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Abstract: Alexandrium is a neurotoxin-producing dinoflagellate genus resulting in 

paralytic shellfish poisonings around the world. However, little is known about the toxin 

biosynthesis mechanism in Alexandrium. This study compared protein profiles of  

A. catenella collected at different toxin biosynthesis stages (non-toxin synthesis, initial 

toxin synthesis and toxin synthesizing) coupled with the cell cycle, and identified 

differentially expressed proteins using 2-DE and MALDI-TOF-TOF mass spectrometry. 

The results showed that toxin biosynthesis of A. catenella occurred within a defined time 

frame in the G1 phase of the cell cycle. Proteomic analysis indicated that 102 protein spots 

altered significantly in abundance (P < 0.05), and 53 proteins were identified using database 

searching. These proteins were involved in a variety of biological processes, i.e., protein 

modification and biosynthesis, metabolism, cell division, oxidative stress, transport, signal 

transduction, and translation. Among them, nine proteins with known functions in paralytic 

shellfish toxin-producing cyanobacteria, i.e., methionine S-adenosyltransferase, chloroplast 

ferredoxin-NADP+ reductase, S-adenosylhomocysteinase, adenosylhomocysteinase, 

ornithine carbamoyltransferase, inorganic pyrophosphatase, sulfotransferase (similar to), 

alcohol dehydrogenase and arginine deiminase, varied significantly at different toxin 

biosynthesis stages and formed an interaction network, indicating that they might be 

involved in toxin biosynthesis in A. catenella. This study is the first step in the dissection 

of the behavior of the A. catenella proteome during different toxin biosynthesis stages and 

provides new insights into toxin biosynthesis in dinoflagellates. 
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1. Introduction 

The dinoflagellate genus Alexandrium is one of the major harmful algal bloom genera along the 

coastal regions of the world [1]. Many Alexandrium species are known to produce paralytic shellfish 

toxins (PSTs), a group of neurotoxic alkaloids which selectively block voltage-gated Na
+
 channels in 

excitable cells, thereby affecting neural impulse generation and resulting in paralytic shellfish 

poisoning (PSP) [2]. Currently, there is no antidote for PSP and more than 2000 cases of human 

poisonings occur per year on a global basis, with a mortality rate of 15% [3]. Due to the public health 

and ecosystem impacts of toxic Alexandrium blooms, the genus has been extensively studied. 

Moreover, PSTs are highly effective compounds for relieving withdrawal symptoms in  

opiate-addicted patients and have potential clinical uses [4]. Much effort has been devoted to the toxin 

producing physiology of different Alexandrium species and several toxin biosynthesis pathways are 

postulated [1,5–14]. However, little is known concerning the toxin biosynthesis mechanisms  

in Alexandrium. 

Studies show that toxin biosynthesis is regulated by genes in dinoflagellates, and at least the 

interconverting enzymes are encoded by nuclear genes [15]. In A. fundyense, PST production occurs 

during a discrete time period localized in the early G1 phase of the cell cycle [8], and three genes 

encoding S-adenosylhomocysteine hydrolase (SAHH), methionine aminopeptidase (MAP), and  

a histone-like protein (HLP) are proposed to be involved in toxin biosynthesis [10]. In A. catenella, 

SAHH and Map are related to toxin synthesis indirectly while S-adenosylmethionine (SAM) is directly 

involved in toxin biosynthesis [16]. A recent study using a microarray-based comparison of toxic and 

non-toxic strains of A. minutum reveals several unique genes in the toxic A. minutum. However, their 

roles in toxin biosynthesis are unclear [17,18]. Overall, the identification of toxin-related genes or 

proteins has made a substantial contribution to understanding the molecular basis of PST biosynthesis, 

but the mechanisms regulating toxin biosynthesis are still unclear in dinoflagellates. 

Recently, the complete sequence of the PST gene cluster (sxt) has been revealed in a 

cyanobacterium, Cylindrospermopsis raciborskii T3 [19], and preliminary sequence similarity 

analyses predicate the putative functions and origins of 26 PST genes. On this basis, the draft genome 

assembly of toxic Anabaena circinalis ACBU02 and its nontoxic sister Anabaena circinalis ACFR02 

is compared, and 13 genes unique to PST-producing A. circinalis are identified [20]. This study also 

demonstrates that the assembly of PST genes in ACBU02 is involved in multiple horizontal gene 

transfer events from different sources, followed presumably by coordination of the expression of 

foreign and native genes in the common ancestor of toxic cyanobacteria. In dinoflagellates, the 

transcripts of sxtA, the unique starting gene of PST synthesis, are found to have the same domain 

structure as the cyanobacterial sxtA gene [15]. However, so far, no cyanobacterial PST genes have 

been detected in toxic A. minutum [17], indicating that the PST genes in dinoflagellates might be 

different from their cyanobacterial counterparts [21].  
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Proteins are the “workhorse” molecules of life, participating in essentially every structure and 

activity of life. Proteomics is a global technique that provides effective strategies and tools for 

profiling and identifying the proteins of various organisms, including dinoflagellates [22–25]. A 

“toxicity biomarker” is identified from toxic Alexandrium species using the proteomic approach 

although the function of this biomarker is still unclear [26]. A recent study involving the  

proteomic-based comparison of a toxicity-lost mutant and the wild-type of A. catenella reveals 

differentially expressed proteins that might be responsible for the loss of toxicity in the mutant  

A. catenella [27]. Thus, it is reasonable to expect that the study of proteins should help to uncover the 

toxin biosynthesis mechanisms in dinoflagellates. 

In one of our previous studies, we found that toxin production of A. catenella is a cell  

cycle-dependent activity and toxin is synthesized in a defined interval within the G1 phase [28], 

suggesting that the proteins or enzymes involved in toxin biosynthesis might be expressed in a defined 

interval. In this study, we compared the protein profiles of synchronized A. catenella cells collected at 

different toxin biosynthesis stages, and identified differentially expressed proteins using 2-DE and 

MALDI-TOF-TOF mass spectrometry. A total of 53 proteins which altered significantly in abundance 

(P < 0.05) at the different toxin biosynthesis stages were identified, and these proteins were involved 

in various biological processes. Among them, nine proteins, with known functions in PST-producing 

cyanobacteria, formed an interaction network, and were putatively involved in toxin biosynthesis  

in A. catenella. 

2. Results and Discussion 

2.1. Diel Phasing of the Cell Cycle of A. catenella 

To determine the diel phasing of the cell-cycle, A. catenella cells were harvested throughout a diel 

cycle, stained using propidium iodide, and then analyzed for DNA fluorescence using flow cytometry. 

The representative DNA histograms of A. catenella within one diel cycle are shown in Figure 1. Flow 

cytometric analysis showed that A. catenella grown in the nutrient replete condition presented discrete 

G1, S, G2 + M phases during a 24 h circadian day. After mitosis, cells were primarily maintained in 

the G1 phase for about 16 h (T2–T18) after the onset of the light cycle. S phase entry started 

approximately 4 h after the onset of dark cycle and lasted for about 4 h (T18–T22). The percentage of 

G2 + M phase cells was consistently maximal approximately 10 h after the onset of dark and lasted for 

less than 4 h (T22–T26). Namely, the vast majority of cells (about 75%) in the G2 + M phase occurred 

at the point of dark/light transition (T24). Subsequently, the cells completed division within  

2 h (T24–T26) of the onset of light. Then the cells entered the G1 phase and prepared for the next cell 

division cycle. 
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Figure 1. Diel cell-cycle phasing of A. catenella after synchronous growth in a 14:10 h 

light/dark cycle. Cell cycle distribution was determined using flow cytometry of  

DNA-stained cells harvested at 2 h intervals. The x/axis represents the relative amount of 

DNA and the y/axis the number of cells in a sample containing a particular amount  

of DNA. 

 

2.2. Diel Variations of Cell Density and Toxin Content of A. catenella 

Diel variation of the cell density of A. catenella is shown in Figure 2A. The initial cell density was 

approximately 3500 ± 180 cells/mL, but after the first cell cycle run, the cell density increased to  

6180 ± 327 cells/mL, and about 77% of the cells completed mitosis. When the cells entered the second 

cell cycle run, cell density remained constant for the first 20 h and cell division began 8 h after the 

cells entered the dark phase and lasted for 2–4 h. The cell density increased from 6180 ± 327 to  

11,470 ± 598 cells/mL at the end of the second cell cycle run, and about 86% of the cells  

completed mitosis.  

The cellular toxin content (Qt) variation during the cell cycle is shown in Figure 2B. Apart from C1, 

C2, GTX2 and GTX3, no other PSP toxin derivatives were detected in A. catenella. When the cells 

completed mitotic division, the Qt decreased sharply from 25.5 ± 1.71 fM/cell to 17.8 ± 1.2 fM/cell 

within 2 h and then remained relatively constant for 4 h. After that, the Qt increased to 24.4 ± 2.5 fM/cell 

within 6 h and remained constant for the next 12 h. Similarly, after the second cell division run, the Qt 

reduced obviously from 25.9 ± 2.1 fM/cell to 17.4 ± 1.5 fM/cell within 2 h and maintained relative 

constant for 4 h. Then the Qt increased to 23.9 ± 1.3 fM/cell within 6 h and remained constant before 

the next mitosis. This result indicated that toxin biosynthesis was not a continuous event in  

A. catenella and occurred within a defined time frame during the G1 phase, which is consistent with 

the result reported in A. fundyens [8].  
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Figure 2. Diel variation of (A) cell density and (B) toxin content within one cell cycle in  

A. catenella after synchronous growth in a 14:10 h light/dark cycle (dark period indicated 

by the black segment of the X coordinate, adapted from Gao et al., 2012 [28]). Cell density 

was measured at 2 h intervals (Error bars denote ± SD, n = 3). 

 

 

2.3. Protein Identification and Variation at Different Toxin Biosynthesis Stages 

Protein profiles of A. catenella at the different toxin biosynthesis stages were analyzed using 2-DE, 

and the representative 2-DE images of the different time points (T24, T28 and T34) are shown in 

Figure 3. The 2-DE gels of T24 (non-toxin synthesis stage) were selected as the reference gels. For 

each biological replicate, three technical replicates were conducted at the same time and the 

reproducibility of this protocol was more than 95%.  
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Figure 3. 2-DE protein profiles of A. catenella at different toxin biosynthesis stages.  

(A) T24, non-toxin synthesis stage; (B) T28, initial toxin synthesis stage; (C) T34, toxin 

synthesizing stage.  

 

Based on auto-matching using gel analysis software (Image Master 2D Platinum 6.0, GE Healthcare) 

and a manual quality check of the detected spots, 2244 protein spots were matched preferably in the 

three group gels. A total of 102 exhibited statistically significant alterations (P < 0.05) and the 

variations in abundance were more than 2 fold. All the altered spots were submitted for identification 

using MALDI-TOF-TOF MS and searched in the Swiss-Prot, NCBInr protein and dinoflagellate 
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polypeptide databases. Positive identifications were obtained for 91 spots, leaving two unknown 

protein spots (spots 21 and 44) and nine negative identifications (spots 30, 43, 51, 80, 86, 99, 100, 101 

and 102). Only the data for the 91 positive spots were used for further analysis, and the details of 

NCBI ID number, theoretical pI value, theoretical molecular weight, protein score, protein score 

C.I.%, as well as the average relative change at each time point are listed in Supplemental Table S1. 

Based on KOG classification, 51 proteins out of the 91 protein spots were assigned into eight 

functional groups, i.e., the protein modification, metabolism, cell cycle regulation, oxidative stress 

response, translation, signal transduction, transport, and protein biosynthesis (Figure 4). A large 

number of proteins (45%) involved in various metabolisms were altered significantly in abundance: 

four proteins related to the one-carbon metabolic process were identified, namely serine 

hydroxymethyltransferase (spots 8 and 42), methionine (S) adenosyltransferase (spots 31, 32, 33, 34, 36), 

adenosylhomocysteinase (AdoHcy, spots 76 and 79), S-adenosylhomocysteinase (SAH, spot 77). 

Among them, serine hydroxymethyltransferase was down-regulated at T28 and then recovered to the 

normal level at T34. In contrast, the other proteins were up-regulated or invariable at T28, and  

down-regulated at T34. Three proteins, phosphoglycerate kinase (spot 19), fructose-bisphosphatealdolase 

(spot 67) and enolase 2 (spot 69) were involved in glycolysis. The abundance of phosphoglycerate 

kinase increased from T28 to T34. Concurrently, fructose-bisphosphatealdolase and enolase 2 were  

up-regulated at T28 and recovered to the normal values at T34. Seven proteins were involved in 

photosynthesis. Among them, chloroplast ferredoxin-NADP+ reductase (FNR, spot 37), plastid 

oxygen-evolving enhancer 1-2 precursor (spots 45), light-harvesting polyprotein precursor (spot 56), 

ribulose bisphosphate carboxylase oxygenase large subunit (spots 72, 73, 74) and chlorophyll A–C 

binding protein (spot 93) were down-regulated at T28 then recovered to the normal levels at T34. 

Photosystem I assembly protein ycf1 (spot 49) and ribulose bisphosphate carboxylase oxygenase small 

subunit (spot 70) were down-regulated at T28 but were up-regulated more than 2 fold at T34. Three 

enzymes, inorganic pyrophosphatase (PPi, spot 55), arginine deiminase (ADI, spot 78), and similar to 

sulfotransferase (SULT, spot 94) were identified; and PPi varied little at T28 but was up-regulated 

more than 11 fold at T34. The abundance of ADI increased 3 fold at T28 and decreased obviously at 

T34. SULT was down-regulated at T28 then recovered to the normal level at T34.  

Three proteins, chaperone protein DnaK (spot 1), Hsp70-type chaperone (spot 3) and chaperonin 

GroEL (spots 7 and 12) were down-regulated at T28 and up-regulated at T34. Three proteins  

were possibly involved in cell cycle regulation, i.e., cell division protein FtsH (spot 9), 

formamidopyrimidine-DNA glycosylase (FPG, spots 38 and 39), DNA damage checkpoint protein 

rad24/17 (spots 62 and 64). The abundance of FPG decreased at T28 and was up-regulated more than  

4 fold at T34. Several proteins related to the oxidative stress response were also identified. Heat shock 

protein 70 (spots 10, 11, 14, 18) involved in the folding and unfolding of other proteins was  

up-regulated from T28 to T34. DNA-binding stress protein (spot 53), ketol-acid reductoisomerase 

(spot 84), alcohol dehydrogenase (ADH, spot 95) and RNA-binding S1 domain protein (spot 96) were 

down-regulated at T28, but were up-regulated significantly at T34. Nine isoforms of luciferin-binding 

protein (spots 20, 22–29) were identified and they presented different expression patterns at different 

toxin biosynthesis stages. Formyltetrahydrofolate deformylase (spot 98), putatively involved in the  

de novo inosine monophosphate biosynthetic process, was slightly down-regulated at T28 and 

remarkably up-regulated at T34. 
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Figure 4. Functional classification of differentially expressed proteins of A. catenella at 

different toxin biosynthesis stages.  
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In addition to the above proteins, others involved in translation, signal transduction, transport, and 

protein biosynthesis were also identified in this study, i.e., elongation factor P (spots 61 and 63), 

hypothetical protein PP_4544 (spot 5), UDP-N-acetylglucosaminedolichyl phosphate (spot 58) and 

actin protein (spot 85), presented differentially expressing patterns during the different toxin 

biosynthesis stages. 

2.4. Proteins Putatively Involved in Toxin Biosynthesis 

Much effort has been devoted to elucidate biosynthesis genes and enzymes of PSTs in dinoflagellates, 

and several enzymes involved in PST biosynthesis, i.e., S-adenosylhomocysteine hydrolysis, 

aminotransferase, methionine aminopeptidase, Na(+)-dependent transporter, O-carbamoyltransferase  

and sulfotransferase are reported in some dinoflagellate species [10,14,19,29,30]. Recently the PST 

gene cluster (sxt) was revealed in a cyanobacterial species, C. raciborskii T3 [19], which encodes  

30 catalytic functions to 26 proteins involved in toxin biosynthesis. Further comparison of the draft 

genome assembly of the saxitoxin-producing A. circinalis ACBU02 and its nontoxic sister A. circinalis 

ACFR02, reveals 13 genes unique to PST producing cyanobacteria [20]. This study identified  

53 differentially expressed proteins at different toxin biosynthesis stages. Among them, nine proteins, 

i.e., methionine S-adenosyltransferase (MAT), SAH, AdoHcy, PPi, ornithine carbamoyltransferase 

(OTC), SULT, ADH, FNR and ADI, were altered significantly in abundance at different toxin 

biosynthesis stages (Table 1), and are reported to be involved in PST biosynthesis in cyanobacteria [19]. 

AdoHcy and SAH have been identified in dinoflagellates and are two important enzymes catalyzing or 

converting S-adenosylhomocysteine to homocystein and adenosine [10,21,31,32], which play vital 

roles in the metabolism of amino acid and nucleic acid. Homocystein can be recycled into methionine, 

a primary precursor in the first step of PST biosynthesis. The significant up-regulation of these two 

enzymes at the initial toxin biosynthesis stage (T28) indicated that more S-adenosylhomocysteine 

might be converted to homocystein which then provided methionine for subsequent toxin synthesis. 
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Methionine adenosyltransferase is an enzyme which catalyzes the synthesis of SAM from methionine 

and ATP, while MAT catalyzes the only reaction that produces the major methyl donor. These two 

enzymes are detected in dinoflagellates [33,34]. In our study, MAT was up-regulated at the initial 

toxin biosynthesis stage (T28), suggesting that more methionine and ATP were utilized to synthesize 

SAM, the direct precursor of PST biosynthesis in the first step. Up-Regulation of MAT at T28 

indicated that more methyl donor was produced for toxin biosynthesis in step 5. ADH is encoded by 

the sxtU gene and participates in the eighth step of PST synthesis in cyanobacteria. This enzyme is 

mostly NAD(P)H-dependent, for the reduction of aldehydes and ketones to an alcohol group in the 

cells. This enzyme is also identified in dinoflagellates [35,36]. The obvious up-regulation of ADH at 

T34 might provide more electrons for PST biosynthesis. PPi is a ubiquitous enzyme that catalyzes the 

conversion of one molecule of pyrophosphate to two phosphate (Pi) ions [37]. This process is coupled 

with fatty acid degradation which is catalyzed by the enzyme acyl-CoA synthetase to produce  

acyl-CoA, an important intermediate for PST biosynthesis. Moreover, this reaction is highly exergonic 

and therefore greatly increases the energetic favorability of the reaction system when coupled with a 

typically less-favorable reaction. The significant up-regulation of this enzyme at T34 indicated that 

PST biosynthesis might be a highly exergonic process and also that there is a high requirement for 

acyl-CoA. FNR catalyzes reduced ferredoxin, NADP+ and H+ to oxidized ferredoxin and NADPH. In 

cyanobacteria, this enzyme is encoded by the sxtW gene and provides H
+
 for toxin synthesis in step 5 

and 8 of the PST biosynthesis pathway. This enzyme is identified in A. catenella at the transcriptional 

level [32,33]. The up-regulation of this enzyme at the toxin synthesizing stage (T34) might increase 

the production of H
+
 for PST biosynthesis in A. catenella. The enzyme OTC, also called ornithine 

transcarbamoylase, is confirmed in A. fundyense and A. minutum at the transcriptional level [15]. It 

was encoded by SxtI which catalyzed the reaction between carbamoylphosphate (CP) and ornithine to 

form citrulline and Pi. In step 10, SxtI in conjunction with SxtJ and SxtIK catalyzed a 

carbamoyltransfer form of CP onto the free hydroxyl at C-13, forming saxitoxin (STX). The  

up-regulation of this enzyme at T34 indicated that more citrulline and Pi were donated for  

STX production. 

In enzymology, ADI is an enzyme catalyzing L-arginine and H2O to L-citrulline and NH3, which 

acts on carbon-nitrogen bonds other than peptide bonds, specifically in linear amidines. Arginine is 

known as one of the primary precursors of PST in both cyanobacteria and dinoflagellates. In this study, 

the expression of ADI was depressed at the toxin biosynthesizing stage (T34), indicating that more 

arginine was invested in toxin biosynthesis. SULT, an important modification enzyme involved in PST 

conversion, has been found in several dinoflagellate species, and can transfer a sulfate group to N-21 

in the carbamoyl group of GTX2/3 or STX and produce various STX derivatives [14,29,38–40]. In 

cyanobacteria, this enzyme is encoded by the sxtN gene and participates in the transfer of a sulfate 

group to N-21 or O-21. The up-regulation of this enzyme at T34 indicated that active conversion of 

GTX2/3 to C1/2 toxin was occurring. The predominant composition of the C1/2 toxin (about 90% of 

the total toxin) with only a trace amount of GTX2/3 toxin in A. catenella supported this  

postulation [28]. 
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Table 1. Variations of nine proteins putatively involved in toxin biosynthesis in A. catenella at different toxin biosynthesis phases. 

Spot 

id 

Accession 

number 

Protein 

score 

Protein 

score CI% 

Peptide 

count 
MW/pI Protein description Function 

T28 vs. T24 T34 vs. T24 

Fold 

change 

P- 

Value 

Fold 

change 

P- 

Value 

Metabolism 

31 46909371 145 100 4 34.39/5.81 

Methionine 

adenosyltransferase (MAT), 

(Nucula proxima) 

catalyses the synthesis of  

S-adenosylmethionine (SAM) 

from methionine and ATP 

1.26 0.450 0.40 0.043 

32 158524698 149 100 3 35.30/5.59 

Methionine 

adenosyltransferase (MAT), 

(Terebratulina retusa) 

1.89 0.173 0.47 0.033 

33 71370920 202 100 3 35.08/6.82 

Methionine 

adenosyltransferase (MAT), 

partial (Haliotis rufescens) 

1.15 0.767 0.40 0.034 

34 225685869 121 100 3 45.52/5.54 

Methionine  

S-adenosyltransferase (MAT),  

(Thalassionema nitzschioides) 

0.92 0.942 0.46 0.042 

36 225685865 92 99.248 2 51.08/5.73 

methionine  

S-adenosyltransferase (MAT),  

(Detonula confervacea) 

2.50 0.007 0.18 0.091 

77 211939908 120 99.999 9 27.97/5.74 

S-adenosylhomocysteinase 

(SAH),  

(Amphidinium carteriae) 

an intermediate in the 

synthesis of cysteine and 

formed by the demethylation 

of SAM 

2.89 0.001 0.86 0.905 

76 211939908 150 100 8 27.97/5.74 

Adenosylhomocysteinase 

(AdoHcy),  

(Amphidinium carteriae) 

an enzyme that converts SAH 

to homocysteine and 

adenosine 

2.20 0.003 0.49 0.117 

79 211939908 116 99.997 7 27.97/5.74   3.32 0.003 0.88 0.985 
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Table 1. Cont. 

7 58613455 389 100 2 28.67/4.78 

chloroplast ferredoxin-NAD  

+ reductase (FNRs),  

(Heterocapsa triquetra) 

ferredoxin-NADP reductase 

type 1 family; Oxidation 

reduction 

0.13 0.007 1.19 0.641 

40 170723385 296 100 15 38.10/5.92 

ornithine carbamoyltransferase 

(OTC), (Pseudomonas putida 

W619) 

Cellular amino acid metabolic 

process; involved in arginine 

(Arg) biosynthesis 

0.45 0.088 1.61 0.003 

55 26987276 87 97.728 2 19.18/4.77 

inorganic pyrophosphatase 

(PPi), (Pseudomonas putida 

KT2440) 

Phosphate metabolic process; 

catalyzes the conversion of 

pyrophosphate to phosphate 

ions 

1.00 1.000 11.55 0.003 

78 148546281 660 100 18 46.73/5.66 
arginine deiminase (ADI), 

(Pseudomonas putida F1) 

participates in arginine and 

proline metabolism 
3.30 <0.001 0.20 0.008 

94 115901552 122 97.645 1 35.22/4.70 

similar to sulfotransferase 

(SULT),  

(Strongylocentrotus purpuratus) 

sulfotransferase activity 0.44 0.043 1.24 0.459 

Oxidative stress response 

95 26990544 110 99.989 6 35.89/5.61 
alcohol dehydrogenase (ADH),  

(Pseudomonas putida KT2440) 

Oxidation reduction; zinc ion 

binding 
0.45 0.871 7.63 0.001 
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Figure 5. Proposed toxin biosynthesis pathway in A. catenella (modified from Mihali et al., 

2009 [19]). PPi: inorganic pyrophosphatase; MAT: methionine S-adenosyltransferase; SAH: 

S-adenosylhomocysteinase; AdoHcy: adenosylhomocysteinase; OTC: ornithine 

carbamoyltrans-ferase; SULT: similar to sulfotransferase; ADH: alcohol dehydrogenase; 

FNR: chloroplast ferredoxin-NADP+ reductase; ADI: arginine deiminase.  

 

Furthermore, we analyzed the interactions of all the proteins identified using KEGG software and 

found that the above nine proteins were linked to each other through the definite or assumptive proteins, 

the detailed interpretation of the interaction network is shown in Supplemental file (Supplemental 

Figure S1). Taking MAT3 (methionine adenosyltransferase) as an example: Using protein-protein and 

chemical-protein interactions, MAT3 interacted with SAH and adenosylhomocysteinase (ACHY) 

through a series of chemical reactions, i.e., MAT3 could catalyze the synthesis of SAM from 

methionine and ATP, SAHH2 could convert SAH to homocysteine and adenosine, SAH was an 

intermediate in the synthesis of cysteine and formed by the demethylation of SAM. MAT3 interacted 

with AVPL1 (inorganic pyrophosphatase) through two functional proteins, adenosine diphosphate 
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(ADP) and SAM. MAT3 interacted with SULT and AT4G22110 (alcohol dehydrogenase) via several 

predicted proteins and intermediates, i.e., malonate, acetaldehyde, SAH and SAHH. MAT3 interacted 

with AT5G47435 (formyltetrahydrofolate deformylase) via selenomethionine. MAT3 interacted with 

EMB1873 (arginine deiminase) through AT5G15950 (adenosylmethionine decarboxylase family protein) 

and ADC2 (arginine decarboxylase). MAT3 interacted with PEIF (chloroplast ferredoxin-NADP+ 

reductase) by EMB1873 (arginine deiminase). MAT3 interacted with OTC via ornithine, ammonia and 

SAM. Thus it could be seen that the nine proteins linked to each other through the complex interaction 

network. This implied that the above nine proteins may complete a biological process together in 

collaborative or mutually promotive ways. Related to the functions of these proteins in the PST 

biosynthesis pathway in toxic cyanobacteria, we postulated that these nine proteins might be involved 

in toxin biosynthesis and participate in the different toxin biosynthesis steps in A. catenella (Figure 5). 

3. Experimental Section  

3.1. Organism and Culture Conditions 

A. catenella was provided by the Collection Center of Marine Bacteria and Algae, Xiamen 

University, China. The culture was routinely maintained in K culture medium [41] at 20 °C under a 

14:10 h light: Dark photoperiod at a light intensity of approximately 100 μE/m
2
·s provided by 

fluorescent lamps. 

3.2. Synchronization of A. catenella 

Cultures of A. catenella were synchronized using a dark induced method. Low density  

(2000 ± 60 cells/mL), exponential growing cultures of A. catenella were grown in the original  

light-dark cycle (14:10 h, light/dark). When the cells reached high density (8000 ± 202 cells/mL), 

synchronization of cells was achieved by maintaining the exponential growing cells in continuous 

darkness for 36 h. Subsequently, the vigorous synchronized cells were filtered using 10 μm filter 

meshes and rinsed three times with autoclaved seawater, then transferred into the original L/D cycle 

with an initial cell density of 3500 ± 180 cells/mL. After completion of the dark cycle on the second 

day after inoculation, time zero point (T0 of the experiment) was designated, and samples for cell 

count, flow cytometry, toxin content and proteome analysis were taken every 2 h from T0 to T38.  

3.3. Cell Count  

Cell density was monitored every 2 h. Three 1 mL samples were collected in 1.5 mL Eppendorf 

tubes and fixed with 30 μL of lugol’s iodine solution. Cell count was conducted manually under  

a light microscope. 

3.4. Cell Cycle Defined 

Approximately 5 × 10
5
 cells were prepared for flow cytometric analysis as previous described by 

Olson et al. [42]. Cells were harvested using centrifugation at 2000× g for 5 min, rinsed twice with 

sterilized seawater to avoid any carry-over of culture medium and fixed with 1 mL of 70% cold 
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ethanol to extract their cellular pigments. Prior to flow cytometric analysis, the fixed cells were stained 

with a base intercalating dye, 10 μg/mL PI (propidium iodide) in phosphate buffered saline containing 

40 units/mL RNase and 0.3% TritonX-100. Cell cycle analysis was performed on an Epics XL flow 

cytometer (Beckman Coulter, USA) with a 5-W argon laser having a 488 nm excitation wavelength. 

The 635 nm emission wavelength was monitored for PI emission. Histograms of relative DNA content 

were analyzed using MultiCycle software (Beckman Coulter) to quantify the percentage of cells in 

each of the stages (G1, S, G2 + M) of the cell cycle. All reagents were obtained from Sigma unless 

otherwise mentioned. 

3.5. Toxin Analysis 

Samples for toxin analysis were taken every 2 h from T0 through T38. About 2.5–5 × 10
5
 cells were 

collected in three 50 mL tubes by centrifugation for 10 min (3000× g, 20 °C). After being washed 

twice with autoclaved seawater, the pellets were transferred into centrifuge tubes with 0.5 mL of 0.5 M 

acetic acid and sonicated in an ice bath for 5 min with short pulses of 5 s (model 450, Branson 

Ultrasonics, Danbury, CT, USA). Subsequently, the extracts were centrifuged for 30 min (10,000× g,  

20 °C). The supernatants were passed through a C18 cartridge following the manufacturer’s protocol. 

The eluents were collected and then spun in a Millipore 10,000 MW cutoff filter at 4000× g for 5 min. 

The purified cell extracts, approximately 200 μL from each, were loaded into separate auto sampler 

vials, and analyzed for PST derivatives using HPLC with a post column system (HP1100; Agilent, 

Santa Clara, CA, USA) using the three step isocratic elution method of Oshima et al. [43]. The toxin 

standards (C1,2, GTX1-5, STX, neo STX, dc STX) were obtained from the National Research  

Council Canada.  

3.6. Protein Extraction and Quantification 

Three samples collected at T24, T28 and T34, representing the non-toxin synthesis, initial toxin 

synthesis and toxin synthesizing stages of A. catenella, were selected for 2-DE analysis. 

Approximately 1 × 10
7
 cells for each sample were collected by centrifugation at 2000× g for 5 min at 

20 °C. The pellet was subsequently transferred to a 1.5 mL centrifuge tube, rinsed twice with 

autoclaved seawater to avoid any carry-over of culture medium and extracellular proteins. 1 mL Trizol 

reagent was added to the cell pellets which were then sonicated using an ultrasonic disrupter  

(Model 450, Branson Ultrasonics, Danbury, CT, USA). Subsequently, 200 μL of chloroform was 

added to the cell lysate and the mixture was shaken vigorously for 15 s. The mixture was allowed to 

stand for 5 min at room temperature before centrifugation at 12,000× g for 15 min at 4 °C. The  

pale-yellow or colorless upper layer was removed. 300 μL of ethanol was added to re-suspend the 

bottom layer and the mixture was centrifuged at 2000× g for 5 min at 4 °C. The supernatant was 

transferred to a new tube and 1.5 mL of isopropanol was added. The mixture was allowed to stand for 

at least 20 min for protein precipitation at room temperature, then centrifuged at 14,000× g for 10 min 

at 4 °C. The pellet was washed with 95% ethanol twice and allowed to air dry. Finally, 150 μL of 

rehydration buffer was added to dissolve the protein pellet. 

Protein quantification was performed using the PlusOneTM 2D Quant kit (GE Healthcare  

Life Sciences).  
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3.7. 2-DE Analysis 

Typically, a 340 μL sample containing 100 μg of protein (for silver staining and protein 

identification) in rehydration buffer containing 7 M urea, 2 Mthiourea, 4% CHAPS, 0.2% DTT and  

1.5 μL of pH 4–7 IPG buffer was used to rehydrate 18 cm pH 4–7 IPG strips (Bio-Rad, USA) for 13 h. 

After rehydration, IEF was performed using the IPGphor 3 (GE Life Science, USA). Voltage control 

was performed using the following schedule: 2 h at 100 V, 2 h at 200 V, 1 h at 500 V, 2 h at 1000 V,  

2 h at 4000 V, 2 h at 8000 V, and then until the total Vhrs reached 50,000. After the first dimension 

run, each strip was equilibrated with about 10 mL of equilibration buffer (50 mM Tris, pH 8.8, 6 M 

urea, 30% glycerol, 2% SDS, 1% DTT, and trace amounts of bromophenol blue) for 20 min. The gel 

strip was then equilibrated in fresh equilibration buffer containing 1% iodoacetamine (instead of DTT) 

for a further 20 min. The second-dimension SDS/PAGE was performed using 12.5% polyarylamide 

gel, running at a constant current of 25 mA/gel until the bromophenol blue dye reached the end of the 

gel. After electrophoresis, the gel was stained with silver mainly following the method of  

Wang et al. [24]. After staining, the gels were scanned using a Perfection Gel documentation system 

on a GS-670 Imaging Densitometer from Bio Rad and 2-DE electrophoretogram matching software. 

The images were analyzed using ImageMaster 2D 5.0 Platinum as described in the user manual. 

Each sample was analyzed in triplicate using 2-DE and only protein spots consistently present in all 

three gels were considered. An at least 2-fold difference (P < 0.05) in spot optical density was taken to 

indicate differentially expressed protein spots. The gels shown are representatives of the triplicates. 

3.8. MALDI-TOF-TOF MS Analysis 

Differentially expressed protein spots were manually excised from the silver stained gels and 

transferred to a 96 well plate (Eppendorf, Germany). Each spot was washed twice in milli-Q water and 

destained in a destaining buffer (0.16 g sodium thiosulfate and 0.1 g potassium ferricyanide in 10 mL 

MilliQ water), then washed with Milli-Q water at least five times (400 μL/well). Subsequently, the 

gels were dehydrated using 100% acetonitrile (CAN, 200 μL/well) and dried at room temperature for 

10–15 min, before being digested in gel with trypsin (10 ng/μL in 25 mM ammonium bicarbonate) for 

16 h at 37 °C (or 50 °C for 2 h). Protein identification was conducted using an AB SCIEX MALDI 

TOF-TOF™ 5800 Analyzer (AB SCIEX, Foster City, CA, USA) equipped with a neodymium:  

yttrium-aluminum-garnet laser (laser wavelength 349 nm). The TOF/TOF calibration mixtures  

(AB SCIEX) were used to calibrate the spectrum to a mass tolerance within 150 ppm. For the MS 

mode, peptide mass maps were acquired in positive reflection mode, and the 850–4000 m/z mass range 

was used with 1000 laser shots per spectrum. The PMF peak detection criteria used were: minimum 

signal/noise (S/N) of 10, local noise window width mass/charge (m/z) of 250 and minimum full-width 

half-maximum (bins) of 2.9. A maximum of 20 precursors per spot with a minimum S/N ratio of  

50 were selected for MS/MS analysis using ambient air as collision gas with a medium pressure of  

10–6 Torr. The contaminant m/z peaks originating from human keratin, trypsin auto-digestion, or 

matrix were excluded for MS/MS analysis. An energy of 1 kV was used for collision-induced 

dissociation, and 2000 acquisitions were accumulated for each MS/MS spectrum. The peak detection 

criteria used were: minimum S/N of 3, local noise window width (m/z) of 200 and minimum full-width 
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half-maximum (bins) of 2.9. A combined MS and MS/MS search was performed against the NCBInr 

database with no taxonomic restriction (updated December, 2010, containing 4,607,655 entries). All 

database searching was fulfilled using the GPS Explorer™ software (version 3.6, AB SCIEX) running 

a mascot search algorithm (v2.2, Matrix Science, London, UK) for protein identification. Results with 

CI% values greater than 95% were considered to be a positive identification. The identified proteins 

were then matched to specific processes or functions by searching Gene Ontology. 

3.9. Protein Interaction Network Analysis 

The differentially expressed proteins were further analyzed for their association with network 

pathways using STITCH which aims to integrate the databases of biological pathways, drug-target 

relationships, binding affinities and relevant interactions [44]. It is a resource to explore known and 

predicted interactions of chemicals and proteins. Chemicals are linked to other chemicals and proteins 

by evidence derived from experiments, databases and the literature. To explore the interactions of 

multiple proteins, enter a mixture of protein and chemical names (one per line) in the search box to the 

left. Select “auto-detect” as organism. Then click “GO!”, it will be taken to a network containing both 

proteins and related chemicals. 

3.10. Statistical Analysis 

Each sample was run in triplicate and the abundance of each protein spot was expressed as mean 

value (n = 3) ± standard deviation (SD). Statistical analysis was performed using one-way ANOVA 

(IBM SPSS statistics 19) to evaluate whether the mean value was significantly different among the 

three time points (T24, T28 and T34). Before running one-way ANOVA test, data were log 

transformed to meet ANOVA assumptions of normality and variance homoscedasticity. Only those 

proteins with P-value < 0.05 were considered statistically significant. 

4. Conclusions  

This study, to our knowledge, for the first time, compared the protein profiles of the PST-producing 

dinoflagellate, A. catenella, at different toxin biosynthesis stages, and identified 53 differentially 

expressed proteins. These proteins were involved in various biological processes, nine of which might 

be involved in the PST biosynthesis of A. catenella based on their functions in the PST-producing 

cyanobacteria combined with their interaction network. In future research, we intend to compare 

transcriptomic profiles in order to identify the unique genes as well as the highly expressed genes of  

A. catenella at different toxin biosynthesis stages. Meanwhile, we will use the quantitative proteomic 

approach, i.e., 2-D DIGE to compare protein profiles at different toxin biosynthesis stages. These 

should help to reveal the toxin biosynthesis mechanism and pathway in dinoflagellates. 
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