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Abstract:

by fluorescence spectroscopy as it reacts readily with primary amines to form a fluorescent product. In this work, a new

Fluorescamine is a non-fluorescent reagent widely used for the quantitative determination of primary amines

sensitive voltammetric method for the detection of ammonia in aqueous solution by the reaction with fluorescamine has been
developed. First, the electrochemical behaviour of fluorescamine in the absence and presence of ammonia was investigated in
0.1 mol-L" borate buffer solution (pH 9.0) by cyclic voltammetry using a glassy carbon (GC) electrode. As for fluorescamine
itself, a well-defined irreversible oxidation peak could be observed at ca. 0.70 V vs. SCE. When ammonia was added to the
fluorescamine solution, another irreversible oxditaion peak corresponding to the oxidation of the reaction product formed
between fluorescamine and ammonia could be observed at ca. 0.46 V vs. SCE. Upon the addition of ammonia, the oxidation
peak of fluorescamine became smaller while the oxidation peak of the reaction product formed increased in height, due to the
stoichiometric chemical consumption of fluorescamine by ammonia and the formation of the product during the reaction,
respectively. These two anodic peaks corresponding to the oxidation of fluorescamine and its fluorescent product formed were
then used for the quantitative detection of ammonia, explored by square wave voltammetry and by fluorescence spectroscopy.
The square wave voltammetric response of the reaction product formed showed a linear response over ammonia concentration
range of 0 to 60 wmol-L". The limits of detection (LOD) was found to be 0.71 wmol-L" and 3.17 wmol-L" determined based

upon Signal/Noise (S/N) =3 and 30, respectively. These limits of detection are similar to those obtained with the fluorometric
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1 Introduction

Ammonia is a natural basic gas and the third
most abundant nitrogen compound present
throughout the atmosphere!™., The three major sources
of ammonia entering into the environment include
(1) the conversion of atmospheric nitrogen to ammo-
nium salts and the addition of these particulates to
the soil in the form of dissolved dust or particulates
in rain water, (2) the metabolic activities of manure

decomposition in agriculture and wildlife, and (3)

electrochemical detection; cyclic voltammetry; square wave voltammetry; fluorescence spectroscopy;

Document Code: A

the combustion from either chemical plants or motor
vehicles!™. When an excess of ammonia is released
into the environment, it can disturb the nutrition
cycle and the ecological nitrogen balance!. High
concentrations of ammonia are potentially harmful
to human health that can cause ulceration to the
eyes, coughing chest pain and severe irritation to the
respiratory tract!"9. According to the recommenda-
tions from the U.S. Occupational Safety and Health
Administration (OSHA)®"and the National Institute
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for Occupational Safety and Health (NIOSH)® for
the allowable exposure concentration limit of
ammonia, using a time weighted average, should be
no more than 35 ppm (ca. 2.1 x 10° mol-L") in air
over an eight-hour work shift. The maximum limit
of ammonia set by the European Association
for drinking water is approximately 0.5 ppm (ca. 2.9
x 10 mol - L") [,

of ammonia is typically necessary for the health and

Hence, the determination

well-being of both humans and animals'?** . One of
the most commonly used methods for the detection of
ammonia is based on fluorescence spectrophotometry
of the fluorescent species formed via the reaction
with o-phthalaldehyde (OPA)

mercaptoethanol™ ' or fluorescamine!™ '*'¥,

either and

As comprehensively reported in the litera-
ture™ ' ®¥1fluorescamine is intrinsically non-fluorescent;
however, it reacts readily with primary amines in
aqueous solution (at pH 8.0 ~ 9.5) to form a highly
fluorescent product, pyrrolinone. Fluorescamine is
therefore a well-known reagent for the fluorometric
determination of primary amines!"*"""*?%, The use of
fluorescamine for the determination of amine
group-containing organic molecules, for example
amino acids, also

peptides and proteins, is

16-17. 19261 T addition, the use of

well-documented!
fluorescamine for the fluorometric detection of
ammonia in vapour phase has previously been
investigated on a sodium lauryl sulfate (NaLS)
-treated paper substrate by Pal and co-workers P,
Once fluorescamine reacted with gaseous ammonia
on the paper substrate, an intense fluorescent
product was produced (illustrated in Fig. 1) and
determined by fluorescence spectroscopy with
excitation and emission wavelengths of 380 nm and
460 nm, respectively®™. This fluorescence method
was subsequently employed as a sensitive
measurement of the air vapour concentration (AVC)
of ammonia®.

Although fluorescence spectroscopy is an
extremely sensitive analytical technique which has
previously been proposed for ammonia detection,

it has some disadvantages that cannot be overlooked™".

NH, +

Ammonia

Fluorescamine
(non-fluorescent)

Fluorescent product

Fig. 1 Reaction of fluorescamine and ammonia, yielding a

highly fluorescent product®.

For instance, many fluorescent compounds can
interact with the excitation UV light resulting in the
photochemical change or the destruction of these
fluorescent compounds, which can then cause a
decrease in fluorescence intensity. Moreover, the
fluorescence intensity is significantly affected by
many experimental parameters such as pH, ionic
strength and temperature which therefore need to be
carefully controlled during the measurements in
The

quenching of fluorescence intensity resulting from

order to obtain the reproducible results.

the interaction between a fluorophore and other

non-fluorescent substances present in the system

should also be taken into account as it can produce a
the

measurement. As highlighted in the literature ***",

false positive response in fluorometric
for example, molecular oxygen is a common
fluorescence quencher for various fluorophores due
to its high solubility in aqueous solutions and
organic solvents. Since oxygen is a particularly good
quencher which can quench almost all known
fluorophores, an additional time-consuming and
laborious process is often required in order to get rid

of dissolved oxygen from the solution before
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measuring fluorescence spectra®

. Considering the
fluorescence spectrometer, the instrument itself is
somewhat sophisticated and relatively expensive;
the instrument operation requires appropriate
background knowledge and proper training, and the
periodic checks of instrumental sensitivity and
replacement of the lamps are normally required for
the instrument™, According to these drawbacks of
fluorescence spectroscopy mentioned above, it is
valuable to develop a new reliable, cheap and
sensitive analytical method which can be used as an
alternative for ammonia detection.

Electrochemical methods are sensitive, fast,
versatile, inexpensive, environmentally friendly, and
effective techniques for the quantitative determination
of a variety of organic and inorganic compounds in
aqueous and nonaqueous solutions™. Typically, the
major advantages of the voltammetric techniques
include good accuracy and precision, excellent
sensitivity with a very large linear concentration
range, a large number of useful solvents and
electrolytes, a wide range of temperatures, rapid
analysis times and simultaneous determination of
several analytes®”,

In this work, we aim to develop a new sensitive
voltammetric method for the determination of
ammonia in aqueous solution based on the reaction
between fluorescamine and ammonia. In essence,
the electrochemical behaviour of fluorescamine in
the absence and presence of ammonia was first
investigated by cyclic voltammetry using a glassy
carbon (GC) electrode. Then the quantitative
detection of ammonia via the treatment with
fluorescamine was thoroughly examined by square
wave voltammetry. The limits of detection were
found to be comparable to those obtained by
fluorescence spectroscopy, highlighting that this
new electroanalytical method is a sensitive, simple,

cheap and rapid technique for ammonia detection.

2 Experimental
2.1 Reagents and Equipments

Fluorescamine (C,;H,;0,, 98% ), ammonium
chloride (NH,Cl, = 99.5%) and all other chemicals
were purchased from Sigma-Aldrich (Gillingham,
UK). All solutions were prepared using deionised
water of resistivity not less than 18.2 M()-cm at 298
+ 2 K (Millipore UHQ, Vivendi, UK).

Sonication was carried out using a D-78224
Singen/Htw sonicator (50/60 Hz, 80 W, UK).
Centrifugation was carried out using a Centrifuge
5702 (Eppendorf, UK). pH measurement was made
using a pH213 pH meter (Hanna instrument, UK).

Electrochemical measurements were recorded
using an Autolab PGSTAT 20 computer-controlled
potentiostat (EcoChemie, Utrecht, The Netherlands)
with a standard three-electrode configuration. A
glassy carbon electrode (GC, 3 mm diameter, BAS
Technical, UK) was used as the working electrode.
A saturated calomel electrode (SCE) and a carbon
rod acted as the reference and counter electrodes
respectively. The GC was polished using diamond
pastes of decreasing sizes (Kemet, UK). Cyclic
voltammetry (CV) was recorded at a scan rate of 50
mV -s”, otherwise stated. Square wave voltammetry
(SWV) was recorded with a frequency of 12.5 Hz, a
step potential of 4 mV and a pulse amplitude of 10
mV. All solutions were thoroughly degassed with
pure N, for 10 min prior to performing any
voltammetric measurements. Electrochemical expe-
riments were carried out at room temperature in 0.1
mol-L"! borate buffer solution (pH 9.0).

UV-Visible spectroscopy was performed using
a Varian Cary-100 Bio UV-Vis Spectrophotometer
(Varian, Oxford, UK) with Cary WinUV software.
Fluorescence spectroscopy was performed on a
Varian Cary Eclipse Fluorescence Spectro-
photometer (Varian, Oxford, UK) with Cary Eclipse
software. The slit width for both excitation and

emission monochromators was set to be 5 nm.
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2.2 Preparation of Ammonia and Fluo-
rescamine Stock Solutions

Ammonia stock solution was prepared by
dissolving ca. 14.5 mg of ammonium chloride in 50
mL of 0.1 mol - L' borate buffer solution (pH 9.0).
Free ammonia was subsequently generated in the
solution according to the ammonium/ammonia

equilibrium reaction (Equation 1).

NH, +H,0 <= NH;+H;0" (1)
The exact concentration of free ammonia can
then be calculated at known pH and temperature by
using the dissociation constant of ammonium ion
(K,), as shown in Equation 2.
_ TAN

[NH;]= LLHT ()

K,
where [NHj] is the concentration of free ammonia
present at equilibrium. TAN (total ammonia
nitrogen) is the concentration of ammonium
chloride prepared, giving the total number of
ammonia and ammonium ion present in the
solution. [H'] is the concentration of hydronium ion,
determined from pH of the solution, and K, is the
dissociation constant of ammonium ion (K, = 5.85 X
10" mol-L" at 20 C)P**,

Since the total ammonia concentration (TAN)
in the pH 9.0 NH,CI/NHj; stock solution prepared
here was 5.42 mmol -L", the exact concentration of
free ammonia and the ammonium ion present in the
pH 9.0 NH,CI/NH; stock solution could then found
to be 2 mmol -L" and 3.42 mmol -L", respectively.
Note that when free ammonia was consumed by
fluorescamine in the chemical reaction (Fig. 1), the
ammonia/ammonium equilibrium was disturbed and
subsequently driven to the right (Equation 1) in
order to produce more free ammonia into the system
further

Consequently, the total concentration of ammonia

via dissociation of ammonium ion.
employed in this study is the sum of free ammonia
either (1) originally present in the equilibrium system
before the chemical reaction of fluorescamine and
ammonia taking place or (2) later produced by

further dissociation of ammonium ion due to the

disturbance of the ammonia/ammonium equilibrium
during the reaction between fluorescamine and
ammonia. This total concentration of ammonia is
the quantity which is relevant analytically as the
reaction of ammonia with fluorescamine 1is
chemically irreversible.

Fluorescamine can be dissolved in water-
miscible solvents such as acetone, acetonitrile and

20, 26]

dioxane® %, However, acetone has been found to be

due to the commercial

with

particularly suitable

availability of grades low fluorogenic
impurities and the high stability of fluorescamine
which is stable for at least 12 weeks in acetone!®.
In this study, fluorescamine stock solution was
prepared in acetone, protected from light and stored
refrigerated when not in use.
2.3 Electrochemical Determination of

Ammonia

The electrochemical behaviour of fluorescam-
ine in the absence and presence of ammonia was
first investigated by cyclic voltammetry (CV) in 0.1
mol L' borate buffer solution (pH 9.0) using a
glassy carbon (GC) electrode. The quantitative
electrochemical determination of ammonia using
fluorescamine was then performed by square wave
voltammetry (SWV) via a standard addition

protocol.
3 Results and Discussion
3.1 Fluorescence Excitation and Emission
Profiles of the Product Formed Bet-
ween Fluorescamine and Ammonia
The absorption and fluorescence emission of
the  fluorescent product formed between
fluorescamine and aqueous ammonia was initially
explored by UV-Vis spectroscopy and fluorescence
spectroscopy in order to measure the excitation (Axx)
and emission (Ary) wavelengths for further studies.
Fig. 2 shows the fluorescence excitation and
emission profiles of the fluorescent product resulting
from the reaction between 200 wmol L' fluore-
scamine and 200 pwmol -L" total NH; in pH 9.0

borate buffer solution. The wavelength of maximum
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Fig. 2 Fluorescence excitation and emission profiles of the fluorescent product resulting from the reaction between 200 wmol - L™!

fluorescamine and 200 wmol - total NH; in pH 9.0 borate buffer solution, with excitation and emission wavelengths of 378

and 472.87 nm, respectively. Inset: Fluorescence emission spectra of either (a) 200 pwmol - L' fluorescamine or (b) 200 pmol - L

total NH;, in pH 9.0 borate buffer solution, before (solid line) and after (dotted line) mixing them together.

absorbance (A.) Was observed at ca. 378 nm. This
wavelength was then employed as an excitation
wavelength (Agx) for the fluorescence emission of
200 pmol-L"! fluorescamine in the presence of 200
pmol - L' total NH;, and its fluorescence emission
spectrum was observed at a longer wavelength with
the maximum fluorescence intensity (Agy) at 472.87
nm.

Next, the fluorescence properties of fluorescamine
and ammonia were checked separately for each
species before mixing them together, and the
resulting fluorescence emission spectra are
displayed as an inset in Fig. 2. No fluorescence
emission peak could be observed for either
fluorescamine (a) or ammonia (b), confirming the
non-fluorescent properties of these starting materials
(solid line). In contrast, a large fluorescence
emission peak could be seen after mixing these two
components together (dotted line) ascribed to the
fluorescent product formed from the fluorescamine
and ammonia reaction!.

In terms of the stability of the fluorescent
product formed, the fluorescence intensity of 100
pmol L' fluorescamine in the presence of 60

pmol - L' total NH; in pH 9.0 borate buffer solution
was monitored as a function of time for up to 24 h
after the treatment. The resulting fluorescence
emission spectra showed that the fluorescence
intensity of the fluorescent product was
comparatively stable with very little change in
fluorescence signal  (ca. 0.33% increase in

fluorescence intensity after 12 h or so).
3.2 Detection of Ammonia by Fluorescence
Method
Fig. 3 displays the fluorescence emission
spectra of 100 wmol -L" fluorescamine in pH 9.0
buffer
concentration of ammonia from 0 to 400 wmol - L.

borate solution with varying total
It can be seen from Fig. 3 that the fluorescence
intensity of fluorescamine increased with the
increase of ammonia concentration. In addition,
there was no change in emission maxima and shape
of peaks in these fluorescence spectra, demonstrating
no observable photochemical side reaction between
fluorescamine and ammonia® ¥,

Fig. 4 shows the plot of fluorescence intensity
of the fluorescent product formed between 100

pmol - L' fluorescamine and ammonia in pH 9.0
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Fig. 3 Fluorescence emission spectra of 100 pumol + L' fluore-
scamine in pH 9.0 borate buffer solution, in the presence
of ammonia in the total concentration range of 0, 2, 4,
10, 14, 20, 40, 60, 100, 200 and 400 pwmol-L".

borate buffer solution versus total ammonia
concentration in the range of 0 to 400 wmol L. As
the
fluorescence intensity increased consistently and
then levelled off at the total

concentration of ammonia of 100 pmol -L7,

the concentration of ammonia increased,

completely

confirming a 1:1 stoichiometric ratio of fluore-
scamine to ammonia, previously reported in the
literature and consistent with the data in Fig. 1P, A
plot of fluorescence intensity of the fluorescent
product formed versus ammonia concentration was
to be the total
concentration range of 0 to 60 wmol-L"' (shown as
an inset in Fig. 4), and the limit of detection (LOD)
determined based on 30, where o is the standard

found linear in ammonia

deviation (root mean square value), was found to be
3.67 wmol-L"! (shown in Tab. 1). Besides, the LOD
derived from the method of S/N = 3 (three times the
standard deviation of the blank for n = 10)® was
also examined here and found to be 0.24 pwmol L
(shown in Tab. 1). It should be noted that the
method of S/N = 3 focuses on background signals
(from blank measurements) rather than analyte
signals ™, therefore its LOD value is typically lower
than that calculated from the method of 30,

3.3 Voltammetric Behaviour of Fluoresc-

amine
According to the literature®, the reaction between

fluorescamine and ammonia in vapour phase has

[NH, ]/(umol-L")

Fig. 4 Plot of fluorescence intensity of the fluorescent product
obtained from the reaction between 100 pmol -L"
fluorescamine and ammonia in the total concentration
range of 0 to 400 pmol -L' versus ammonia
concentration. Inset: Linear plot of fluorescence intensity
of the fluorescent product obtained from the reaction
between 100 pumol - L' fluorescamine and ammonia in
the total concentration range of 0 to 60 mol-L", with

correlation coefficient (R?) of 0.997.

previously been examined on a sodium lauryl
sulphate (NaLS)-treated paper substrate, and the
fluorescent compound formed by this reaction has
then been determined by fluorescence spectroscopy.
However, no research concerning the electro-
chemistry of fluorescamine nor the electrochemical
detection of ammonia by fluorescamine has been
carried out so far to the authors’ knowledge.

In this study, the voltammetric behaviour of
fluorescamine in the absence and presence of
ammonia was preliminary investigated by cyclic
voltammetry. Fig.5 displays the overlaid cyclic
voltammograms for a glassy carbon (GC) electrode
in 0.1 mol+L" borate buffer solution (pH 9.0) in the
absence (dotted line) and presence (solid line) of
100 wmol-L"! fluorescamine. As shown in Fig. 5, an
irreversible oxidation peak of fluorescamine was
clearly observed at ca. 0.70 V vs. SCE, while no
oxidation peak could be observed in the blank
solution (dotted line). On the reverse scan, no
reverse reduction peak for fluorescamine was
observed, probably suggesting an oxidation process
followed by a fast irreversible chemical reaction,

which rapidly removed the generated product®*, In
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addition, it was found that the oxidation peak
current for fluorescamine decreased moderately in
the consecutive scans (solid line), possibly due to
the depletion of fluorescamine near the electrode
surface during the successive scans. After waiting
ca. 1 ~2min (after the 5th cycle) in order to allow
the concentration gradient near the electrode to
relax, the subsequence oxidation peak current
slightly increased compared to the previous scan
(the 5th scan), but still lower than that observed in
the first two scans. This suggested that the oxidation
of fluorescamine is affected not only by the
concentration gradient of fluorescamine across the
diffusion layer, but also by the passivation of the
electrode surface.

As seen in an inset in Fig. 5, the chemically
irreversible oxidation peak of fluorescamine got
noticeably smaller with the cycle numbers (= 10
cycles), and it then disappeared completely after the
30th scan, suggesting the electrode passivation,
developed only very slowly owning to low
concentration of fluorescamine (100 pmol-L") and
probably caused by the gradual formation of
polymeric films on the electrode surface. In order to
confirm this slow electrode passivation observed
here, first the GC electrode was deliberately
passivated by 50 successive scans in fluorescamine
solution. Next, it was removed from the solution,
rinsed roughly, and then immersed back again in the
same fluorescamine solution. As expected, no
oxidation of fluorescamine could be observed in this
case as the electrode surface was entirely blocked by
the electrochemical reaction product formed. The
GC electrode was then removed, polished to get rid
of the passivation layer and placed back in the
fluorescamine solution. The resulting oxidation peak
of fluorescamine at the clean GC electrode had an
identical response to that observed earlier in the first
scan with no shift in peak potential. No electrode
passivation could be observed in pure pH 9.0 borate
buffer solution with absence of fluorescamine.

As for the reproducibility of the oxidation of

fluorescamine, triplicate experiments were performed

— 1* scan
— 10" scan
— 20" scan
— 30" scan

0.0 02 04 0.6 0.8
Potential/V(vs. SCE) Py

T
oo o

Current/pA

oo
S W
.

05

0.0 0.1 0203 0.4 05 0.6 0.7 0.8
Potential/V(vs. SCE)

Fig. 5 Overlaid cyclic voltammograms for a bare glassy
carbon (GC) electrode in 0.1 mol -L"!' borate buffer
solution (pH 9.0), in the absence (dotted line) and the
presence (solid line) of 100 wmol- L™ fluorescamine.
Inset: Overlaid successive cyclic voltammograms (1st,
10th, 20th and 30th scans) of 100 pmol -L’
fluorescamine in 0.1 mol -L" borate buffer solution
(pH 9.0), demonstrating electrode passivation from
electrochemical oxidation of fluorescamine. All scan
at50 mV-s’.

in 500 pmol -L"' fluorescamine in 0.1 mol L
borate buffer solution (pH 9.0), with the electrode
freshly-prepared for each measurement. From
the cyclic voltammograms, it was determined that
the relative standard deviation (% RSD) of oxida-
tive peak heights was 1.4 % , indicating good
reproducibility of fluorescamine oxidation.

The effect of scan rate on the voltammetric
behaviour of fluorescamine was next investigated
and the resulting voltammograms are shown in Fig. 6.
The plot of log of anodic peak current versus log of
scanrate (plotted as an inset in Fig. 6) shows a linear
response with a slope of 0.50, indicating that the
electrode process is diffusion-controlled, as opposed
to a surface adsorption-controlled processF”3¥,
Typically, the theoretical slope values of 0.5 and 1.0
are expressed for ideal reactions of diffusion-
controlled and adsorption-controlled electrode

37-38

processes, respectively®*. In addition, the peak
potential of fluorescamine did not significantly
change with the increase of scan rate, consistent
with that the electrode process being an EC process,

as discussed earlier.



- 444 -

W

1

22

2 2012 4

<
=
2 i
5} 2.5 -2.0 -1.5 -1.0 -0.5 Increasing
5 log(scan rate) scan rate
O

5 [

0_

0.0 0.2 0.4 0.6 0.8 1.0

Potential/V(vs. SCE)

Fig. 6 Overlaid cyclic voltammograms of scan rate study (5 ~
400 mV -s™) for 500 pmol -L"' fluorescamine in 0.1
mol-L" borate buffer solution (pH 9.0), recorded at a
glassy carbon (GC) electrode. Inset: Plot of log of

(I) of 500 pmol-L"

fluorescamine in 0.1 mol- L™ borate buffer solution pH

9.0 (Peak 1) versus log of scan rate (R*> = 0.997 with a

slope of 0.50).

anodic peak current

3.4 Voltamm etric Behaviour of Fluore-
scamine in the Presence of Ammonia
Fig. 7 displays typical cyclic voltammograms
of 1 mmol-L"! free ammonia (a) and 100 pwmol-L"
fluorescamine in the absence (b) and presence of (c)
10 pmol-L'and (d) 100 pwmol:L" total ammonia,
in 0.1 mol-L" borate buffer solution (pH 9.0). Fig.
7a shows the voltammetric response of ammonia,
whereas Fig.7b represents the chemically irreversible
oxidation of fluorescamine, labelled peak (I). Note

3.5
3.0F
2.5¢
2.0r
1.5¢
1.0}
0.5+
0.0+
-0.5¢

0,

Current/pA

0.0 0.1 02 03 04 05 06 0.7 08
Potential/V(vs. SCE)
Fig. 7 Overlaid cyclic voltammograms of 1 mmol -L"' amm-
onia (a) and 100 pmol-L" fluorescamine in the abse-
nce (b) and presence of (¢) 10 wmol-L"! and (d) 100
pmol-L! total ammonia, in 0.1 mol -L"! borate buffer
solution (pH 9.0), recorded at a glassy carbon (GC)
electrode after 2 min since ammonia was added to the

fluorescamine solution. All scan at 50 mV -s™.

that for the former process, no anodic feature could
be observed prior to the oxidation of the electrolyte.
When ammonia (in 100 pwmol - L fluorescamine)
was added to a 100 wmol -L' fluorescamine
solution, the colour of the solution changed from
colourless to pale greenish-yellow as a result of the
formation of the fluorescent product formed
between fluorescamine and ammonia. The cyclic
voltammetric behaviour of the reaction product was
investigated after 2 min since ammonia was added
and mixed in the fluorescamine solution. As seen
in Fig. 7c and 7d, a new chemically irreversible
oxidation peak, labelled peak (II), corresponding to
the oxidation of the product formed could be
observed at ca. 0.46 V vs. SCE. Upon the addition
of ammonia, the anodic peak current of the reaction
product (peak (II)) increased in height while the
other anodic peak attributed to the oxidation of
fluorescamine itself (peak (I)) became noticeably
smaller with a slight shift of the peak potential
towards more positive values, simply due to the
chemical consumption of fluorescamine by ammonia.
The effect of scan rate on the voltammetric be-
haviour of fluorescamine in the presence of ammonia
was also examined and is shown in Fig. 8. The plot

of log of anodic peak current (peak II) correspond-

Increasing
scan rate

Current/pA

0.2 0.4 0.6 0.8 1.0

Potential/V(vs. SCE)

0.0

Fig. 8 Overlaid cyclic voltammograms of scan rate study (5 ~
400 mV -s™) for 500 pmol-L" fluorescamine with 500
pmol - L' total ammonia, in 0.1 mol - L borate buffer
solution (pH 9.0), recorded at a glassy carbon (GC)
electrode. Inset: Plot of log of anodic peak current (/)
corresponding to the oxidation of the product (peak II)
versus log of scan rate (R? = 0.999 with a slope of

0.50).
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ing to the oxidation of the reaction product versus
log of scan rate (plotted as an inset in Fig. 8) shows
a linear response with a slope of 0.50, demonstrating
the diffusion-controlled nature of this oxidation pro-
cess. Moreover, we can see from Fig. 8 that as the
scan rate increased, a slight shift in the anodic peak
potential of the product formed (peak II) towards
more positive values could be observed, confirming
that the electrode process of the product is electro-
chemically irreversible (as well as chemically irre-
versible).

3.5 Electrochemical Detection of Ammo-

nia by Square Wave Voltammetry

Quantitative electrochemical detection of
ammonia was next carried out using square wave
voltammetry (SWYV), a highly sensitive technique

widely used for trace analysis®"*”

. In comparison to
cyclic voltammetry, square wave voltammetry has
many promising features, including the background
suppression, the wider range of time scale, the
shorter analysis time and the lower limit of detection
because of its efficient discrimination of capacitance
current™ ¥ ¥ Ag for the reaction of fluorescamine
and ammonia studied here, the well-defined square
wave voltammetric response could be obtained with
the following SWV parameters: amplitude 10 mV;
frequency 12.5 Hz and step potential 4 mV.

Fig. 9 displays the overlaid square wave
voltammograms of 0.1 mol-L"' borate buffer
solution pH 9.0 (dotted line) and 100 wmol L
fluorescamine  with ammonia in the total
concentration range of 0 to 400 wmol -L" (solid
line). It can be seen from Fig. 9 that no obvious
oxidation feature could be observed for the blank
solution (dotted line), whereas for 100 wmol - L
fluorescamine as the starting reagent (blue solid
line), a single oxidation peak corresponding to the
oxidation of fluorescamine, labelled peak I, was
observed at ca. 0.67 V vs. SCE. When ammonia (in
100 pmol -L"' fluorescamine) was added to 100
pwmol - L* fluorescamine solution, a new oxidation

peak attributed to the oxidation of the product

2.0

| | Increasing[NH,]

0.8

Current/pA

0.4

0.0

00 02 04 06 08 10
Potential/V(vs. SCE)

Fig. 9 Overlaid square wave voltammograms of either 0.1
mol - L borate buffer solution pH 9.0 (dotted line) or
100 pwmol- L' fluorescamine in the absence (blue solid
line) and presence (black solid line) of ammonia in the
total concentration range of 2, 4, 10, 20, 60, 100, 200
and 400 pmol -L', in 0.1 mol -L" borate buffer
solution (pH 9.0), recorded at a glassy carbon (GC)
electrode after 2 min since ammonia was added to the
fluorescamine solution with a frequency of 12.5 Hz, a

step potential of 4 mV and an amplitude of 10 mV.

formed between fluorescamine and ammonia,
labelled peak II, could be observed at ca 0.43 V vs.
SCE with an increase in its peak height upon the
addition of ammonia. Above 20 wmol ‘L' total
ammonia added, the oxidation peak of the product
(peak II) became increasingly well defined as the
amount of product being formed increased.
Regarding the oxidation peak current of
fluorescamine itself (peak I), it decreased with the
addition of ammonia and its oxidation peak
potential slightly shifited towards more positive
potentials, consistent with that observed earlier by
cyclic voltammetry. Note that either peak I or peak
IT which decreased and increased, respectively upon
the concentration of ammonia present in
fluorescamine solution could basically be used for
the determination of ammonia by electrochemical
method studied here.

Fig. 10 shows the plots of square wave
voltammetric response for peak I (A) and peak II
(B) of fluorescamine in the presence of ammonia in
the total concentration range of 0 to 400 wmol L

versus total ammonia concentration. As seen in Fig.



- 446 -

2012

10A, the oxidation peak current of the starting
material (fluorescamine, peak (I)) decreased consis-
tently with the increasing concentration of ammonia
before levelling off after 100 pmol -L"' total
ammonia was added to 100 wmol-L"' fluorescamine.
On the other hand, the oxidation peak current of the
product formed (peak II) shown in Fig. 10B
increased instantly with the addition of ammonia up
to 100 pmol -L" before reaching a plateau. In
general, these plots demonstrated that the chemical
reaction between fluorescamine and ammonia
reached its completion when the molar
stoichiometric ratio of fluorescamine to ammonia
was 1:1 as previously observed and confirmed by
fluorescence method since the equimolar quantities
of ammonia and fluorescamine were needed in order

to reach the limiting signal value.

T A
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Fig. 10 Plots of square wave voltammetric peak current versus
ammonia concentration of the oxidation peaks I (A)
and II

presence of ammonia in the total concentration range

(B) of 100 pmol -L! fluorescamine in the

of 0 to 400 wmol-L". Inset in (B): Linear plot of peak
current II of 100 pmol L' fluorescamine and
ammonia in the total concentration range of 0 to 60

pmol- L, with correlation coefficient (R?) of 0.998.

A plot of peak current of peak II corresponding
to the oxidation of the product formed against total
ammonia concentration (plotted as an inset in Fig.
10B) shows a linear response over a wide ammonia
concentration range of 0 to 60 wmol-L" with a limit
of detection (LOD) of 3.17 wmol- L' (shown in Tab.
1), determined based on 30, where o is the standard
deviation (root mean square value). The method of
S/N = 3, involving an analysis of the background
noise, was also used here to calculated the limit of
detection, and it was found to be 0.71 wmol L
(shown in Tab. 1).

Tab.1 Limits of detection (LOD), derived from the methods
of 30 and S/N = 3 for n = 10, for the fluorescence and
elelctrochemical detection of ammonia in aqueous

solution by fluorescamine.

LOD/( pmol-L")

Method Fluorescence Square wave
spectroscopy voltammetry
30 3.67 3.17
S/IN=3 0.24 0.71

3.6 Comparison of Electrochemical and
Fluorescence Methods for Ammonia
Detection
Although fluorescence spectroscopy is recog-

nised as a very sensitive technique widely used for

the

measurement of fluorescent product obtained by the

trace analysis and ideally suitable for

reaction of fluorescamine and ammonia investigated
here, it is generally much more expensive,
labour-intensive and complicated to use compared
to voltammetric methods discussed earlier™. In this
work, the new voltammetric method which
possesses many desirable characteristics including
high

response and low cost has been developed for the

sensitivity, comparative simplicity, rapid
detection of ammonia.

Basically, the detection of ammonia in aqueous
solution using fluorescamine has been investigated

by both fluorometric and voltammetric methods.
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The limits of detection (shown in Tab. 1), derived
from the methods of 30 and S/N = 3, for the deter-
mination of ammonia by both methods have also
been reported and compared. As seen in Tab. 1
when the more reliable method of 3059 has been
employed, the voltammetric method for the detec-
tion of ammonia by fluorescamine could obtain the
limit of detection of 3.17 wmol L' comparable to
that of 3.67 wmol- L for fluorescence spectroscopic
method, indicating that these two detection tech-
niques are completely in agreement and either can
be used for the detection of ammonia in aqueous so-
lution by the reaction with fluorescamine. It is im-
portant to note that these detection limits of 3.17
pmol L' and 3.67 wmol-L" (derived base upon 30)
reported here are approximately one order of magni-
tude below the limit of ammonia for drinking water
suggested by the European Association®'",

Despite the fact that much lower limits of
detection for ammonia (0.71 wmol -L* and 0.24
pmol+ L' for square wave voltammetry and
fluorescence spectroscopy, respectively) could be
achieved when the method of S/V = 3 which
basically focuses on the blank signals has been
applied, the voltammetric method is still a highly
sensitive technique capable of extremely low
detection limit for ammonia, favourably compared

with the fluorometric method.

4 Conclusions

The electrochemical behaviour of fluorescamine
in the presence of ammonia in 0.1 mol -L"' borate
buffer solution (pH 9.0) has been investigated by cyclic
voltammetry and square wave voltammetry. As for
fluorescamine itself, a chemically irreversible oxida-
tion peak could be observed at ca. 0.70 V vs. SCE
corresponding to the oxidation of fluorescamine.
When ammonia was added to the fluorescamine
solution, a chemical reaction between these two
components generally occurred, producing a highly
fluorescent product in the system. The resulting
reaction product subsequently introduced a new
chemically and electrochemically irreversible
oxidation peak observed at ca. 0.46 V vs. SCE,

attributed to the oxidation of the product formed. In
contrast, the oxidation peak height of fluorescamine
observed earlier decreased accordingly due to the
fact that fluorescamine was readily consumed by
ammonia during the reaction. Upon the addition of
ammonia, the oxidation peak of fluorescamine de-
creased constantly while the oxidation peak of the
product formed increased regularly until the reaction
completion was achieved. These two anodic peaks
corresponding to the oxidation of fluorescamine and
its product formed by the reaction with ammonia
could then be used for the electroanalytical determi-
nation of ammonia in aqueous solution. The limit of
detection for this new voltammetric method was
found to be comparable with that for fluorescence
spectroscopic method. Considering its high sensitiv-
ity, comparative simplicity, rapid response and low
cost, the electrochemical method developed here
thus appears to be a simple, fast, cheap and effective
means of ammonia detection although interference
by other primary amines would be expected.
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