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Abstract 

 Ca
2+
-containing porous gelatin-siloxane hybrids were prepared using sol-gel process, 

post-gelation soaking, and freeze-drying. The porosity and pore size of the hybrids could be well 

controlled by the freezing temperature and the pH value of the soaking solution. The pore 

characteristics were related to the structure change during the soaking treatment. A bone-like apatite 

layer was able to form in the Ca
2+
-containing porous gelatin-siloxane hybrids upon soaking in a 

stimulated body fluid. The porous gelatin-siloxane hybrids could release gentamicin sulfate which is 

an antibiotic drug in bone chemotherapy. Thus, those hybrid materials are proposed to find 

application as novel bioactive and biodegradable scaffolds in bone tissue engineering. 

 

 

1. Introduction 

 

 The expanding field of tissue engineering applications has accelerated the need of materials 

which are tissue compatible, biodegradable and with mechanical properties similar to the target 

tissues [1]. Biodegradable and biocompatible polymers, respectively, have been attractive 

candidates for scaffolding materials because they degrade as the new tissues are formed, eventually 

without inflammatory reactions or toxic degradation [2]. The scaffold material has an essential 

function concerning cell anchorage, proliferation and tissue formation in three dimensions [1-3]. 

Performance of these properties demands usually a porous scaffold structure, with the porosity 

characteristics being application specific. A number of synthetic and biological materials, such as 

PLA, PGA, collagen and chitin, for example, are currently being used as tissue scaffolds [3,4]. The 

microstructures of these systems range from hydrogels, to open-pore structures, to fibrous matrices. 

However, the current scaffold materials are not bioactive. Bioactive materials, such as Bioglass
®
 [5] 

and A-W GC
®
 [6], are able to spontaneously form a surface apatite layer under physiological 

conditions. This layer can act as a structural glue between the materials and body tissues [5,6]. 

Bioactivity was found to be favored by the co-operative behavior of Si-OH or Ti-OH groups on the 

material surface and the involved calcium ions, which may release from the implanted material into 

the body fluid [5,6]. Thus, hybridization among polymers and these inorganic species may yield 

biodegradable and bioactive scaffolds for tissue engineering. 

Since they are porous, the scaffolds may incorporate some additives such as drugs, growth 

factors that have certain effects on cell growth, cell differentiation, and anti-inflammatory. 

Therefore, the combination of the scaffolds and antibiotics may be an important issue to be studied 

in the field of bone tissue engineering for the treatment and prevention of infection in orthopaedics, 

such as osteomyelitis. Osteomyelitis is a deep-seated infection of boon caused by the pyrogenic 

microorganism, Staphylococcus aureus [7]. The incorporation of antibiotics and their release is 

thought to yield a high concentration of antibiotics to the infected bone or tissue site without 
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systemic toxicity. Gentamicin sulfate has been the most widely used antibiotic in controlled release 

devices, due to its broad-spectrum antimicrobial activity, excellent solubility and stability at 

elevated temperatures [8].  

In this paper, we synthesized a novel group of bioactive and porous Ca
2+

-containing 

gelatin-siloxane hybrids, which were derived from the integration of gelatin, 3-(glycidoxypropyl) 

trimethoxysilane (GPSM), and calcium nitrate(Ca(NO3)2) by a combined sol-gel processing, 

post-gelation soaking process, and freeze-drying. We also loaded gentamicin sulfate into the 

bioactive scaffolds and investigated the drug release behaviors from the gelatin-siloxane scaffolds.  
  

2. Materials and methods 

 

Appropriate amounts of GPSM, Ca(NO3)2, and gentamicin sulfate were added to a 15 mass% 

gelatin in 0.1 M HCl solution upon continuous stirring at 40°C. Although each mixture initially 

formed a two-phase emulsion, continuous stirring for 1h resulted in a clear homogeneous solution. 

20 ml portions of the sols was poured into a polystyrene container (91 x 69 x 26.5 mm), capped and 

aged for 3-4 days until gelation at 40°C in an oven. The bulk gelatin-siloxane hybrids were obtained 

by drying wet gel at 60°C for 7 days. In order to get porous hybrids, the wet gels were soaked in 1M 

NH4OH for 16 h, and then washed three times with distilled water. The obtained gels were frozen at 

-17°C, -80°C, and -196°C, respectively, and subsequently dried in a freeze-dryer.  

The morphology of the freeze-dried hybrids was imaged using scanning electron microscopy 

(SEM). The solid-state 
29
Si cross-polarization/magic-angle spinning (CP-MAS) NMR spectra (59.6 

MHz) were taken using a Varian INOVA300 instrument with: 3.5 kHz specimen spinning, 2.5 ms 

contact time, 5.0 µs pulse width, 10 s recycle delays and 10 ms dead time, accumulating the signals 

from about 8000 pulses. The chemical shift is represented in δ (ppm) by convention. 

Polydimethylsilane (PDMS: δ = -34.0 ppm against tetramethylsilane: δ = 0 ppm) was used as 

secondary external reference. 

For the drug release studies, 1cm
3
 of gentamicin sulfate loaded porous hybrids were immersed 

in 10 ml phosphate buffer (pH 7.4), and left in a shaking water bath at 37
o
C. Samples were 

withdrawn at regular intervals and the release of gentamicin was estimated by using UV–Vis 

spectrophotometer.  
The degree of bioactivity was evaluated by examining the induction period for apatite deposition 

as the gelatin-siloxane hybrids were soaked in a simulated body fluid (SBF) up to 14 days. SBF 

contains the same inorganic ions having similar concentrations as human blood plasma (SBF in mM: 

Na
+ 
142.0, K

+ 
5.0, Ca

2+ 
2.5, Mg

2+ 
1.5, Cl

- 
147.8, HCO3

- 
4.2, HPO4

2- 
1.0, SO4

2- 
0.5). SBF well 

reproduces in vivo behavior of implant materials in in vitro experiments [9]. SBF has been prepared 

as described in the literature, and buffered to pH7.40 with trishydroxymethylaminomethane (Tris) 

and HCl aqueous solutions, and kept at 36.5°C throughout the incubation periods. Apatite formed on 

the hybrid surfaces was detected using thin-film X-ray diffraction (TF-XRD; CuKα, 40KV, 20mA) 

with an angle of 1° to the direction of the incident X-ray, as well as by SEM observation.  

The pre-sterilized scaffolds were respectively placed in each well of a 24-well culture plate, and 

pre-wetted with 1 ml of α-MEM for 1 day. Then, the medium in each well was exchanged with 1 ml 

of α-MEM containing 1.0 x 10
4
 MC3T3-E1 cells. The cells on each scaffold after culturing were 

fixed by soaking in a 0.1M phosphate-buffer (PB, pH 7.40) solution containing 2% glutaraldehyde 

for 2 hours at 4°C. After being dehydrated with the graded ethanol-water solutions of 50% to 100% 

for 15 min and 100% 3-butanol 3 times for 30 min at each step, the scaffolds were freeze-dried at 

13.3 Pa and –5 °C. Finally, the scaffold surface was subject to SEM observation.  
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3. Results and Discussion 

 

3.1 Synthesis of gelatin-siloxane hybrids 

The cross-linked structure is a characteristic feature of the here presented hybrids, consisting of 

gelatin chains being cross-linked with siloxane bridges. GPSM content has a significant effect on the 

gelation of hybrids. Much lower or higher GPSM contents resulted in no gel formation, while 

moderate incorporation of GPSM into the gelatin solution favored gelation. The epoxy end group of 

a GPSM molecule reacted with one of the component amino acid residues of gelatin chain. The 

silanol groups derived from hydrolysis of the methoxysilane groups at the opposite end were 

condensed with another GPSM molecule grafted to the gelatin chain as illustrated in scheme 1. 

 

 

The porous hybrid scaffolds were fabricated by freezing the swollen bulk hybrids and 

subsequently lyophilizing the frozen structures. Those scaffolds could be easily shaped into 

3-dimensional scaffolds of any shape, such as orthorhombic, cubic, plate, or cylindrical ones. 

Freezing temperature affected the pore size and porosity (total and open) as illustrated in Fig. 1. 

Nu

OH
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O Si(OCH3)3

O

O
H+

Si-O-Si

Si(OH)3

Si-O-Si
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H+ H+
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polycondensation

Scheme 1 Gelatin-siloxane hybrids are suggested to be derived from the hydrolysis and 

polycondensation of GPSM with water and the ring-opening reaction of GPSM with gelatin. 
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The results showed that the higher the freezing temperature (Tf), the larger the pore size. Therefore, 

it is evident that the pore size of the hybrids could be controlled in the range from a few µm to 

several hundreds µm, by varying the freezing temperature. The fact that the fast freezing at –196 °C 

produced smaller pores than the slow freezing process at –17 °C can be interpreted by the faster 

rate of nucleation and generation of more ice nuclei due to the greater super-cooling effect. The pH 

value of the soaking solutions also affected the pore size and pore volumes of the hybrids. Frozen at 

-17°C, and only soaking in the basic solutions (1M NH4OH and Tris pH 10.0 buffer) yielded porous 

hybrids. No pores were observed with SEM for hybrids soaked in neutral or acidic solutions. The 

macroporous architecture may provide not only channels for improving mass transport and 

neovascularization after being implanted in vivo, but also better environment for cell distribution, 

adhesion, growth, and differentiated function [3]. 

 

 

   

Figure 2 shows the 
29
Si CP-MAS-NMR 

spectra for the GPSM monomer, the bulk hybrid, 

and the porous hybrid. In the present solution 

system of GPSM - 0.1 M HCl – gelatin, the 

methoxysilane groups (Si-(OCH3)3) of GPSM were 

hydrolyzed to give silanol groups resulting in T
2
 or 

T
3 
bridging bonds, with T

2
 and T

3 
denoting 

R-Si(-OSi)2(OCH3, OH) and R-Si(-OSi)3 (R is the 

organic backbone from GPSM), respectively [10]. 

This indicates all of the Si atoms of GPSM are 

condensed to yield two or three bridging bonds. 

However, it is not certain only from the NMR data 

if all of the methoxy silane groups were hydrolyzed 

or remained. The peak intensity at δ= -57 ppm (T
2
) 

and doublet at -63 and -66 ppm (T
3
) for the bulk 

gel changed significantly after freeze-drying. The 

peak T
2
 almost has the same intensity as peak T

3
 in 

the porous hybrid, indicating the presence of more 

-Si-OH groups, due to dissociation of the Si-O-Si 

bridging bonds during soaking in the ammoniac 

solution. Basic solutions may cause decomposition of 

the peptide bonds constructing the gelatin chains or 

the Si-O-Si bonds due to hydrolysis. Hence, treatment with ammonia solution resulted in an even 

larger increase in porosity. The 
29
Si MAS NMR spectra in Fig. 2 nicely demonstrate structural 

rearrangements at the Si-O-Si bridged sites. It follows that a fraction of the Si-O-Si bonds have been 

hydrolyzed to yield a larger number of -Si-OH groups and a smaller number of bridged bonds, 

favoring the structural rearrangements as the ice crystals grew.  
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Fig. 2. The 
29
Si MAS NMR spectra of 

porous hybrid, bulk hybrid gel, and the 

GPSM monomer.  

Fig.1 The fracture surface of porous hybrids obtained at (a) Tf = -17
o
C, (b)Tf = -80

o
C, and (c) Tf = -196

o
C.  
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3.2 Biomimetic apatite deposition in SBF and in vitro bioactivity 

Fig. 3 shows the SEM photographs of the cross sections of porous Ca
2+
-containing gelatin-siloxane 

hybrid after soaking in SBF for 3 days. It is indicated that apatite particles covered the whole inner 

wall of the pores, and the morphology of the deposited apatite was namely semi-spherical 

agglomerates consisting of flake-like crystallites. The TF-XRD patterns and FTIR spectra (data not 

shown here) also demonstrated that Ca
2+
-containing hybrid could deposit apatite after soaking in 

SBF for 1 day, while Ca
2+
-free hybrids did not even after soaking in SBF for 14 days. Thus, only the 

Ca
2+
-containing hybrids showed in vitro bioactivity. The incorporation of Ca

2+
 ions is found to be a 

key factor to provide the porous hybrids with bioactivity in vitro. A number of studies on bioactive 

ceramics have indicated that in vivo formation of Ca-P-rich layer and surface bone-like apatite is a 

key step for formation of direct bond between bone and in the bone-bonding behavior of these 

materials, and that SBF well reproduces in vivo reaction of the materials [11]. Thus, the present 

Ca
2+
-containing porous hybrids may also show bioactivity in vivo.   

 

 

3.4 Cell seeding in scaffolds 

 Cellular behavior on the scaffolds is an 

important factor in determining evaluating their 

biocompatibility [12]. Our experiments 

indicated that the incorporation of Ca
2+
 ions in 

scaffolds evidently enhanced MC3T3-E1 

osteoblast cell proliferation and differentiation 

on the gelatin-siloxane hybrid scaffolds. 

MC3T3-E1 cells attached to the surfaces after 

culture for 1 day (data not shown here), and 

began to form an interconnecting network 

within a week on Ca
2+
-containing porous 

gelatin-siloxane hybrids (Fig. 4). It is also 

found from Fig. 4 that MC3T3-E1 cells 

retained their characteristic polygonal 

morphology, suggesting that Ca
2+
-containing 

porous gelatin-siloxane hybrids are suitable for 

osteoblast growth. 

 

Fig.3 Apatite formed on the pore walls of 

Ca
2+

-containing porous gelatin-siloxane hybrid 

after soaking in SBF up for 3 days. 

Fig.4 The SEM photographs of MC3T3-E1 cells 

cultured on Ca
2+

-containing porous 

gelatin-siloxane hybrid for 7 days. 
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Fig. 5 The effect of GPSM content on the release 

of gentamicin sulphate from porous 

gelatin-siloxane hybrids. 
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3.5 Drug delivery behavior  

A preliminary experiment indicated that gentamicin sulfate fully released from the porous 

gelatin scaffolds within 2 hr. Fig. 5 depicts the effect of GPSM content release of gentamicin 

sulphate from gelatin-siloxane hybrids in phosphate buffer at 37
o
C. Each point in the graph 

represents the mean ± standard deviation of the four experiments. Study was carried out for a period 

of 7 days. The porous gelatin-siloxane hybrid demonstrated a very high burst effect and almost 70% 

of loaded drug was released within first day of experiment from scaffolds. The isoelectric point 

(IEP) of the gelatin is in the range of 4.9-5.2 [13] and at pH above IEP, the gelatin chain contain 

negative charge which may hinder the acid-base interaction between amino acids of gelatin and 

gentamicin sulphate. It is also shown in Fig.5 that the drug release became slow with increasing the 

GPSM content. This phenomenon could be explained on the basis of lower degree of swelling due 

to the interaction between GPSM and gelatin as illustrated in Scheme 1. After initial burst effect, 

the porous gelatin-siloxane hybrid scaffold gave a steady drug release up to 3 days as shown in 

Fig.5. Gelatin-siloxane hybrids may highly swelled in PBS buffer, it is thus suggested that the 

scaffold serve as a diffusion barrier and the drug was released mainly by diffusion mechanism [14]. 

 

4. Summary 

 

Bulk gelatin-siloxane hybrids have been prepared by using a sol-gel process. The porosity was 

introduced to these bulk gels by post-gelation soaking and by a subsequent freeze-drying. Pore 

characteristics have been related to the structural changes due to soaking and freezing. The freezing 

temperature and pH value of the soaking solutions controlled the porosity and the pore size of the 

hybrids. The Ca
2+
 containing porous hybrids showed an in vitro bioactivity as they biomimetically 

deposited apatite. The porous gelatin-siloxane hybrid could release gentamicin sulfate which is an 

antibiotic drug in bone chemotherapy, and GPSM content may affect the release rate. Thus, the here 

presented Ca
2+
-containing scaffolds may find applications in bone tissue engineering.  
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