the upper and lower bounds of some
fracture parameters, for example the crack opening displacement, of piezoelectric
materials can be determined when the impermeable and permeable crack solutions
are known. Thus, it is still of theoretical importance to acquire analytical solutions
of both impermeable and permeable cracks.

The method of potential theory proposed by Fabrikant (1986) has been applied
extensively in engineering and many new exact three-dimensional solutions of mixed
and mixed–mixed boundary value problems for transversely isotropic elasticity have
been reported (Fabrikant, 1989, 1991). In recent years, Chen et al. (Chen and Shioya,
1999a,b, 2000; Chen et al., 2000, 2001a,b) and Hou et al. (2001) applied Fabrikant’s
method to piezoelasticity and obtained several important exact three-dimensional
solutions of crack problems. The key point for successful application of Fabrikant’s
method is to introduce an additional potential of a simple layer to account for the
electric field in piezoelectric materials (Chen and Ding, 2004). It was found that
the resulting governing integro-differential equations have the same structure as that
appearing in the elastic fracture analysis of transversely isotropic materials. Thus,
the new results in potential theory derived by Fabrikant (1989, 1991) can be utilized
directly. However, the analyses mentioned above were all confined to impermeable
cracks.

Although there are a lot of two-dimensional studies on permeable cracks (Zhang
and Gao, 2004), the corresponding three-dimensional work is still very limited. Yang
and Lee (2001) considered the problem of a permeable penny-shaped crack in a pie-
zoelectric strip. Later, they studied the problem of a permeable penny-shaped crack
in a piezoelectric cylinder surrounded by an infinite elastic medium (Yang and Lee,
2003). Recently, Li and Lee (2004) presented an exact solution for an external cir-
cular crack with permeable electric conditions. It is noted that, although different
problems were solved, the above three papers are all limited to the axisymmetric
case and hence the Hankel transform technique was widely used. There is an alter-
native way to derive the solution of a permeable penny-shaped crack in an infi-
nite piezoelectric material subjected to remote uniform loading (Kogan et al., 1996).
This method can be named as spheroidal-inclusion-approach since the solution of
the penny-shaped crack is obtained from that of a spheroidal inclusion through a
limiting procedure (there is a corresponding term “elliptical-cavity-approach” in the
two-dimensional case according to Zhang and Gao (2004)). The only investigation
on non-axisymmetric permeable crack was conducted by Yang and Lee (2002), who
employed Hankel transform as well as Fourier series expansion to derive an ana-
lytical solution in the transformed domain for a penny-shaped crack in a piezoelec-
tric strip. Numerical methods were employed for the inversion of transformed field
variables. Hitherto, there are no exact solutions available in literature for non-axisym-
metric problems (mode I) of permeable cracks. It is also noted that the results based
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on permeable and impermeable assumptions are identical for mode II and mode III
problems of a penny-shaped crack as shown in Chen and Shioya (2000).

The non-axisymmetric problem (mode I) of a permeable penny-shaped crack
embedded in an infinite transversely isotropic piezoelectric medium is studied in this
paper by virtue of the method of potential theory proposed by Fabrikant (1989). In
contrast to the analysis for impermeable cracks (Chen and Shioya, 1999a), the har-
monic functions in the general solution are expressed in terms of a potential of a
simple layer only. For an arbitrarily shaped flat crack subjected to arbitrarily distrib-
uted symmetric normal forces, we arrive at an integro-differential equation, of which
the structure is exactly the same as that for an impermeable crack or an elastic crack.
The point force solution is then obtained using the available results in potential the-
ory and all expressions for the full-space electro-elastic field are expressed in terms of
elementary functions. The exact solution for a uniformly distributed load is also pre-
sented. The analysis procedure for equal eigenvalues is also outlined and discussed.

2. The General solution of transversely isotropic piezoelasticity

The Cartesian coordinates (x, y, z) is selected such that the z-axis is parallel to the
axis of symmetry of a transversely isotropic piezoelectric body. As shown in Ding
et al. (1996, 1997), the form of general solution depends greatly on the relationships
among the three characteristic roots with positive real part, denoted as si(i=1,2,3),
of the following algebraic equation

n0s
6 −n1s

4 +n2s
2 −n3 =0, (1)

where the coefficients ni(i = 0,1,2,3) are related to the elastic constants cij , piezo-
electric constants eij , and dielectric constants εij (Chen and Shioya, 1999a).

2.1. Case for distinct si

We denote the three components of displacement as u, v and w≡w1 in x-, y- and
z-directions, respectively, and the electric potential as �≡w2. By introducing a com-
plex tangential displacement field U = u + iv, the general solution reads as (Ding
et al., 1997; Ding and Chen, 2001)

U =�
(

3∑
i=1

Fi + iF4

)
, wk =

3∑
i=1

αik
∂Fi

∂zi
(k=1,2), (2)

where � = ∂/∂x + i∂/∂y and i = √−1. Here and subsequently, αik are constants
defined in Ding et al. (1997) which are also available in Chen and Shioya (1999a),
and Fi(i=1,2,3,4) are quasi-harmonic functions satisfying(

�+ ∂2

∂z2
i

)
Fi =0, (i=1,2,3,4), (3)

where �= ∂2/∂x2 + ∂2/∂y2, and zi = siz with s4 = √
c66/c44 being another material

eigenvalue.
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The expressions for stresses and electric displacements are easily obtained from the
constitutive relations (Ding and Chen, 2001):

σzj =
3∑
i=1

γij
∂2Fi

∂z2
i

(j =1,2,3),

σ2 =2c66�
2

(
3∑
i=1

Fi + iF4

)
,

τzk =�
(

3∑
i=1

γiksi
∂Fi

∂zi
+ iϑk

∂F4

∂z4

)
(k=1,2), (4)

where, σz1 =σz, σz2 =Dz, σz3 =σx +σy , σ2 =σx −σy +2iτxy , τz1 = τxz+ iτyz, τz2 =Dx +
iDy , and

γi1 =−c13 + c33siαi1 + e33siαi2, γi2 =−e31 + e33siαi1 − ε33siαi2,

γi3 =2[(c66 − c11)+ c13siαi1 + e31siαi2], ϑ1 = s4c44, ϑ2 = s4e15 (5)

Throughout this paper, the subscript j always ranges from 1 to 3, while the subscript
k is taken to be 1 and 2 only. This rule will not be indicated hereafter.

2.2. Case for s1 �= s2 = s3

The general solution is (Ding et al., 1997; Ding and Chen, 2001)

U =�
(

2∑
i=1

Fi + z2F3 + iF4

)
,

wk =
2∑
i=1

αik
∂Fi

∂zi
+α2kz2

∂F3

∂z2
+α4kF3. (6)

The expressions for stresses and electric displacements are obtained as

σzj =
2∑
i=1

γij
∂2Fi

∂z2
i

+γ2j z2
∂2F3

∂z2
2

+γ4j
∂F3

∂z2
,

σ2 =2c66�
2

(
2∑
i=1

Fi + z2F3 + iF4

)
,

τzk =�
(

2∑
i=1

γiksi
∂Fi

∂zi
+γ2ks2z2

∂F3

∂z2
+ω1kF3 + iϑk

∂F4

∂z4

)
, (7)

where

γ41 = s2[c33(α21 +α41)+ e33(α22 +α42)], γ42 = s2[e33(α21 +α41)− ε33(α22 +α42)],

γ43 =2s2[c13(α21 +α41)+ e31(α22 +α42)],

ω11 = c44(s2 +α41)+ e15α42, ω12 = e15(s2 +α41)− ε11α42. (8)
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2.3. Case for s1 = s2 = s3

The general solution is (Ding et al., 1997; Ding and Chen, 2001)

U =�
(
F1 + z1F2 + z2

1
∂F3

∂z1
+ iF4

)
,

wk =α1k

(
∂F1

∂z1
+ z1

∂F2

∂z1
+ z2

1
∂2F3

∂z2
1

)
+α4k

(
F2 +2z1

∂F3

∂z1

)
+α5kF3. (9)

The expressions for stresses and electric displacements are obtained as

σzj =γ1j

(
∂2F1

∂z2
1

+ z1
∂2F2

∂z2
1

+ z2
1
∂3F3

∂z3
1

)
+γ4j

(
∂F2

∂z1
+2z1

∂2F3

∂z2
1

)
+γ5j

∂F3

∂z1
,

σ2 =2c66�
2
(
F1 + z1F2 + z2

1
∂F3

∂z1
+ iF4

)
, (10)

τzk =�
[
γ1ks1

(
∂F1

∂z1
+ z1

∂F2

∂z1
+ z2

1
∂2F3

∂z2
1

)
+ω1k

(
F2 +2z1

∂F3

∂z1

)
+ω2kF3 + iϑk

∂F4

∂z4

]
,

where

γ51 = s1[c33(2α41 +α51)+ e33(2α42 +α52)],

γ52 = s2[e33(2α41 +α51)− ε33(2α42 +α52)],

γ53 =2s1[c13(2α41 +α51)+ e31(2α42 +α52)],

ω21 = c44α51 + e15α52, ω22 = e15α51 − ε11α52.

(11)

3. The Method of Potential Theory for Permeable Crack

Consider a flat crack of arbitrary shape S located in the plane z=0 in a transversely
isotropic piezoelectric medium. It is assumed that two equal and opposite arbitrary
normal pressures p act symmetrically to the upper and lower crack faces. Note that,
external electromechanical loading is generally not applied to the crack faces directly.
However, by using the principle of superposition, the total solution can be obtained
by combining the following solution and the trivial solution of an infinite piezoelec-
tric medium subjected to the applied loads without disturbance of the crack. Note
that the latter solution does not contribute to the singular stress field and/or electric
displacement field due to the crack, and thus only the former solution is discussed
below.

Contrary to the impermeable assumption adopted in Chen and Shioya (1999a),
here we deal with the permeable conditions, i.e. the normal electric displacement and
the electric potential are both continuous across the crack:

Dz(x, y,0+)=Dz(x, y,0−), �(x, y,0+)=�(x, y,0−), for (x, y)∈S. (12)

In view of symmetry of the problem with respect to the crack surface, it is equivalent
here to solve a mixed–mixed boundary value problem for the half-space z≥0, subject
to the following boundary conditions on the plane z=0:
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σz=−p(x, y), for (x, y)∈S;
w=0, for (x, y) /∈S;
�=0, for −∞<(x, y)<∞;
τz=0, for −∞<(x, y)<∞.

(13)

The continuity of Dz is implicit by the symmetry condition.
Compared to the one for an impermeable crack (Chen and Shioya, 1999a), the

most significant difference is that no jump of electric potential takes place at the
crack face in the current problem. Thus, the form of harmonic functions Fi should be
different from those assumed in Chen and Shioya (1999a). We will begin our analysis
by considering the case of distinct eigenvalues, which is then followed by the discus-
sions on cases of equal eigenvalues.

3.1. Case for distinct si

Since �=0 at the crack plane, we can assume

Fi(x, y, z)= ciG(x, y, zi) (i=1,2,3), F4(x, y, z)=0, (14)

where ci are constants to be determined, and

G(M)=
∫
S

∫
ω(N)

R(M,N)
dS, (15)

represents the potential of a simple layer, here ω is the crack face displacement
w(x, y,0), R(M,N) is the distance between the points M(x, y, z) and N(ξ, η,0), and
the integration is taken over the crack region S. Compared to that for an imperme-
able crack (Chen and Shioya, 1999a), the functions Fi(i=1,2,3) are only represented
by one potential of a simple layer. The physical meaning of canceling another poten-
tial of a simple layer, which corresponds to the electric field, is obvious since there
is no discontinuity of electric potential across the crack. It is also interesting to note
that Equation (14) is identical to the case of pure elasticity (Fabrikant, 1989), except
that the index i now ranges from 1 to 3, while it takes 1 and 2 only in Fabrikant
(1989).
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Figure 1. A flat crack in an infinite piezoelectric medium.
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To satisfy the fourth condition in Equation (13), we take

3∑
i=1

ciγi1si =0, (16)

Using the property of potential of a simple layer and considering the second and
third conditions in Equation (13), we arrive at

3∑
i=1

ciαi1 =− 1
2π
,

3∑
i=1

ciαi2 =0. (17)

Thus the constants ci are completely determined as

c1

c2

c3


=− 1

2π


γ11s1 γ21s2 γ31s3
α11 α21 α31

α12 α22 α32




−1 


0
1
0


 . (18)

Considering the first condition in Equation (13) yields the following integro-differ-
ential equation

p(N0)=−g1�

∫
S

∫
ω(N)

R(N0,N)
dS, (19)

where, g1 = −∑3
i=1 ciγi1, R(N0,N) is the distance between two points N0 and N,

and both N0, N ∈ S. It is clear that Equation (19) still takes the same form as
that reported in Fabrikant (1989). Hence, like the case of an impermeable crack, the
splendid results obtained by Fabrikant (1989) can be used for our present purpose.
The constant g1 in Equation (19) is identical to that defined in Chen and Shioya
(1999a).

3.2. Case for s1 �= s2 = s3

In this case, we should assume

Fi(x, y, z)= ciG(x, y, zi) (i=1,2),
F3(x, y, z)= c3H(x, y, z2), F4(x, y, z)=0, (20)

where

H(M)= ∂G(M)

∂z
. (21)

It is easy to show that the constants ci are now determined by

c1

c2

c3


=− 1

2π


γ11s1 γ21s2 ω11

α11 α21 α41

α12 α22 α42




−1 


0
1
0


 . (22)

The corresponding governing equation is

p(N0)=−g′
1�

∫
S

∫
ω(N)

R(N0,N)
dS, (23)
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where, g′
1 = −∑2

i=1 ciγi1 − c3γ41. The above equation is the same as Equation (19)
except the coefficient involved.

3.3. Case for s1 = s2 = s3

In this case, we should assume

F1(x, y, z)= c1G(x, y, z1),

Fi(x, y, z)= ciH(x, y, z1) (i=2,3),
F4(x, y, z)=0. (24)

It is easy to show that the constants ci are determined by

c1

c2

c3


=− 1

2π


γ11s1 ω11 ω21

α11 α41 α51

α12 α42 α52




−1 


0
1
0


 . (25)

The corresponding governing equation is

p(N0)=−g′′
1�

∫
S

∫
ω(N)

R(N0,N)
dS, (26)

where, g′′
1 =−c1γ11 − c2γ41 − c3γ51. The above equation is also the same as Equation

(19) except the constant involved.

4. Exact Solution for a Penny-shaped Crack

In the following, we will focus on the case of distinct eigenvalues only. The derivation
for equal eigenvalues is very similar because the structure of the governing equations
is the same, as shown in the previous section. For the problem of a penny-shaped
crack of radius a, the cylindrical coordinates (ρ,φ, z) is used for the sake of conve-
nience. In this case, the analytical solution to Equation (19) can be obtained in inte-
gral form, and the reader is referred to Fabrikant (1989) for details. The substitution
of this analytical solution into Equation (15) leads to the following expression for the
potential G

G(ρ,φ, z)= 1
2π3g1

2π∫
0

a∫
0

K(ρ,φ, z;ρ0, φ0)p(ρ0, φ0)ρ0 dρ0 dφ0, (27)

where K is called the Green’s function and defined as (Fabrikant, 1989)

K(M;N0)=K(ρ,φ, z;ρ0, φ0)

=
2π∫

0

a∫
0

1
R(N,N0)

tan−1




√
(a2 − r2)(a2 −ρ2

0)

aR(N,N0)


 r dr dψ

R(M,N)
, (28)

and R(·, ·) denotes the distance between respective points: M(ρ,φ, z), N(r,ψ,0) and
N0(ρ0, φ0,0). Various derivatives of the Green’s function K have been presented in
Fabrikant (1989) and omitted here for brevity.
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It is obvious now, according to Fabrikant (1989), all elastoelectric field variables
can be expressed in elementary functions for any polynomial form distribution of p.
This conclusion has also been reached for an impermeable crack (Chen and Shioya,
1999a). In the following two sub-sections, we will present the complete solution for
point force loading as well as the one for uniform loading.

4.1. Exact point force solution

It is supposed that the penny-shaped crack is subjected to a pair of normal concen-
trated forces P applied in opposite directions at the points (ρ0, φ0,0±), ρ0 < a. By
virtue of the analytical expressions for various derivatives of K (Fabrikant, 1989) as
well as the property of δ-function, the following complete solution of the elastoelec-
tric field is easily obtained

U = P

g1π2

3∑
i=1

cif1(zi), wk =− P

g1π2

3∑
i=1

αikcif2(zi),

σzj = P

g1π2

3∑
i=1

γij cif3(zi), σ2 = 2c66P

g1π2

3∑
i=1

cif4(zi),

τzk = P

g1π2

3∑
i=1

γiksicif5(zi), (29)

where

f1(z) = 1
t̄


 z

R0
tan−1

(
h

R0

)
−

√
a2 −ρ2

0

s̄
tan−1


 s̄√

l22 −a2





 ,

f2(z) = 1
R0

tan−1
(
h

R0

)
,

f3(z) = z

R3
0

tan−1
(
h

R0

)
− h

z(R2
0 +h2)

(
ρ2 − l21
l22 − l21

− z2

R2
0

)
,

f4(z) =
√
a2 −ρ2

0

t̄ s̄

(
2
t̄

− ρ0e
iφ0

s̄2

)
tan−1


 s̄√

l22 −a2


− z(3R2

0 − z2)

t̄2R3
0

tan−1
(
h

R0

)

+
√
a2 −ρ2

0

√
l22 −a2ρ0e

iφ0

t̄ s̄2[l22 −ρρ0e−i(φ−φ0)]
− zh

R2
0 +h2

[
t

t̄R2
0

− ρ2e2iφ

(l22 − l21)(l22 −ρ2)

]
,

f5(z) = t

R3
0

tan−1
(
h

R0

)
+ h

R2
0 +h2

(
ρeiφ

l22 − l21
+ t

R2
0

)
,

(30)
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in which

t=ρeiφ−ρ0e
iφ0, s̄=

√
a2 −ρρ0e−i(φ−φ0), h=

√
(a2 −l21)(a2 −ρ2

0)/a,

R0 =
√
ρ2 +ρ2

0 −2ρρ0cos(φ−φ0)+z2,

l1 = 1
2

[√
(ρ+a)2 +z2 −

√
(ρ−a)2 +z2

]
, l2 = 1

2

[√
(ρ+a)2 +z2 +

√
(ρ−a)2 +z2

]
.

(31)

Noticing that

z=0 : l1 →min(a, ρ), and l2 →max(a, ρ), (32)

we can derive

z=0, r >a :σzk =− P

g1π2

(
3∑
i=1

γikci

)
1

ρ2 +ρ2
0 −2ρρ0 cos(φ−φ0)

√
a2 −ρ2

0

ρ2 −a2
. (33)

Defining the following stress and electric displacement intensity factors

kσ = lim
ρ→a

{√
(ρ−a)σz

∣∣∣
z=0

}
, kD = lim

ρ→a

{√
(ρ−a)Dz

∣∣∣
z=0

}
. (34)

we obtain

kσ = P

π2
√

2a

√
a2 −ρ2

0

a2 +ρ2
0 −2aρ0 cos(φ−φ0)

,

kD = βP

π2
√

2a

√
a2 −ρ2

0

a2 +ρ2
0 −2aρ0 cos(φ−φ0)

,

(35)

where β=−∑3
i=1 γi2ci/g1. It is noted that the distribution of normal stress σz at the

crack plane as well as the stress intensity factor (SIF) obtained here for a perme-
able crack are identical to those for an impermeable crack (Chen and Shioya, 1999a),
indicating that the mechanical singularity behavior is not affected by the electric con-
dition assumed on the crack faces. However, the electric field changes due to the
different electric conditions employed and the electric displacement intensity factor
(EDIF) in Equation (35) is much different from that obtained in Chen and Shioya
(1999a). For the impermeable crack, the EDIF is independent of the applied mechan-
ical load and the electric field singularity at the crack-tip is caused only by the elec-
tric load; the expression for EDIF is also independent of the material constants. For
the permeable crack, the external mechanical load makes both the stress field and
the electric displacement field singular at the crack-tip, and the expression for EDIF
becomes dependent on the material constants through the electro-mechanical cou-
pling parameter β introduced in Equation (35). Note that, for a permeable crack, the
electric load applied at infinity does not induce the singularity of electric displace-
ment at the crack-tip.
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The SIF and EDIF for an arbitrarily distributed pressure p can be obtained by
integrating Equation (35) over the crack domain, i.e.

kσ = 1

π2
√

2a

2π∫
0

a∫
0

p(ρ0, φ0)

√
a2 −ρ2

0

a2 +ρ2
0 −2aρ0 cos(φ−φ0)

ρ0 dρ0 dφ0,

kD = β

π2
√

2a

2π∫
0

a∫
0

p(ρ0, φ0)

√
a2 −ρ2

0

a2 +ρ2
0 −2aρ0 cos(φ−φ0)

ρ0 dρ0 dφ0.

(36)

4.2. Exact solution for uniform load

Now consider the penny-shaped crack subjected to two equal and opposite uniform
pressures p0 symmetrically applied to the upper and lower crack faces. From Fabrik-
ant (1989), the exact solution to Equation (19) is known to be

ω= p0

g1π2

√
a2 −ρ2 (ρ�a). (37)

Using the above solution, we obtain from Equations (15), (14), (2) and (4)

U =− p0

g1π
ρeiφ

3∑
i=1

ci


a

√
l22i −a2

l22i
− sin−1

(
a

l2i

)
 ,

wk = 2p0

g1π

3∑
i=1

αikci

[
zi sin−1

(
a

l2i

)
−

√
a2 − l21i

]
,

σzj = 2p0

g1π

3∑
i=1

γij ci


sin−1

(
a

l2i

)
−
a

√
l22i −a2

l22i − l21i


 , (38)

σ2 =−4c66p0

g1π
aei2φ

3∑
i=1

ci

l21i

√
l22i −a2

l22i(l
2
2i − l21i)

,

τzk = 2p0

g1π
a2ρeiφ

3∑
i=1

γiksici

√
a2 − l21i

l22i(l
2
2i − l21i)

,

where

l1i= 1
2

[√
(ρ+a)2 +z2

i −
√
(ρ−a)2 +z2

i

]
, l2i= 1

2

[√
(ρ+a)2 +z2

i +
√
(ρ−a)2 +z2

i

]
.

(39)

Noticing Equation (32), we obtain from Equation (38)

z=0, ρ <a : σzk = p0

g1

(
3∑
i=1

γikci

)
=

{ −p0 for k=1,
−βp0 for k=2,
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z=0, r >a : σzk = 2p0

g1π

(
3∑
i=1

γikci

)[
sin−1

(
a

ρ

)
− a√

ρ2 −a2

]

=




− 2p0
π

[
sin−1

(
a
ρ

)
− a√

ρ2−a2

]
for k=1,

− 2βp0
π

[
sin−1

(
a
ρ

)
− a√

ρ2−a2

]
for k=2.

(40)

Obviously, the electric displacement does not vanish when the permeable electric con-
ditions are assumed on the crack surfaces. The SIF and EDIF for the case of uni-
form loading are obtained as

kσ = p0

π

√
2a, kD = βp0

π

√
2a. (41)

The above formulations can also be obtained by setting p=p0 =constant in Equation
(36) and performing the integration.

Yang and Lee (2001) obtained the intensity factors for the axisymmetric problem
of a penny-shaped crack embedded in a piezoelectric strip. When the thickness of the
strip tends to infinity, the intensity factors derived by them [setting �(1)=1 in Equa-
tion (50) in Yang and Lee (2001), for load case (1)] are found exactly the same as
those presented in Equation (41).

4.3. Numerical discussion

As shown in Equations (36), the electro-mechanical coupling parameter β plays a
very important role in interpreting the singular behavior of the electric displacement
field due to a mechanical load. Table 1 shows its values for ten different engineering
piezoelectric materials that characterizes transverse isotropy. The material constants
for these piezoelectric materials can be found in the references indicated in the table,
and are not repeated here for brevity. For the sake of completeness, the eigenvalues
si=1,2,3, are also presented in Table 1.

The axial displacement w at the crack face is equal to half of the crack opening
displacement (COD), which is an important index in fracture analysis. In Chen and
Shioya (1999a), the distribution curves of the nondimensional crack surface displace-
ment were given when the impermeable crack is subjected to a pair of concentrated
forces P for the piezoelectric ceramic PZT-6B. These curves can be directly scaled
and converted to those for the permeable crack by noticing the following relation-
ship:

κ= wp

wi
= 1

4π2g1g4A
, (42)

where g4 and A are constants defined in Chen and Shioya (1999a). The subscripts p
and i indicate permeable and impermeable conditions, respectively. The COD ratio
κ, between permeable and impermeable cracks defined above can also serve as an
important parameter for understanding the effect of electric conditions, which are
assumed along the crack faces, on the fracture behavior of piezoelectric materials.
Note that this formulation is valid for an arbitrary flat crack subjected to an arbi-
trarily distributed mechanical load. The values of κ for different materials have been
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Table 1. Electro-mechanical coupling parameter and COD ratio.

Reference Material Eigenvalues si Coupling parameter β COD
ratio κ

Dunn and Taya (1994) PZT-4 1.06914−0.200381i 2.50098×10−10 1.31147
1.06914+0.200381i
1.20380

PZT-5 1.07735−0.248490i 3.03516×10−10 1.30938
1.07735+0.248490i
1.07766

PZT-7A 1.02040−0.0698338i 1.29782×10−10 1.19872
1.02040+0.0698338i
1.70258

BaTiO3 0.940505 1.66785×10−10 1.14414
1.00382−0.229193i
1.00382+0.229193i

ZnO 0.635143−0.299172 i 1.58502×10−12 1.00232
Royer and Dieulesaint (2000) 0.635143+0.299172i

1.99317
CdS 0.697279−0.0887886i 1.43325×10−12 1.00072

0.697279+0.0887886i
1.89471

PZT-6B 0.517601 7.10604×10−11 1.07698
Wang and Zheng (1995) 1.01433

2.10146
PZT-5H 1.02925−0.414981i 4.28021×10−10 1.33835

Bisegna and Maceri (1996) 1.02925+0.414981 i
1.05333

PZT-8 1.04378−0.241853i 1.77408×10−10 1.18502
1.04378+0.241853i
1.19534

C-24 1.03234−0.127467i 6.72124×10−11 1.17144
1.03234+0.127467i
1.06493

calculated and are presented in Table 1. It is seen that the COD ratio κ is gener-
ally greater than unity, which is reasonable since the impermeable electric condition
allows a simultaneous jump in electric potential, in addition to the COD, when a
mechanical load is applied.

It can be seen that, among these materials, the electro-mechanical coupling param-
eter β of PZT-5H is the largest, indicating that the EDIF of PZT-5H is the
most prominent. Generally, the engineering piezo-ceramics have a relatively stronger
coupling between the elastic deformation and electric field, leading to a larger electro-
mechanical coupling parameter. However, a large β does not imply that the material
is susceptible to the electric failure due to crack, since the onset of cracking should
also depend on the electric fracture toughness of the specific material.
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5. Conclusions

The method of potential theory is employed to analyze the permeable crack problem
of transversely isotropic piezoelectric materials. The analysis is confined to the partic-
ular case that the crack plane is parallel to the plane of isotropy. When compared to
the analysis for an impermeable crack, the harmonic functions in the general solution
do not contain the potential of a simple layer, which corresponds to the electric field
and was introduced by Chen and Shioya (1999a). This is a natural result owing to
the continuity of electric potential at the crack face imposed by the permeable elec-
tric condition.

For a penny-shaped crack, exact solutions for three-dimensional point force and
that for a uniform loading are obtained, and the elasto-electric field variables in the
full-space are expressed in terms of elementary functions. It should be noted that
the point force solution is very important because it can be used to construct other
important analytical solutions for other types of loadings, and can also serve as a
fundamental solution in BEM analysis of a finite cracked body.

The SIF and EDIF are derived in a very simple form. Unlike the impermeable
crack, the applied mechanical load causes both the singularity of stress field and
the singularity of electric displacement field at the crack tip of a permeable crack.
There is no singularity either in the stress filed or in the electric displacement field if
the mechanical load vanishes. The SIF is independent of the material constants and
is the same as that for an elastic isotropic material, and it agrees well with Kogan
et al. (1996). The EDIF is proportional to the SIF by an electro-mechanical cou-
pling parameter β, which is a constant for a specific material and does not vary with
the crack shape and the load distribution. The COD of a permeable crack is also
related to the COD of an impermeable crack by another constant κ. This constant
is generally larger than unity, indicating that the COD of a permeable crack is more
significant than that of an impermeable crack. Thus, unlike the SIF based fracture
criterion, the CTOD (crack tip opening displacement) based fracture criterion will be
certainly affected by the electric conditions at the crack surface.

The general solutions for equal eigenvalues are presented in the paper. By assum-
ing a proper form of harmonic functions, the resulting governing equation is exactly
the same as that for the case of distinct eigenvalues except the constant involved.
Thus, the corresponding solutions for equal eigenvalues can be easily derived. This
method is different from the method based on the L’Hospital rule as suggested by
Fabrikant (1989). It is noted that, since more independent material constants are
involved, the use of L’Hospital rule will become more cumbersome for piezoelectric
materials.

Finally, the paper emphasizes the particular case when an external mechanical
force is applied directly to the crack faces. The solution for the presence of both
mechanical and electric loads at places other than the crack face can be easily
achieved by the principle of superposition. In this general case, the complete solu-
tion consists of two parts: (i) the first part corresponding to a perfect medium under
the action of external loads without the disturbance of crack, and (ii) the second part
by setting the external loads on the crack surfaces equal and opposite to the stresses
induced at the crack site in the solution of the first part. Note that, if mechanical
displacements (or strains) and electric potential (or electric field) are prescribed at
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infinity, stresses will be generally induced at the crack site, indicating that singular-
ity will emerge at the crack tip both in stress field and electric displacement field.
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