

Cement and Concrete Research, Vol. 27, No. 9, pp. 1439–1449, 1997 Copyright © 1997 Elsevier Science Ltd Printed in the USA All rights reserved 0008-8846/97 \$17 00 + 00

PII S0008-8846(97)00127-0

ON THE PREPARATION OF SINGLE CRYSTALS OF 11CaO·7Al₂O₃·CaF₂ AND THE CONFIRMATION OF ITS CRYSTAL STRUCTURE

Yu Qijun* and Shuichi Sugita

Department of Civil Engineering, Hachinohe Institute of Technology, Myo, Hachinohe 031, Japan *From Wuhan University of Technology, P.R. China

Feng Xiuji and Mi Jinxiao

Institute of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P.R. China

> (Refereed) (Received May 7, 1996; in final form July 7, 1997)

ABSTRACT

Single crystals of 11CaO·7Al₂O₃·CaF₂(C₁₁A₇·CaF₂) of 40–120 μ m in size were prepared by a flux evaporation method. The crystals were colorless trigonal tristetrahedrons with a refractive index of 1.601. By the method of single crystal X-ray diffraction it has been confirmed that the $C_{11}A_7$ ·CaF₂ is cubic, with a = 11.981Å, space group $I\overline{4}3d$, Z = 2 and D_x = 2.720 g cm⁻³. The calcium atom is coordinated either to six oxygen atoms in an irregular [CaO₆] coordination with 2.380Å, 2.401Å and 2.502Å for Ca-O distances or to six oxygen atoms and one fluorine atom in an asymmetric arrangement with 2.816Å for F-Ca distance. The aluminum atoms are coordinated to four oxygen atoms forming two different AlO₄ tetrahedra: (1) the $[Al(1)O(2)_4]$, with symmetry $\overline{4}$ and Al(1)–O(2) distance = 1.745Å; and (2) the [Al(2)O₄] composed of one Al(2) atom, one O(1) atom and three O(2) atoms, with symmetry 3, Al(2)-O(1) distance = 1.740Å and Al(2)-O(2) distance = 1.757Å. Neighboring AlO₄ tetrahedra are connected with each other by sharing oxygen atoms resulting in a three dimensional [AlO₄] network-the basic framework of the crystal structure of C₁₁A₇·CaF₂. © 1997 Elsevier Science Ltd

Introduction

It is well known that the utilization of a composite mineralizer composed of fluorspar and gypsum possesses energy-saving advantages and can improve the quality of cement clinker, especially clinker produced in shaft kilns. Sometimes, though, fluoride-bearing cement sets abnormally; a fact which has been observed in both laboratories and plants. Consequently, the application of said cement has been subject to various problems (1–3). Many researchers attributed the reason for the cement's abnormal setting (flash or retarded setting) to: (a) the amount and crystal size of the $C_{11}A_7$ -CaF₂ phase; and (b) the variation in hydration activity

Coora	inates of At	oms in the	Crystal of C	$A_7 \cdot Cal$	\mathbf{F}_2 (After Ref. 6)
Atom	x	у	Z	В	Occupancy factor
Ca (1)	0.10824	0	1/4	0.90	0.744
Ca (2)	0.06738	0	1/4	0.90	0.254
Al (1)	3/8	0	1/4	0.37	
Al (2)	0.98089	0.98089	0.98089	0.33	
O (1)	0.06977	0.06977	0.06977	0.79	
O (2)	0.19091	0.28616	0.09919	0.94	
F	7/8	0	1/4	1.29	0.238

 TABLE 1

 Coordinates of Atoms in the Crystal of C₁₁A₇·CaF₂ (After Ref. 6

of alite in the clinker. Because it is different from C_3A in hydration properties and plays an important role in the setting and hardening of fluoride-bearing cement, $C_{11}A_7$ ·CaF₂ has attracted much attention. Many studies on its formation and stability at high temperatures as well as its setting and hydration behaviors under different conditions have been done in recent years (1–5).

The crystal structure of $C_{11}A_7$ CaF₂ was revealed by Williams (6,7), who based his observations on powder X-ray diffraction data (Table 1). For purposes of comparison, the coordinates of atoms of $C_{12}A_7$, one of the phases closely related to $C_{11}A_7$. CaF₂, are also presented in Table 2 (8). Table 1 shows that in the unit cell of $C_{11}A_7$ ·CaF₂ there exist two kinds of calcium atoms: Ca(1) and Ca(2), but from the coordinates of which it can be found that their interatomic distance is only 0.489Å, less than the radius of Ca^{2+} ion ($R_{Ca^{2+}}$ = 1.00Å). From the standpoint of crystallography, it is evident that the Ca sites were somewhat inappropriately determined in this solution. Based on the data shown in Table 1, we tried to analyze the bonding in $C_{11}A_7$ CaF₂ crystal utilizing a quantum chemistry method but ultimately failed. As we have learned through the method of single crystal X-ray diffraction, it is possible to obtain a more exact solution to crystal structure. Thus, single crystal studies will be required to improve on the structure reported by Williams. Using an ordinary crystal growth method will be very difficult to prepare single crystals of $C_{11}A_7$ ·CaF₂ with a size larger than 50 μ m. This difficulty is because a significant amount of fluorine in C₁₁A₇·CaF₂ will be released when the heating temperature rises above 1200°C. Feng and Liao et al. found single crystals of C₄A₃S, 11CaO·7Al₂O₃·CaCl₂ and 3CaO·3Al₂O₃·SrSO₄ greater than 100 µm in size could be obtained at temperatures below 1100°C by a flux evaporation method in which $PbCl_2$ was used as a flux (9,10).

L L	coordinates of Atoms in the C	rystar of C_{12}	A_7 (After Ke	(. 0)
Atom	Wyckoff equipoint symbols	x	У	z
Ca	24d	0.1397	0	1/4
Al (1)	16c	0.0187	0.0187	0.0187
Al (2)	12b	7/8	0	1/4
O (1)	48e	0.1510	-0.0370	0.0570
O (2)	16c	-0.0641	-0.0641	-0.0641
O (3)	24d	-0.3370	0	1/4

TABLE 2 instead of Atoms in the Crystal of $C_{12}A_7$ (After R

Powder X-ray diffraction pattern (Cu K α 1 radiation, spacings in Å) of the product.

Experimental

<u>Preparation of the Single Crystals of $C_{11}A_7$ -CaF₂.</u> Analytically pure CaCO₃, Al₂O₃ and CaF₂, oven dried at 105°C for 2 hours, were ground to pass through a 60 µm sieve. Considering a volatilization loss of 8.01% CaF₂ during the whole growth process of the crystals (5,11,12), a homogeneous mixture of the above agents with a molar ratio of CaCO₃ : Al₂O₃ : CaF₂ = 11.00 : 7.00 : 1.08 was fired at 1250°C for 2 hours in a silicon-carbide furnace and then quenched to room temperature in the air of R.H. less than 5%. By comparison to PDF-25-394, the product was proved to be C₁₁A₇-CaF₂.

In this study PbCl₂ was also used as a flux. The mixture of PbCl₂ and C₁₁A₇·CaF₂ at a weight ratio of 30 : 1 was placed in a Pt crucible and fired at 650°C for 2 hours, 850°C for 24 hours, 980°C for 30 hours and 1050°C for 10 hours sequentially under an oxidizing atmosphere. The final product contains 43.83% CaO, 50.91% Al₂O₃ and 5.26% CaF₂(C₁₁₀₂A_{7.04}C_{0.95}, C = CaO, A = Al₂O₃, C = CaF₂). Fig. 1 shows that the crystalline

TABLE 3Experimental Powder X-ray Diffraction Pattern of the
Final Product $(2\theta : 5-60^{\circ})$

d(Å)	h k l	I	d(Å)	hkl	I	d(Å)	h k l	I
4.884	211	100	2.440	422	44	1.724	444	8
4.229	220	4	2.342	510	10	1.693	710	6
3.780	310	14	2.181	521	38	1.657	640	26
3.194	321	33	2.049	530	6	1.625	552	10
2.988	400	37	1.938	532	20	1.596	642	- 30
2.673	420	75	1.847	541	3			
2.548	332	13	1.762	631	4			

FIG. 2. The form of the single crystal of $C_{11}A_7 \cdot CaF_2 \cdot trigonal$ tristetrahedron.

phase in it is only $C_{11}A_7$ CaF_2 , the observed d-I data of which are given in Table 3. Table 3 shows that the final product produces a pattern close to the calculated pattern PDF-25-394 in the range of 5–60° (2 θ , Cu K α_1 radiation). Microscopic observation proved that there were large numbers of colorless trigonal tristetrahedrons (Fig. 2) in the product. Their sizes ranged from 40 μ m to 120 μ m, and they had a refractive index of 1.601. The crystals of $C_{11}A_7$ CaF_2 contained in industrial fluoride-bearing clinkers always appear in the form of rounded grains or dendrites (13). The difference of morphology between the single crystal of $C_{11}A_7$ CaF_2 and the $C_{11}A_7$ CaF_2 crystals in fluoride-bearing clinker may be possibly due to the great differences that exist between their growth conditions. During the sintering process of clinker, $C_{11}A_7$ CaF_2 crystals can only grow in a much limited space for a short time.

<u>Determination of the Crystal Structure of $C_{11}A_7$ -CaF₂. The single crystal of $C_{11}A_7$ -CaF₂ under examination was a well-grown trigonal tristetrahedron of about $0.07 \times 0.07 \times 0.07$ mm³; its elemental composition is shown in Table 4. The intensity data were collected by a RASA-5RP Four-circle single-crystal diffractometer under the following conditions:</u>

Monochromator	: graphite,	Radiation : $MoK\alpha_1(0.70926\text{\AA})$,	Temperature	: 25°C,
Voltage	: 50kV,	Current : 130mA,	Scanning mode	: 2θ/ω,
Scanning rate	: 4°/min,	Scanning width $: \Delta \omega = 1.0 +$	0.5tgθ,	
Scanning range	$2\theta = 0-7$	5°, $h = 0-20$, $k = 0-0$, $1 = 0$	-20	

The unit cell parameters were obtained by using 20 strong reflections. 2529 original reflections were collected, among which there were 1944 reflections possessing $F > \sigma(F)$. All of the collected data were corrected for LP factor and T factor. By using SHELX 76 program the symmetry equivalent reflections in the original were combined and averaged. 286 symmetry independent reflections were accepted in the final structure solution after rejecting the reflections with $F < 5\sigma(F)$ and $\sin \theta/\lambda > 0.8$. The crystal data and calculated X-ray diffraction pattern (40 reflections) of the single crystal of $C_{11}A_7$ -CaF₂ are shown in Table 5 and Table 6 respectively.

TABLE 4 Elemental Composition of the Single Crystal of C₁₁A₇·CaF₂ Under Examination (by EPMA)

Atom	0	F	Si	Al	Cl	Pb	Fe	Ca
Observed (%) Calculated (%)	50.85 53.30	3.10 3.30	0.03 0.00	24.41 23.40	2.16 0.00	0.22 0.00	0.02 0.00	19.21 20.00

Crysta	al Data for	the Single Crys	tal of $C_{11}A_7$ ·Ca F_2 (Figure in the E	Bracket	is Error)
Molecu. weight	1408.68	Unit cell parameters	$a = b = c = 11 981(2) \text{ Å}$ $\alpha = \beta = \gamma = 90^{\circ}$	D _x	2.72 g cm^{-3}
Crystal system	Cubic	Observed diffractions	h + k + l = 2n, 0kl : k + l = 2n, hhl : 2h + l = 4n, h00 . h = 4n	D _m	2.69 g cm^{-3}
Space group	I43d	Linear absorp. coefficient	21.43 cm ⁻¹		
Z	2	Cell volume	1719.80 Å ³		

TABLE 5 rystal Data for the Single Crystal of $C_{11}A_7$ CaF₂ (Figure in the Bracket is Error)

Results and Analysis

<u>Heating Sequence Adopted in the Experiment</u>. When a flux evaporation method is used, the size and purity of the product are closely related to the adopted heating sequence. Generally speaking, the heating sequence is mainly dependent on both the flux and the characteristics of the single crystals to be synthesized. Because (a) the melting point and boiling point of PbCl₂ (under standard atmosphere) are 498°C and 954°C respectively; and (b) the fluorine in $C_{11}A_7$ ·CaF₂ will be released at a relatively high rate when the heating temperature is over 1200°C (11,12), the following heating processes were specially adopted in this experiment. Firstly, the mixture of PbCl₂ and $C_{11}A_7$ ·CaF₂ was heated at 650°C for 2 hours in order to completely melt the PbCl₂ and, subsequently, dissolve $C_{11}A_7$ ·CaF₂ in the molten PbCl₂. Secondly, the mixture was heated at 850°C (below the boiling point of PbCl₂) for 24 hours so as to slowly evaporate PbCl₂ and to keep the solution from being quickly supersaturated with $C_{11}A_7$ ·CaF₂. Thirdly and finally, it was heated at 980°C (over the boiling point of PbCl₂) for 30 hours and then at 1050°C for 10 hours in order to evaporate any possible remains of PbCl₂. The heating time adopted at the above stages was determined on a trial basis.

TABLE 6

Calculated X-ray Diffraction Pa	ttern of the	Single C	Crystal of	$C_{11}A_7 \cdot CaF_2$
---------------------------------	--------------	----------	------------	-------------------------

d(Å)	h k l	I	d(Å)	h k l	I	d(Å)	h k l	I
4.8910	211	100	1.7665	631	4	1.2772	664	3
4.2360	220	3	1.7293	444	9	1.2629	851	1
3.7887	310	6	1.6944	710	3	1.2357	932	2
3.2021	321	13	1.6615	640	22	1.2103	941	2
2.9952	400	28	1.6304	552	4	1.1863	772	1
2.6790	420	85	1.6010	642	23	1.1748	10 2 0	2
2,5544	332	4	1.5216	651	2	1.1423	765	3
2.4456	422	37	1.4976	800	4	1.1124	1040	4
2.3497	510	8	1.4748	741	5	1.1029	961	1
2.1874	521	33	1.3928	743	4	1.0937	10.4.2	3
2.1180	440	l	1.3566	752	2			
2.0547	530	3	1.3395	840	4			
1.9436	532	22	1.3231	910	1			
1.8944	620	ł	1.3072	842	7			
1.8487	541	2	1.2919	921	1			

Atom	Wyckoff equipoint symbols	X/A	Y/B	Z/C	Occupancy factor	Isotropic thermal vıbration parameter
Ca	24d	0.1104 (1)	0	0.2500	1.0	0.0086 (5)
Al (1)	24d	0.3750 (2)	0	0.2500	1.0	0.09(1)
Al (2)	16c	0.2324 (1)	0.2324 (1)	0.2324 (1)	1.0	0.04 (1)
O (1)	16c	0.0661(1)	0.0661(1)	0.0661 (1)	1.0	0.019 (3)
O (2)	48e	0.1955 (2)	0.2852(1)	0.1004(2)	1.0	0.014 (2)
F	48e	0.2500	0.1250	0.5000	0.333	0.024 (4)

TABLE 7

Coordinates, Occupancy Factor and Isotropic Thermal Vibration Parameter (U_{11}) of Atoms in the Single Crystal of $C_{11}A_7$ ·CaF₂ (Figures in Brackets are Errors)

<u>Coordinates of Atoms in the Single Crystal of $C_{11}A_7$ -CaF₂.</u> Using the 286 symmetry independent reflections with $F > 5\sigma$ (F), the coordinates and isotropic thermal vibration parameters of 6 sets of atoms (1 set of Ca, 2 sets of Al, 2 sets of O and 1 set of F) were finally obtained after multiple-cycles by the least squares method (Table 7). The coordinates of Al and Ca atoms were determined by using the direct method proposed by Gilmore (14). The coordinates of O and F atoms were deduced from the result of successive differential calculation of electron density and the knowledge of crystal chemistry. The final deviation factor R and R_w are all equal to 0.090, thus showing that the precision of this solution can meet the requirement of accuracy defined in the solution of crystal structure (<0.100).

The unit cell of $C_{11}A_7$ ·CaF₂ crystal is composed of the following 120 atoms: 24 Ca, 12 Al(1). 16 Al(2), 48 O(2), 16 O(1) and 4 F. The coordinates of all the atoms in the unit cell of $C_{11}A_7$ ·CaF₂ crystal can be easily deduced from Table 7 and (15).

The projection drawing of the structure of $C_{11}A_7$ ·CaF₂ on (001) plane is shown in Fig. 3. This figure, when applying methods of quantum chemistry, will greatly assist in selecting the appropriate calculation model for analyzing its bond structure and bond formation (5). The data of bond distances and bond angles for the single crystal of $C_{11}A_7$ ·CaF₂ are shown in Table 8 and Table 9 respectively.

Description of the Crystal Structure of $C_{11}A_7 \cdot CaF_2$. Fig. 4 is an axonometric drawing of the structure of $C_{11}A_7 \cdot CaF_2$ in the range of x = -0.2a-1.2a, y = -0.2a-1.2a, z = -0.2a-0.4a. Fig. 5 shows the distribution of AlO₄ tetrahedra in the same range. There are two different [AlO₄] in the structure of $C_{11}A_7 \cdot CaF_2$, i.e. the [Al(1)O₄] with symmetry $\overline{4}$ (Fig. 6) and the [Al(2)O₄] with symmetry 3 (Fig. 7). The former is a fairly regular tetrahetron composed of one Al(1) atom and four O(2) atoms, with Al–O distance = 1.745Å(4 equivalent bonds); the latter, extended along its triad axis, is made up of one Al(2) atom, three O(2) atoms and one O(1) atom, with Al(2)–O(2) distance = 1.757 (3 equivalent bonds) and Al(2)–O(1) distance = 1.740Å. From Fig. 4 and Fig. 5 it can be found that: (a) neighboring two [AlO₄] are connected by one shared O atom; (b) an [AlO₄] ring is formed by every 8[AlO₄]; (c) the [AlO₄] rings are further linked up by sharing O atoms resulting in a three dimensional [AlO₄] network—the basic framework of the structure of $C_{11}A_7 \cdot CaF_2$; (d) each of the four corners of every [AlO₄] is shared between neighboring AlO₄ tetrahedra.

FIG. 3. Projection drawing of the crystal structure of $C_{11}A_7$ ·CaF₂ on (001) plane along C axis.

Ca-O(F)	Bond Distance	Al—O	Bond Distance
Ca-O(1)	2.401 (Ca ₁ : O_{31} , O_{33})	Al(1)O(2)	$1.745 (Al_1 - : O_1, O_2, O_5, O_6)$
CaO(2)	2.380 (Ca ₁ -:: O_{17} , O_{34})	A1(2) - O(1)	$1.740 (Al_2 - O_3)$
	2.502 (Ca ₁ -: O_{22}, O_{30})	Al(2)O(2)	$1.757 (Al_2 - O_5, O_9, O_{11})$
Ca—F	2.816 ($Ca_1 - F_1$)		

TABLE 8 Data of Bond Distances for the Single Crystal of $C_{11}A_7$ ·CaF₂ (Å)

Q. Yu et al.

			ond Angi		ne singi	e erysta		17 Car	$_2$ (Degi	00)	
A ₁	CA	A ₂	Angle	A ₁	CA	A ₂	Angle	A _t	CA	A ₂	Angle
O ₃₃	-Ca ₁	-O ₃₁	54.76	0 ₁₇	-Ca,	-O ₃₄	174.65	0,	-Al,	-05	112.33
		-0_{17}	80.03			-0_{22}	67.19			~0 ₆	112.33
		-034	98.78			$-O_{30}$	117.76	0,	$-Al_1$	-0_{5}	112.33
		-0_{22}	77.50			$-F_1$	87.33	-		-0_{6}	112.33
		$-O_{30}^{}$	125.60	O ₃₄	$-Ca_1$	$-O_{22}$	117.76	05	$-Al_1$	φŎ	103.90
		$-F_1$	77.38			$-O_{30}$	67.19	03	$-Al_2$	-0_{5}	117.18
O ₃₁	$-Ca_1$	$-O_{17}$	98.78			$-F_1$	87.33			-0_{9}	117.18
		-O ₃₄	80.03	O ₂₂	$-Ca_1$	$-O_{30}$	66.40			-0 ₁₁	117.18
		-O ₂₂	125.60			$-F_1$	146.80	O_5	$-Al_2$	-O ₉	100.78
		$-O_{30}$	77.50	O ₃₀	$-Ca_1$	$-\mathbf{F}_{1}$	146.80	-	_	-O ₁₁	100.78
		$-F_1$	77.38	0,	$-Al_1$	-0_{2}	103.90	O ₉	$-Al_2$	-0 ₁₁	100.78

TABLE 9 Data of Bond Angle for the Single Crystal of C₁₁A₇·CaF₂ (Degree)*

*A₁-atom 1, A₂-atom 2, CA-central atom

In $C_{11}A_7$ -CaF₂ crystals, there are four F atoms. They distribute statistically between the following 12 sites: (-1/8,0,1/4), (5/8,0,3/4), (1/4,7/8,0), (3/4,5/8,0), (0,1,4,7/8), (0,3/4,5/8), (3/8,1/2,3/4), (1/8,1/2,1/4), (3/4,3/8,1/2), (1/4,1/8,1/2), (1/2,3/4,3/8) and (1/2,1/4,1/8). The unoccupied eight sites are retained as vacancies.

One Ca atom is connected to 2 O(1) and 4 O(2) atoms forming an irregular CaO₆ octahedron, with Ca–O(1) distance = 2.401Å, Ca–O(2) distance = 2.380Å and 2.502Å. On the other hand, one Ca atom can also be coordinated to six O atoms and one F atom in some sites resulting in a deformed polyhedron (coordination number = 7), with a Ca F distance of 2.816Å (Table 8). The ratio between the number of Ca atoms with coordination number 6 and that with coordination number 7 is 5 : 1. [Al(1)O₄], [Al(2)O₄] and [CaO₆] are joined by sharing O atoms (Fig. 3). It should be noted that the Ca-F bond distance is quite long for the ionic interactions occurring in such a strong bond. It was observed that the Ca-Cl distance in

FIG. 4. Axonometric chart of the crystal structure of $C_{11}A_7$ ·CaF₂.

FIG. 5. Schematic distribution of AlO_4 tetrahedra and the formation of AlO_4 framework.

 $C_{11}A_7$ -CaCl₂ is about 2.73Å(6), which is also greater than the Ca-Cl distance (2.483Å) in CaCl₂ (16). Due to the limitation of experimental conditions and the authors' poor understanding of crystal chemistry, a clear explanation for the puzzling Ca-F distance can not be given in this study.

Table 2 shows that there is only one kind of site for calcium atoms in the structure of $C_{12}A_7$ as determined by Bartl (8), which happens to be the same as that in the structure of $C_{11}A_7$ · CaF_2 as observed in this study. Studies on $C_{12}A_7$ shows its crystal structure to be built from Ca^{2+} ions, an incomplete framework of corner-sharing AlO₄ tetrahedra and empirical composition $Al_7O_{16}^{11-}$, and one O^{2-} ion per formula unit distributed statistically between 12 sites (17). The form of the AlO₄ framework of $C_{12}A_7$ is the same as that of $C_{11}A_7$ · CaF_2 (18). However, compared to $C_{12}A_7$, there are four extra F atoms in the unit cell of $C_{11}A_7$ · CaF_2 . The F atoms fill in the large cavities surrounded by AlO₄ tetrahedra and coordinate with Ca and O atoms to form a pseudo-octahedron, which reduces the internal potential of $C_{11}A_7$ · CaF_2 and stabilizes the structure of $C_{11}A_7$ · CaF_2 . Besides this lattice stabilization, the presence of

 $Al_1 - Al(1)$, O_1 , O_2 , O_5 , $O_6 - O(2)$

FIG. 6. AlO₄ tetrahedron with symmetry $\overline{4}$.

FIG. 7.

AlO₄ tetrahedron extended along its triad axis, with symmetry 3.

the extra F atoms in the structure also has a strengthening effect on the Al-O bonds by modifying the net charges around Al and O atoms. Li (18) found the Mulliken ionic bond orders of the Al(1)-O and Al(2)-O of $C_{11}A_7$ ·CaF₂ are 0.1610 and 0.0490, while those of the Al(1)-O and Al(2)-O of $C_{12}A_7$ are only 0.0351 and 0.0257. Therefore, the crystal structure of $C_{11}A_7$ ·CaF₂ is more stable than that of $C_{12}A_7$. In other words, the hydration activity of $C_{11}A_7$ ·CaF₂ is poorer than that of $C_{12}A_7$ (5,18).

Comparison of the XRD Pattern of $C_{11}A_7$ ·CaF₂ Obtained in This Study With Those of Before. There are two patterns of $C_{11}A_7$ ·CaF₂ in the Powder Diffraction File, i.e. PDF-25-394 and PDF-36-678. The former is often used to identify the $C_{11}A_7$ ·CaF₂ that exists in fluoride-bearing cement clinker (1–5) because it gives more perfect data than the latter does. Table 3 shows that in the range of 5–60° (20, Cu K α_1 radiation), the powder X-ray diffraction pattern of $C_{11}A_7$ ·CaF₂ observed in this study is very close to the calculated pattern PDF-25-394 reported by Williams. Yet, by using single crystal X-ray diffraction, a more detailed pattern, as shown in Table 6, has been obtained. In the new pattern some missing distances in PDF 25-394, such as d = 2.1180Å, 1.8944Å, 1.3231Å, 1.2357Å, 1.1863Å, 1.1748Å and 1.1029Å, have been presented. If possible, the authors will submit the experimental and calculated patterns of $C_{11}A_7$ ·CaF₂ obtained in this study to the ICDD for inclusion in the PDF.

Conclusions

- 1. Single crystals of $C_{11}A_7$ ·CaF₂ measuring 40–120 µm suitable for single crystal study could be prepared by a fluxevaporation method in which PbCl₂ was used as a flux. The single crystal of $C_{11}A_7$ ·CaF₂ is cubic, with a = 11.981Å, space group I43d, Z = 2, n = 1.601, and $D_X = 2.720$ g cm⁻³.
- 2. The calcium atom of $C_{11}A_7$ ·CaF₂ is coordinated either to six oxygen atoms in an irregular [CaO₆] coordination or to six oxygen atoms and one fluorine atom resulting in a pseudo-octahedron with a coordination number of 7. The aluminum atom is bonded to four oxygen atoms forming two different Al-O tetrahedra. Every 8 [AlO₄] form a [AlO₄] ring. Furthermore, the rings join each other resulting in a three dimensional [AlO₄] framework in the crystal of $C_{11}A_7$ ·CaF₂.

- 3. Fluorine atoms only occupy 1/3 of the available sites in the structure of $C_{11}A_7$ ·CaF₂; the unoccupied 2/3 sites are retained as vacancies.
- 4. The distorted and irregular coordination of atoms; the presence of large cavities and vacancies in the structure; and the random distribution of fluorine atoms make $C_{11}A_7$ · CaF_2 have high internal potential as well as be active when it is exposed to water. But compared to $C_{12}A_7$, $C_{11}A_7$ · CaF_2 is more stable in crystal structure and slower in hydration due to the presence of fluorine atoms in its structure.

Acknowledgment

This work was sponsored financially by Chenguang Foundation of Wuhan Science and Technology Committee. The authors are grateful to Prof. Tong Damao and Prof. Shen Jinchuan for their insightful comments. The first author also wishes to acknowledge the Aomori Society of Promoting Technology and Education of Japan for its assistance in his work.

References

- 1. Wang Shanba and Ding Wucheng, Journal of Chinese Ceramics Society, 16(4), 305 (1988).
- 2. Fan Yueming, Zhong Jingyu and Yang Jiazhi, Journal of Chinese Ceramics Society, 13(3), 284 (1985).
- 3. Xue Gungan, Tong Xueli and Li Xiuying, Proc. of 1985 Beijing Inter. Symp. on Cem. and Concr., Vol. I, 191 (1985).
- 4. Lu Ping, On the clinkering, hydration and strength development of fluoride-bearing clinker in the system of CaO-Al₂O₃-SiO₂-SO₃, Masters Thesis, Tongji University (1981).
- 5. Yu Qijun, On the crystal structure and characteristics of $C_{11}A_7$ ·CaF₂, Ph D Thesis, Wuhan University of Technology, 17-37, 52–108 (1992).
- 6. Perter P. Williams, Proc. 5th Inter. Symp. on the Chem. of Cem., Tokyo, Vol. I, 366-369 (1968).
- 7. Perter P. Williams, Acta Crystallogr., Sec. B, 29, 1550 (1973).
- 8. H. Bartl and T. Scheller, Neues Jahrb. Mineral. Monatsh. 404 (1969).
- Liao Guanglin. On the structure and properties of C₄A₃S and its derivants, Master Thesis, Wuhan University of Technology, 15–40 (1987).
- 10. Feng Xiuji, Liao Guanglin and Long Shizong, IL Cemento, No. 1 (1991).
- 11. Yu Qijun and Xu Lin, Investigation on the formation dynamics of $C_{11}A_7$ ·CaF₂ and its stability at high temperatures, in preparation.
- Ye Ruilun, Wu Bolin and Ma Weidong, Proc. of 1985 Beijing Inter. Symp. on Cem. and Concr., Vol. I, 205 (1985).
- Southern China University of Science and Technology, Beijing University of Technology and Wuhan University of Technology, Petrography of Silicates, China Architectural Industry Press, Beijing, 439 (1980).
- 14. G.J. Gilmore, MITHRIL: A Computer Program for the Automatic Solution of Crystal Structure from X Ray Data, University of Glasgow, Scotland (1983).
- 15. Theo Hahn, International Tables for Crystallography, Vol. A (Space-Group Symmetry), D. Reidel Publishing Company, Holland, U.S.A., 659–661 (1983).
- L.E. Sutton, ed., Tables of Interatomic Distances and Configuration in Molecules and Ions, The Chemical Society Special Publication, No. 11, 18, The Chemical Society, London, (1958, 1965).
- 17. H.F.M. Taylor. Cement Chemistry, Academic Press, 36 (1990).
- Li Beixing, On the relationship between valence-bond-structure and hydration activity of some calcium aluminates with quantum chemistry, Masters Thesis, Wuhan University of Technology, 32-40 (1995).