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A blind source separation (BSS) method based on the energy (square)

predictability of original sources is proposed. The method exploits the

nonstationarity of sources in the sense that the variance of each source

signal can be assumed to change smoothly against time. In contrast to

linear predictability, it is shown that nonlinear predictability can also

be used for BSS. Simulations verify the efficient implementation of

the proposed method, especially its robustness to the outliers.

Introduction: Blind source separation (BSS) [1, 2] is an increasingly

popular data analysis technique which has received wide attention in

various fields such as biomedical signal processing and analysis, data

mining, speech and image processing. The task of BSS is to recover

original sources from their mixtures using some statistical properties

of original sources. In this Letter we consider linear, instantaneous,

noiseless mixtures of the form x(t)¼As(t), where x(t)¼

(x1(t), . . . , xn(t))T denotes the n-dimensional observation vector, A is

the n� n unknown non-singular constant mixing matrix, and s(t)¼

(s1(t), . . . , sn(t))T is the n-dimensional vector of unknown zero-mean

and unit-variance primary sources.

Several methods for BSS using the statistical properties of primary

sources have been proposed, such as non-Gaussianity [1, 2], linear

predictability or smoothness [1, 3], coding complexity [4, 5] and

nonstationarity of variance [6], etc. In this Letter, we show that

nonlinear predictability can also be a method for BSS. We assume

that primary sources are mutually independent and sources are non-

stationary in the sense that the energies (squares) of the signals are

predictable (i.e. the variance of each independent source signal can be

assumed to change smoothly against time). Comparison with a BSS

algorithm by the nonstationarity of variance [6] is given in the

‘Experimental results’ Section.

Proposed algorithm: Assume that the measured sensor signals x have

already been followed by an n� n whitening matrix V such that the

components of x̃(t)¼Vx(t) are unit variance and uncorrelated.

Furthermore, assume that we want to extract a source signal, for

this purpose we design a single processing unit described as ỹ i(t)¼

wi
Tx̃(t), where wi¼ (wi1, . . . , win)T is the weight vector which corre-

sponds to the estimate of one row of (VA)�1, and ỹ i(t) is the output

signal which corresponds to the estimate of the source signal si.

We present the following constrained minimisation problem based on

the generalised autocorrelation error function of the desired source; for

simplicity we use just one predicting term:

min
kwik¼1

Cðwi; aiÞ ¼ EfðGð~yiðtÞÞ � aiGð~yiðt � tÞÞÞ2g

¼ EfðGðwT
i ~xðtÞÞ � aiGðw

T
i ~xðt � tÞÞÞ2g ð1Þ

where t is a specific time delay, ai is a predicting parameter and G is a

differentiable function which defines the linear or nonlinear autocorre-

lation of the desired source. Generally, we can choose G(u)¼ u or

G(u)¼ u2. Assume that G(u)¼ u is chosen, the objective function is just

the mean squared error function used in the blind source extraction

algorithm [3] based on the linear predictability. Using the linear

predictability, one can perform BSS when sources have the linear

temporal autocorrelations. However, we show that the energy (square)

predictability can also be a BSS principle when sources have the square

temporal autocorrelations.

To perform the optimisation in (1), we can use a simple gradient

descent. The gradients of C(wi, ai) with respect to wi and ai are

obtained as:

@Cðwi; aiÞ

@wi

¼ 2EfðGð~yiðtÞÞ � aiGð~yiðt � tÞÞÞðgð~yiðtÞÞ~xðtÞ

� aigð~yiðt � tÞÞ~xðt � tÞÞg ð2Þ

@Cðwi; aiÞ

@ai

¼ �2EfðGð~yiðtÞÞ � aiGð~yiðt � tÞÞÞGð~yiðt � tÞÞg ð3Þ

where the function g is the derivative of G. Let @C(wi, ai)=@ai¼ 0, we

have

ai ¼
EfGð~yiðtÞÞGð~yiðt � tÞÞg

EfGð~yiðt � tÞÞGð~yiðt � tÞÞg
ð4Þ

Thus, the energy predictability BSS algorithm (EPBSS) is obtained as

follows.

Algorithm outline: EPBSS (estimating one source)

1. Centre the data to make its mean zero and whiten the data to give

x̃(t). Choose random initial values for wi and ai, and a suitable learning

rate m.

2. Update the weight vector by

aiðk þ 1Þ ¼
EfGðwiðkÞ

T ~xðtÞÞGðwiðkÞ
T ~xðt � tÞÞg

EfGðwiðkÞ
T ~xðt � tÞÞGðwiðkÞ

T ~xðt � tÞÞg

wiðk þ 1Þ ¼ wiðkÞ � mEfðGðwiðkÞ
T ~xðtÞÞ � aiðkÞ

� GðwiðkÞ
T ~xðt � tÞÞÞðgðwiðkÞ

T ~xðtÞÞ~xðtÞ

� aiðkÞgðwiðkÞ
T ~xðt � tÞÞ~xðt � tÞÞg

wiðk þ 1Þ ¼ wiðk þ 1Þ=kwiðk þ 1Þk ð5Þ

where G(u)¼ u2, g(u)¼ 2u, and k means the iteration number.

3. If not converged, go back to step 2.

To estimate the separating matrix W¼ (w1, . . . , wn)T, one can simply

use a deflation scheme (one-by-one estimation) or the symmetric

orthogonalisation [2].

Experimental results: We created ten artificial signals which had

smoothly changing variances as follows (with Gaussian marginal

distributions, zero linear autocorrelations and square temporal auto-

correlations) [6]. First, we created ten signals using a first-order

autoregressive model with constant variances of the innovations

[4, 5], with 5000 time points. The signals were created with Gaussian

innovations and had identical autoregressive coefficients (0.8). All

these innovations had constant unit variance. Then, the signs of the

signals were completely randomised by multiplying each signal by a

binary i.i.d. signal that took the values � 1 with equal probabilities.

The source signals were mixed with 10� 10 random matrices and the

EPBSS algorithm using the symmetric orthogonalization was used to

estimate the separating matrix (the learning rate m¼ 0.1 and t¼ 1).

For comparison, we also ran the cumulant-based fixed-point approach

using the nonstationarity of variance (FPNSV) (t¼ 1) [6]. To measure

the accuracy of separation, we calculated the performance index

PI ¼
1

n2

Pn
i¼1

Pn
j¼1

jpijj

maxk jpik j
� 1

 !
þ
Pn
j¼1

Pn
i¼1

jpijj

maxk jpkjj
� 1

 !( )
ð6Þ

where pij is the ijth element of n� n matrix P¼WVA.
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Fig. 1 Average performance indexes

a Average performance indexes over 100 independent runs for 10 sources
b Average performance indexes over 100 independent runs for 10 sources when
outliers introduced
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Fig. 1a shows the average performance indexes over 100 independent

trials against iteration numbers. The EPBSS algorithm performed

similarly to the cumulant-based fixed-point approach [6] in the sense

of the separation accuracy. To investigate the robustness of algorithms,

we randomly added 30 outliers the values of which were 10 in each

source signal. Fig. 1b shows the average performance indexes over 100

independent trials against iteration numbers. Obviously, the EPBSS

algorithm outperformed the FPNSV algorithm [6] when the outliers

were introduced. In fact, the FPNSV algorithm was sensitive to the

outliers and failed with the data in the case.

Conclusion: We propose a BSS algorithm based on a new simple

principle: the energy predictability. When sources are nonstationary in

the sense that the variances of the signals change smoothly, we have

demonstrated the efficient implementation of the method and verified

its robustness to the outliers.
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