

Modeling Web Services Composition with Transaction Extension

for Performance Evaluation

Yanxiang He1, Liang Zhao1, Zhao Wu2, Fei Li1

1School of Computer, Wuhan University, Wuhan, 430079, P. R. China
2Department of Computer Science and Technology, Xiangfan University, Hubei, 441053, P.R. China

Email:zhl_mars@hotmail.com

Abstract

Web Services can be composed to build domain-

specific application and solution. The standards of
several Web services composition (WSC) are
proposed, for example, WS-BPEL and WS-CDL.
Moreover, there is a great demand for the performance
optimization of WSC recently. However, WS-BPEL
lacks formal semantics, so it is very difficult to verify
WSC and evaluate the performance of WSC. Therefore,
considering such situation and Long-Running
Transaction (LRT) in WS-BPEL, in this paper, we
adopt General Stochastic High-Level Petri Net
(GSHLPN) as basic formal description tool of WSC
based on WS-BPEL and model the context of LRT. Our
approach can provide a more real environment for
evaluating and optimizing the performance of WSC
based on WS-BPEL.

1. Introduction

Service-oriented computing (SOC) is an emerging
paradigm that is changing the way systems are
designed, architected, deployed, and used. SOC
decomposes computation into a set of loosely-coupled,
abstract services, and emphasizes document-centric
interactions through the exchange of messages. Web
Services and WSC play the key role in SOC field.
Some standards of WSC are proposed recently, for
example, WS-BPEL [1] and WS-CDL. However, WS-
BPEL lacks formal semantic, so the validity of WSC
can not be verified and analyzed, including
conformance check, deadlock, unreachable activities in
WS-BPEL. The existing methods used for modeling
WSC include Petri net [2] [3], π calculus, graph
grammar, process algebra, state diagram, activity
diagram etc.

Unfortunately, above formal approaches lack the
description for time variable required by performance
evaluation and can not simulate for LRT because of the

limitation of itself. Therefore, there are few researches
on performance evaluation of WSC based on WS-
BPEL. Consequently, we propose a model to support
the simulation in such environment through GSHLPN
[4] [5] and then evaluate its performance.

The rest of this paper is organized as follows.
Related work is introduced in Section 2. State pattern
of composite web service is presented in Section 3.
Section 4 discusses the description of interrupt event in
GSPHLN for WS-BPEL. Section 5 illustrates business
process model and the computing of state. Section 6
draws conclusions and future work。

2. Related work

Several approaches [6] [7] have been proposed in
literatures that deal with transformation from WS-
BPEL to Petri Net. In [6] and [7], they all propose Petri
net semantics for BPEL and want to formally analyze
and verify BPEL processes. Owe to the related works,
we research on WS-BPEL specification, and think that
the approach based on pattern is better for describing
WS-BPEL construct, because it can hierarchically
describe Petri Net so as to reduce the complexity of
graphic description, we prefer to adopt the approach
that is similar to [7].

However, there are several differences between [7]
and our method. Firstly, [7] addresses checking the
consistence of business process based on WS-BPEL,
thus it uses Petri Net as the formal analysis tool. But
Petri net lacks the simulation of time and interrupt.
Secondly, in contrast to [7], we use the state of
composite web service as the interface of activity in
WS-BPEL. Considering LRT’s feature, we can give a
simple description of LRT by means of GSHLPN and
model defined by section 5. In term of several
researches [9] [3] on performance evaluation of WSC,
they all do not consider LRT’s impact on performance.
Therefore, this paper aims at the limitations of their

2008 IEEE Asia-Pacific Services Computing Conference

978-0-7695-3473-2/08 $25.00 © 2008 IEEE

DOI 10.1109/APSCC.2008.104

476

2008 IEEE Asia-Pacific Services Computing Conference

978-0-7695-3473-2/08 $25.00 © 2008 IEEE

DOI 10.1109/APSCC.2008.104

476

researches and proposes a model to mostly simulate the
behavior of LRT in WS-BPEL.

3. State pattern of composite Web Service

In [8], a web service can be in one of the following
states: NotInstantiated, Ready, Running, Suspended, or
Completed. However, in WS-BPEL specification,
except for structured relations, synchronization
dependence relation also plays a key role in the relation
between activities. For performance analysis and
optimization, time is a very important variable, so we
must consider such relations and can not ignore the
dead-path-elimination problem [1]. WS-BPEL
provides the capability of FCT-handler, and then in the
performance analysis, the simulation for the exception
behaviors is necessary. As a result, we propose that
web service own the following states in WS-BPEL:
NotInstantiated, Skipped, Ready, Running, Failed,
Terminated and Completed.
- NotInstantiated: Web service is not instantiated;
- Skipped: It is the need of dead-path-elimination.

Web service will be skipped though it can have been
instantiated;
- Ready: web service is initializing;�
- Running:�Web service has finished initialization and

is running;�
- Failed: Web service has the fault during its running;
- Terminated: Web service completes unsuccessfully

or is terminated by context;
- Completed: Web service completes successfully.

In WS-BPEL, we regard that a composite web
service is equivalent to an activity, and consider place
represents the state of composite web service or
exchanged messages, while transition represents the
process of web service in Petri net. So for a composite
web service we may use seven places to represent the
interfaces of composite web service state. But because
NotInstantiated and running states may be judged
through others states, they are optional. Generally we
do not use the places to describe them. Then a
composite web service may be depicted in Figure 1.

Figure 1: state pattern of composite Web service

It is very important for Business processes to do

with fault, canceling operation and termination event in
WS-BPEL. When FCT events happen, system will

catch these events and interrupt the running process
and execute the corresponding operation. So we need
to simulate such handlers in order to obtain analysis
results after failures happen. Figure 2 represents it. In
this figure, we add a place marked as “Catching” in
order to catch the event that may be generated by
system or manual control. In this paper, we use dashed
circle to represent such place.

Figure 2: “Catching” place in composite web service

4. Describing interrupt event through
GSHLPN

In Petri net, a transition reflects an event in the real
system and the fire of transition reflects the state
change in system. There are two reasons for state
change: the certain logic conditions of verification and
the completion of certain activities. For the later, it can
simulate activity. Compared to common Petri net,
transition is divided into two different classes: timed
transition and immediate transition in GSHLPN.
Immediate transitions fires within zero time once they
are enabled. Timed transitions fire after a random,
exponentially distributed enabling time. The priority of
immediate transitions is higher than timed transition,
when several transitions may be simultaneously
enabled, if the set of enabling transition, H, comprises
timed transition and immediate transition, immediate
transition may be enabling and but timed transition can
not be enabling.. In Figure 3, the token in place P1
starts the activity simulated by T1, but if P2 obtains a
token before T1 will be fired, because the priority of T2
is higher than T1, then T1 will become unenforceable
while T2 will become enforceable and be fired. So the
fire of T2 can interrupt the fire of T1.

Figure 3: Use immediate transition to interrupt activity

For example, <receive> activity in WS-BPEL may
be described as following figure.

477477

Figure 4: Receive Activity

White solid circle represents inner place in a pattern,
and grey solid circle represents the interface of a
pattern, while grey dashed circle represents this place
is shared by other activities, and white dashed circle
represents that when this place owns a token, it needs
the trigger of outer or WSC context. The dashed arc on
the “Catching” place means that this place owns the
token by the trigger of the outer condition or WSC
Context, in every figure two immediate transition are
connected with “Catching” place and the place under
running state also has an arc with this two places, and
Pr<Exception = T> and Pr<Termination = T> describe
the logical condition verification. It can be see that
only failure or terminated event from the trigger of
context has happened, for example, the failure in
Channel, the activity in running state will be
interrupted or terminated and the state of activity also
is modified into terminated or failed.

5. Simulation model of WSC for LRT

5.1. Business process model

 A business process may be regarded as a
composition of web services, which are coordinated to
achieve a certain business goal. With the purpose of
performance evaluation, we adopt GSHLPN as basic
formal description tool of WSC based on WS-BPEL
and model the context of LRT. Therefore, business
process may be defined as the following tuple:

),,,,,(CTOICRCSPNBP =
Where:
-),,,,,,,;,(λ0MWXDVAFTPPN = represents business

process is described through GSHLPN. Its detail
description may see [4];
- CS is a set of composite web services;
- CR is a set of relations among web services will be

introduced in the section 5.2;
- I is a set of input port of CS;
- O is a set of output port of CS;

- CT is a context of web service composition and will
be introduced in the section 5.3.

Accordingly, we apply BP model into the performance
evaluation for business process under the following
scenario:
- Owing to the works in Section 4, interrupt behavior,

which is triggered by the transaction in business
process, can be manually controlled. In consequence,
the behavior of exceptional canceling transaction can
be simulated under the probability function;
- The impact of FCT handler can be simply simulated

because of the description of context of WSC.

5.2. Modeling a composite Web service

In a business process, multiple Web services may be
required to collaborate with each other to form a
composite Web service, while multiple composite Web
services can be constructed into business process. Thus,
a composite web service is a tuple:

),,,,,,,(stateCRPOSTPREOICSPNCWS =
Where:
- PN, CS, CR, I and O are same above description.
- PRE is a set of pre-condition that CWS can be

executed;
- POST is a set of post-condition that impacts on the

other CWS that have the synchronization
dependencies on it.
- state is the state of web service in section 3.
The paper [8] proposes the set of services can be
defined by s the syntax and informal semantics of the
service algebra operators. In here, we mainly care
about structured (including sequence, choice, loop and
parallelism) and synchronization dependency relation.
Hence a composite web service and CR may be
defined by as fellow:

SSSSSSSSSSS
n
cc |||||||||: ∇∇+→Χ= ε �

Where:�
- ε is empty composite web service, for example,

<empty> activity in WS-BPEL;
- Χ is an atomic web service, for example, a web

service wrapped by WSDL in WS-BPEL;
- → is a sequence binary operator, and

21 SS →
represents the web service

2S follows immediately
the web service

1S ;
- + is a choice binary operator, and

21 SS + represents
a composite service that behaves as either service

1S
or service

2S [8];
- || is a parallel binary operator, and

21 SS ||
represents a composite service that performs the

478478

services
1S and

2S independently from each other
[8];
- c∇ is an iteration single operator, and Sc∇

represents the web service S performs repeatedly
until condition c is satisfied;
- n

c∇ is an parallel iteration single operator, S
n
c∇

represents a composite service create n copies and
every copy will performs in parallel until condition c
is satisfied;
- is a synchronization dependency operator;
Consequently, (CS, CR) construct a mapping space,

CRCSOICS ⊆×∪×)(is structured� relation� set. In�
addition,� we consider the relations among PRE, POST
and CR as following case:
- mnmnmm SSSSSSSSSS)|||(,,, 2121 ≡

(Set },,,,{ mn SSSS 21
 forms an “And-Join”

structure.)
 ⇒ PRES m . is partially decided by S1.POST,

S2.POST,…, Sn.POST;
-)|||(,,, nmnmmm SSSSSSSSSS 2121 ≡

Set },,,,{ mn SSSS 21
 forms an “And-Fork” structure.

 ⇒ S1.PRE, S2.PRE,…, Sn.PRE; are partially decided
by POSTS m . .

 Meanwhile, we extend the above relation of WSC
because of the convenience to describe the cluster of
composite web services.
- ⎯→⎯l :

21 SS l⎯→⎯ represents
1S and

2S only lie in
the same sequence block.

),,(

)),(}){\(),(((
),,,(

11

1 1

13221

−=

∈∧∈¬∃+≠∀∧
→→→ −

ni

CRSSCRSSij
SSSSSS

nji

nn

),,(
.inlieonlyandconstruct}{

ni
blocksequencesametheSi

1=
⇒

- ⎯→⎯p :

21 SS p⎯→⎯ represents
1S and

2S construct
only lie in the same parallel block.

),,,(||),(
||,,||,||

NjniorrCRSSr
SSSSSS

ji

nn

∈==∈=∃∧
−

1
13221

),,(
.inlieonlyandconstruct}{

ni
blockparallelsametheSi

1=
⇒

So for composite relation like ⎯→⎯l and ⎯→⎯p , we
commonly regard the set of web service formed by
such relation as the whole when need tracing the
execution path and obtain reverse path in case Context
need to send compensation event to its child along with
reverse path. Generally, the approach of construction

of our simulation model is top-down, and thus this
model is hierarchical.

5.3 Modeling a context of WSC

“Context” (CT) simply describes the behavior of
Long-Running Transactions (LRT’s) [1], which use
compensation to handle failures, potentially aggregate
smaller ACID transactions. In contrast to rollback in
ACID transactions, compensation restores the original
state, or an equivalent, and is business-specific.
Compensation may be defined as the most logical
change applied to the resource to maintain data
consistency and integrity. Then when compensating,
the effects of some logic related web services need to
be negated, these logic associated web services form
the structure of SCOPE, and SCOPE may be nested.
The state of SCOPE is decided by all immediately
enclosing scopes and web services, and will trigger the
immediately enclosing web service which state is
running to interrupt their running when SCOPE
catches the exception and termination event. Hence,
SCOPE is a tuple:

),,,,,,(stateoiSTIPCSSCSSCOPE =

Where:
- SCS is a set of scopes;
- ST is set of state immediately of enclosing composite

web services and scopes;
- IP is a set of the place of interrupt triggers

(“Catching” place) in all composite web services;
- i is the first scope or composite web service;
- o is the last scope or composite web service.

In BP model, Context of web service composition
(CT) is actually a whole scope. It may be regarded as
directory service, and can describe and control the
transaction behaviors of nested scopes and web
services, for example, compensation handler and fault
handler.

5.4 State computing

5.4.1 State of composite web service

Composite web service S is composed of S1 (and S2)
by the relations defined by section 5.2.
Sequence composition:
Ready:

;.. ReadystateSReadystateS =⇒=1

Running:
;.. RuningstateSRunningstateS =⇒=1

Failed:
;... FailedstateSFailedstateSFailedstateS =⇒=∨= 21

Terminated:

479479

;.
..

TerminatedstateS
TerminatedstateSTerminatedstateS

=⇒
=∨= 21

Completed:
;.. CompletedstateSCompletedstateS =⇒=2

Skipped:

SkippedstateSandSkippedstateS
SkippedstateS

==⇒
=

..
.

21

NotInstantiated:
;.. iatedNotInstantstateSiatedNotInstantstateS =⇒=1

Choice composition:
Ready:

;... ReadystateSReadystateSReadystateS =⇒=∨= 21

Running:

;.
..

RunningstateS
RunningstateSRunningstateS

=⇒
=∨= 21

Failed:
;... FailedstateSFailedstateSFailedstateS =⇒=∨= 21

Terminated:

;.
..

TerminatedstateS
TerminatedstateSTerminatedstateS

=⇒
=∨= 21

Completed:

;.
..

CompletedstateS
CompletedstateSCompletedstateS

=⇒
=∨= 21

Skipped:

SkippedstateSReadystateSSkippedstateS
SkippedstateSReadystateSSkippedstateS

SkippedstateSandSkippedstateS
SkippedstateS

=⇒=∧≠
=⇒=∧≠

==⇒
=

...

...
..

.

12

21

21

NotInstantiated:

;.
..

iatedNotInstantstateS
iatedNotInstantstateSiatedNotInstantstateS

=⇒
=∧= 21

Parallel composition:
Ready:

;... ReadystateSReadystateSReadystateS =⇒=∧= 21

Running:

;.
..

RunningstateS
RunningstateSRunningstateS

=⇒
=∨= 21

Failed:
;... FailedstateSFailedstateSFailedstateS =⇒=∨= 21

Terminated:

;.
..

TerminatedstateS
TerminatedstateSTerminatedstateS

=⇒
=∧= 21

Completed:

;.
..

CompletedstateS
CompletedstateSCompletedstateS

=⇒
=∧= 21

Skipped:

SkippedstateSandSkippedstateS
SkippedstateS

==⇒
=

..
.

21

NotInstantiated:

;.
..

iatedNotInstantstateS
iatedNotInstantstateSiatedNotInstantstateS

=⇒
=∧= 21

Loop composition:
Ready:

;.. ReadystateSReadystateS =⇒=1

Running:
;.. RunningstateSRunningstateS =⇒=1

Failed:
;.. FailedstateSFailedstateS =⇒=1

Terminated:
;.. TerminatedstateSTerminatedstateS =⇒=1

Completed:
;. CompletedstateStruecondition =⇒=

Skipped:
SkippedstateSSkippedstateS =⇒= .. 1

NotInstantiated:

;.. iatedNotInstantstateSiatedNotInstantstateS =⇒=1

5.4.2 State of context

We suppose as following scenario:
-][mscope : m is the times of actually entering the

same scope;
- U is a set of uncompleted immediate scopes and web

services in][mscope
- C is a set of completed immediate scopes and web

services in][mscope ;
Consequently, the state of a scope may be computed by
the following method:
Ready:
 ReadystatemscopeReadystatei =⇒=].[. ;
Running:

Uu ∈∃ RunningstatemscopeRunningtateu =⇒=].[s. ;
Failed:

Uu ∈∃ FailedstatemscopeFailedstateu =⇒=].[. ;
Terminated:

Uu ∈¬∃
TerminatedstatemscopeTerminatedstateu =⇒≠].[. ;

Completed:
CompletedstatemscopeU =⇒=].[|| 0

Skipped:
Cc∈¬∃

Skippedstatemscope
CSmscopeSCSmscopeCSkippedstatec

=⇒
+=∧≠

].[
|].[||].[|||.

NotInstantiated:

480480

iatedNotInstantstatescopem =⇒= .0

Construction of U and C:
Step1. Readystatemscope =].[⇒
Let φ=∪= :,CSCP SSU:
Step2.

Uu ∈∀ When u.state = Completed or u.state = Skipped
Do U: = U – {u}, C: = C + {u}

SCOPE will catch exception, termination and
compensation events in its whole lifetime and do
corresponding handlers.
Exception event in a scope (][mscope):

).(RunningstateuUuu =∧∈∀
Step1.If u is a scope, Send (termination, u);
Step2. If u is a web service,][mscope searches the
interrupt place (“Catching” place) of u and fires it with
‘Terminated’ notation;

).(CompletedstatevCvv =∧∈∀
Step3. Send (compensation, v) along with reverse path.
Step4. Update the state of][mscope
Termination event in a scope (][mscope):

).(RunningstateuUuu =∧∈∀
Step1. If u is a scope, Send (termination, u)
Step2. If u is a web service,][mscope searches the
interrupt place (‘Catching’ place∈IP) of u and fires it
with ‘Terminated’ notation;
Step3. Update the state of][mscope
Compensation event in a scope (][mscope):
Step1.).(CompletedstatevCvv i =∧∈∀
 Send (compensation, v) along with reverse path.
Step2. readystatemscope ~].[= (“~Ready” represents
scope or web service has been instantiated but not enter
scope)
Step3. m := m-1;
Step4. Update the state of][mscope

6. Conclusion and future research

 Our goal is to establish simulation-based on
performance evaluation system approximated to the
environment of transaction in WS-BPEL. Because of
LRT in WS-BPEL, we need to take advantage of
interrupt event to emulate transaction handler.
Furthermore, we consider that GSHLPN is used to
formally describe web service composition consisted
of the activities in WS-BPEL. Meanwhile, we also
need to consider the context of transaction handler.
Therefore, we take into account the above consolidated
cases. We build the simulation model with the
characteristics in order to evaluate the performance of

WSC based on WS-BPEL in more reasonable
environment. Our future work is to make use of this
simulation model to implement the visual simulation-
based on the performance evaluation system.

7. Acknowledgement

This research has been supported by the National
High-Tech Research and Development Program (863
programs) of China under Grant No. 2007AA01Z138

8. References

[1] OASIS (2007) Web Services Business Process Execution

Language (WS-BPEL version 2.0)
 http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-

v2.0-CS01.pdf
[2] Murata T. Petri nets: properties, analysis and application.

Proceedings of the IEEE, 1989, 77(4), pp. 541-580
[3] A. N. Silva, F. A. A. Lins, J. C. Santos, N. S. Rosa, N. C.

Quental, and P. R. M. Maciel. Performance Evaluation of
Web Service Composition Using Petri Nets. In Brazilian
Symposium on Computer Networks, Curitiba, Parana,

[4] Lin Chuang. Stochastic Petri nets and System
Performance Evaluation, Beijing, Tsinghua University
Press, 2005.

[5] Marco Ajmone Marsan , Andrea Bobbio , Susanna
Donatelli, Petri Nets in Performance Analysis: An
Introduction, Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, the volumes are based on the
Advanced Course on Petri Nets, September 01, 1996, pp.
211-256.

[6] Ouyang, C., Verbeek, E., Aalst, W.M.P.v.d., Breutel, S.,
Dumas, M., Hofstede, A.H.t.: Formal Semantics and
Analysis of Control Flow in WS-BPEL. BPM Center
Report BPM-05-15, Queensland University of
Technology, BPMcenter.org (October 2005)
http://www.BPMcenter.org/reports/2005/BPM-05-
15.pdf, accepted for publication by Science of Computer
Programming.

[7] S. Hinz, K. Schmidt, C. Stahl, Transforming BPEL to
Petri nets, in: W.M.P. van der Aalst, B. Benatallah, F.
Casati, F. Curbera (Eds.), Proceedings of the
International Conference on Business Process
Management, BPM 2005, in: Lecture Notes in
Computer Science, vol.3649, Springer-Verlag, Nancy,
France, September 2005, pp. 220–235.

[8] Rachid Hamadi , Boualem Benatallah, A Petri net-based
model for web service composition, Proceedings of the
fourteenth Australasian database conference, , Adelaide,
Australia , February 01, 2003, pp. 191-200,

[9] Shan Zhiguang, Lin Chuang, Marinescu D C, Yang Y.
Modeling and performance analysis of Qos aware load
balancing of Web server clusters. Computer Networks,
Elsevier Science, 2002, 40(2), pp. 235-256 Brazil, May
2006.

481481

