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Abstract. This paper is concerned with the performance of the plastic strain amplitude measure, 
originally motivated and then abandoned by Haupt et al. [1]. Reasons for success and failure in 
modeling for the amplitude dependence are discussed. It is shown that if the memory parameter in 
the variable to indicate the center of the plastic strain region is determined suitably, the measure 
gives satisfactory performance in reflecting the amplitude behavior. By incorporating a hardening 
function dependent on the measure into the intrinsic time scale used in Valanis’ endochronic 
plasticity, various transient and steady cyclic phenomena of hardening materials can be reproduced.  
 

Introduction 
 
   It has been well known that with the variation of plastic strain amplitude, the cyclic hardening/ 
softening degree of the hardening materials changes continuously and appears memory to the prior 
maximum hardening history partially or completely [2,3]. In the last two decades, some proposed 
amplitude parameters are used to simulate these behaviors. Chaboche [2] proposed the concept of 
maximum plastic strain region. Ohno [4] proposed the cyclic non-hardening region. Improvements 
for Ohno’s measure have been discussed in several works [5]. Tanaka [6] used a new variable to 
describe the center of the plastic strain region and took the distance between it and the current 
plastic strain point as an amplitude parameter. On the other hand, Haupt et al. [1] intended to 
accomplish a continuous describing of the hardening and softening, where an amplitude measure 
was defined and hoped to proportional to a direct measure of the plastic strain amplitude. As a result, 
the measure is related to the back stress, which will lose the objectivity.    

To describe the amplitude effects in a continuous manner is important so that a constitutive 
model can easily be used for analysis of engineering components subjected to random loading. This 
presentation is intended to qualitatively study the initial amplitude measure defined in [1]. The 
measure, defined by the accumulation of instantaneous plastic strain amplitude with respect to the 
plastic deformation process, evolves continuously and naturally includes a fading memory to the 
prior amplitude history. The features of the amplitude measure are discussed in detail. By 
incorporating it into the hardening variables used in the endochronic theory [5], it is shown that 
various important amplitude effects on behavior of uniaxial cyclic deformation can be predicted in a 
satisfactory manner if the memory parameter in the measure is determined suitably. 
   In the following, stress and strain are expressed in the form of vectors in Ilyushin’s 
five-dimensional deviatoric vector space. Let | |x  denote the absolute value of a quantityx . 
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Measure for cyclic plastic strain amplitude  

  
  In uniaxial symmetric tension-compression or torsion cycling, clearly, the instantaneous size of 
the plastic strain region, written as qin , can be represented by 

 

   qin
p=| |ε                                                                    (1) 

 

where ε p  is the uniaxial component of plastic strain vector. To define a suitable amplitude 
measure, two ways are available. One way is that qin  is directly used, but a memory rule on it or on 

the target value of the internal variable dependent on it has to be introduced, such as that similar to 
Tanaka’s consideration [6]. Another way, by Haupt’s idea [1], is that the measure is defined by the 
accumulation of qin  with respect to the plastic deformation process. It evolves continuously and 

naturally includes the memory to the prior amplitude history. The later way is adopted and discussed 
here. To begin with, we take the integration of qin  as 

 

   ζ ζ ζ ζ
ζ

A inq d( ) ( )==== ����
0

                                                         (2) 

 

where ||�=
pdεζ  is the current plastic strain arc length. Let q A  denote the amplitude measure, it 

may be assumed as 
 

    q A
A====

ζ

ζ
                                                                  (3)  

 
which gives an average mean amplitude value with respect to the plastic deformation process. It can 
be seen from Eq. 3 that when ζ ==== 0 , q A  becomes indeterminate. In fact, in the case of 

infinitesimally small ζ , q A  is approximately equal to | |ε p . Therefore, as | |ε p = 0, q A =0. 
   Noting that q A  in Eq. 3 is assumed to depend on the entire previous plastic deformation 
process, a permanent memory is spontaneously caused. It means that the integration of qin  should 
be taken in a recent finite plastic deformation interval [ , ]ζ ζ ζ−−−− 0 , where ζ0  is the length of the 

interval. Thus, Eq. 3 may be replaced by 
    

   q q dA in( ) ( )ζ
ζ

ζ ζ
ζ ζ

ζ

==== ����
−−−−

1

0 0

.                                                     (4) 

 
This is the measure initially proposed by Haupt et al. [1]. The constant ζ0  specifies the memory 
range to the recent amplitude history. The larger the value of ζ0 , the slower the evolution rate of 

the amplitude measure.  
   It is apparent that the measure provides a transient amplitude variation process and a stable 
oscillatory value for cycling with a fixed amplitude. And the calculated average values at the stable 
states are approximately proportional to the actual plastic strain amplitudes. If the actual amplitude 
is changed from one level to another, q A  changes continuously until the new stable level is 
approached. To a certain extent, the memory degree of q A  to the prior amplitude history can be 
controlled through changing the value of ζ0 . 
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   Now, let us consider cycling with non-zero mean plastic strain. Following the works by Haupt et 
al., a center variable of the plastic strain region, written as y  here, is assumed to evolve as follows 

 

   ′ = −y yp( ) [ ( ) ( )]ζ
ζ

ε ζ ζ
1

1

                                                    (5) 

 
where the constant ζ1  determines how fast the center y  adjusts itself to the actual prescribed 

mean plastic strain position. Thus, qin ( )ζ  in Eq. 4 is replaced by 

 

   q yin
p( ) | ( ) ( )|ζ ε ζ ζ= − .                                                       (6) 

 
   In [1], the capability of the measure defined by Eq. 4 was examined by incorporating it into 
Chaboche type kinematic hardening rules to simulate cycling with non-zero mean plastic strain. It 
was found that nonmonotonous softening occurs just after change of mean plastic strain since y  

adjusts itself to the new position with a certain delay. For this reason, the measure was abandoned 
by the proposers. 
   In fact, nonmonotonous softening is caused by the unsuitable value of ζ1 . According to the 
definition of Eq. 6, the smaller the value of ζ1 , the larger the instantaneous value of y . And there 
exists two limit cases that y  varies with ζ1  during mean plastic strain changing. One case is 

ζ1 0→ , y p→| |ε  and another ζ1 → ∞ , y → 0 . Thus there should exist a suitable value of ζ1  to 

be used in Eq. 6 to give the actural y  which is some value between zero and | |ε p . To make this 

clear, the material hardening function used to define the intrinsic time scale in Valanis’ endochronic 
plasticity will be related to the measure for simulating the transient and steady amplitude effects. 
For simplicity of discussions, we briefly review the uniaxial endochronic constitutive equation in 
the following. 
 
The endochronic theory and the amplitude-dependent hardening function 
 

Based on the concept of the internal variable theory of thermodynamics, Valanis proporsed the 
endochronic theory along with the notion of intrinsic time. In uniaxial loading, the constitutive 
equation is written as 

 

s z z
d

dz
dz

p
z

= − ′
′

′� ρ
ε

( )
0

                                                          (7) 

 
in which s denotes deviatoric stress, ρ( )z  is called the hereditary function and may be represented 

by the Dirichlet series 
  

ρ( )z ci
i

b zi=
=

∞
−

�
1

e ;    ci
i

→ ∞
=

∞

�
1

                                                   (8) 

 
ci , bi  are positive material constants. In application, two or three terms in the series is sufficient to 
represent ρ( )z  quite accurately. And z is the intrinsic time defined by 
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   dz
d

f
=

ζ
                                                                   (9) 

 
in which dζ  is the accumulated plastic strain increment. f is called the hardening function. Usually, 
f is assumed to depend on ζ  or z.  
   In order to represent the amplitude dependence in cyclic plasticity, it is assumed f f q A= ( )  

herein since the transient and steady feature of the amplitude measure, and taking it as a simple form 
 
   f q qA A( ) = +1 γ                                                              (10) 

 
where γ  is a nonnegative material constant. It should be pointed out that the special choice of 
f q A( )  is not necessary. For a certain type of material, other forms can be used, as long as they meet 

some general considerations, such as f ( )0 1=  and f q A( ) >0, for hardening materials. 

 
Numerical tests  
 
   As cited before, the aim of this paper is to qualitatively study the performance of the amplitude 
measure. The material constants identification procedures are not discussed here. They are chosen 
from the references or chosen according to the general behavior of the hardening rules. 
   Fig. 1(a) shows the present result for the plastic strain process used in [1]. We take the constants 
the same values as in [1], except for ζ1 0 05= . . It can be seen that nonmonotonous softening does 

not occur. The stress decreases monotonously after the mean plastic strain changing until the new 
steady state is approached. 
   By taking i = 2  in Eq. 8, as shown in Fig. 1b)( , the predicted mean stress in the direction of 

changing mean plastic strain relaxes gradually to a steady value gives a stable, symmetric hysteresis 
loop, which is consistent with the experiments. 
   Fig. 2 shows the stress-plastic strain hysteresis loops under various cyclic plastic strain 
amplitudes with different mean plastic strain respectively. The constants take the values chosen in 
Fig. 1 b)( . Obviously, the variable y  does well give the actual mean plastic strain position even for 

a moderate mean strain. The simulation for the cyclic hardening after changing a mean plastic strain 
is also qualitatively consistent with the experiments (see Fig. 7(b) in [7]; Fig.. 4 in [8] for 
comparison) 
   Fig. 3 gives the result for plastic strain process similar to the experimental strain process 
conducted in [4]. Again, values of the material constants in Fig. 1b)( are used, but 0.5 is chosen for 
ζ0  here. It is found that the tendencies of peak stress with respect to the cycling numbers agree 

qualitatively with that in [4]. 
   At the last, the present numerical result illustrated in Fig. 4 shows that the transient softening 
after reduction of amplitudes and the distinct shakedown phenomena, observed in the experiment of 
Bruhns et al. [9], can be fairly simulated. 
 
Conclusions 
 
(1) By determining a suitable value of the memory parameter appeared in the variable to indicate the 
center of the plastic strain region, the plastic strain amplitude measure initially defined by Haupt et 
al. gives a rational estimation to the actual amplitude. 
(2) The amplitude measure shows both transient process and steady state and evolves continuously 
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during changing of the actual amplitude and mean plastic strain. Thus, it can be directly incorporated 
into the hardening variables to reproduce the gradual evolution of the cyclic hardening and softening, 
especially the downward convex softening and the forward relaxing in the case of loading with 
non-zero mean strain. 
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Fig. 1. Stress-plastic strain hysteresis loops for cycles with non-zero mean plastic strain %5.5=mε  subsequent to 

cycles with εm =0: (a) simulation using one component in Eq. 8 with 225001 =c , 2501 =b , 40=γ ; (b) simulation 

using two components in Eq. 8 with 225001 =c , 5802 =c , 2501 =b , 152 =b , 30=γ . 

                                               
 
 
 
 
 
 
 
 
 

 
Fig. 2. Stress-plastic strain hysteresis loops for                   Fig. 3. Cycling with variable strain range. 

cycles with given plastic strain amplitude                      (+) ---positive peak stress per cycle; 

and non-zero mean plastic strain.                             (-)---negative peak stress per cycle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Cycling with decreasing plastic strain amplitude and non-zero mean plastic strain, with 600001 =c , 5502 =c , 

14001 =b , 352 =b , 25=γ . 
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