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In this paper, we survey some recent developments of nonparametric
econometrics in the following areas: (i) nonparametric estimation of
regression models with mixed discrete and continuous data; (ii) nonpara-
metric models with nonstationary data; (iii) nonparametric models with
instrumental variables; and (iv) nonparametric estimation of conditional
quantile functions. In each of the above areas, we also point out some open
research problems.

1. INTRODUCTION

There is a growing literature in nonparametric econometrics in the recent
two decades. Given the space limitation, it is impossible to survey all the
important recent developments in nonparametric econometrics. Therefore,
we choose to limit our focus on the following areas. In Section 2, we review
the recent developments of nonparametric estimation and testing of
regression functions with mixed discrete and continuous covariates. We
discuss nonparametric estimation and testing of econometric models for
nonstationary data in Section 3. Section 4 is devoted to surveying the
literature of nonparametric instrumental variable (IV) models. We review
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nonparametric estimation of quantile regression models in Section 5.
In Sections 2–5, we also point out some open research problems, which
might be useful for graduate students to review the important research
papers in this field and to search for their own research interests, particularly
dissertation topics for doctoral students. Finally, in Section 6 we highlight
some important research areas that are not covered in this paper due to
space limitation. We plan to write a separate survey paper to discuss some of
the omitted topics.

2. MODELS WITH DISCRETE AND

CONTINUOUS COVARIATES

In this section, we mainly focus on analysis of nonparametric regression
models with discrete and continuous data. We first discuss estimation of
a nonparametric regression model with mixed discrete and continuous
regressors, and then we focus on a consistent test for parametric regression
functional forms against nonparametric alternatives.

2.1. Nonparametric Regression Models with Discrete and
Continuous Covariates

We are interested in estimating the following nonparametric regression model:

Yi ¼ gðXiÞ þ ui; ði ¼ 1; . . . ; nÞ (1)

where Xi ¼ ðX
c
i ;X

d
i Þ;X

c
i 2 <

q is a continuous random variable of dimension
q (qZ1), and Xd

i is a discrete random variable of dimension r (rZ0). We will
only consider independent and identically distributed data case in Section 2.
Let Xd

is denote the sth component of Xd
i . We consider two possibilities:

Xd
is can be an ordered and unordered discrete variable. If Xd

is is
unordered, Xd

is 2 Ds ¼ fa1; a2; . . . ; acsg with cs taking distinct different
values and cs 2 N , where N denotes the set of positive integers. Here we
allow for the possibility that cs ¼N. If cs ¼N, we need to add a condition
that infxdsaxd

s0
;xdx ;x

d
s0
2Ds
jxds � xds0 j � d40 so that xds can take at most countably

infinitely many different values, and there is only finite many distinct points
of xds in any bounded interval.

The conventional approach dealing with the discrete variable is to split
the sample into many parts sorted by different discrete cells. Then one uses
the data falling into a given discrete cell to estimate the conditional mean
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function of Y given the remaining continuous variables. However, this
sample splitting method may give unreliable estimation results or even
become infeasible when the number of discrete cells is not small compared
with the sample size. In a seminal paper, Aitchison and Aitken (1976)
proposed a novel method of smoothing discrete variables in estimating a
discrete probability function. Hall, Racine, and Li (2004), Racine and Li
(2004), and Hall, Li, and Racine (2007) generalized Aitchison and Aitken’s
smoothing method to the problem of estimating a conditional density
function or a conditional mean function. Their proposed smoothing method
avoids the sample splitting problem and therefore remains a feasible
estimation method when the number of discrete cells is comparable or even
larger than the sample size. An additional advantage of smoothing the
discrete variables is that, as shown by Hall et al. (2004, 2007), irrelevant
covariates can be automatically smoothed out (i.e., removed) from a
conditional density or a regression model.

We now introduce the kernel smoothing function for discrete variables.
The kernel function associated with unordered discrete variable Xd

is is given
by lðXd

is;x
d
s ; lsÞ ¼ 1 if Xd

is ¼ xds ; and lðXd
is;x

d
s ; lsÞ ¼ ls if Xd

isaxds , where ls is
the smoothing parameter. If Xd

is is an ordered discrete variable, we use
the following kernel function: lðXd

is;x
d
s ; lsÞ ¼ ljX

d
is�x

d
s j

s . Whether xds is either
ordered or unordered, when ls ¼ 0, the kernel function becomes an
indicator function, that is, lðXd

is;x
d
s ; 0Þ ¼ 1ðXd

is ¼ xds Þ, where I(A) denotes
an indicator function that takes value one if event A holds true, and zero
otherwise. Also, when ls ¼ 1; lðXd

is;x
d
s ; 1Þ � 1 is a constant function. The

range of ls is [0,1] for all s ¼ 1, y, r. The product kernel for the discrete
variables Xd is LðXd

i ;x
d; lÞ ¼

Qr
s¼1lðX

d
is; x

d
s ; lsÞ. For the continuous variable

Xc ¼ ðXc
1; . . . ; X

c
qÞ, we use the product kernel given by Whðx

c;Xc
i Þ ¼Qq

s¼1h
�1
s w ððxcs � Xc

isÞ=hsÞ, where w( � ) is a symmetric and univariate density
function, and 0ohsoN is the smoothing parameter for xcs .

The kernel function for the mixed regressor case X ¼ (Xc, Xd) is simply
the product of W and L, that is, Kðx;XiÞ ¼Whðx

c;Xc
i ÞLðx

d;Xd
i ; lÞ. Thus we

estimate gðxÞ ¼ EðY jX ¼ xÞ by the Nadaraya–Watson (NW) (local constant
(LC)) method, defined as,

bgðxÞ ¼

Pn
i¼1YiKðx;XiÞPn
i¼1Kðx;XiÞ

(2)

It is easy to see that if ls ¼ 0 for all s ¼ 1, y, r, then the discrete kernel
function becomes an indicator function, that is, LðXd

i ;x
d; 1Þ ¼

1ðXd
i ¼ xdÞ: bgðxÞdefined in (2) reduces to the conventional frequency
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estimator of g(x). Also, if ls ¼ 1 for some sA{1,y, r}, since lðXd
is;x

d
s ; 1Þ � 1,

in this case bgðxÞ becomes unrelated to xds , that is, the covariate xds is
completely removed from the regression model. Similarly, for the con-
tinuous variable xcs , if hs is sufficiently large, xcs is effectively removed from
the regression model, see Hall et al. (2007) on a more detailed discussion on
removing irrelevant covariates by oversmoothing these variables.

It is well known that the smoothing parameters play an essential role in
the trade-off between reducing bias and variance, so that their choice
in a nonparametric approach is very critical. For the aforementioned
setting, Hall et al. (2007) suggested choosing the smoothing parameters
ðh; lÞ ¼ ðh1; . . . ; hp; l1; . . . ; lqÞ by minimizing the following cross-valida-
tion (CV) function:

CVðh; lÞ ¼
1

n

Xn

i¼1

ðYi � bg�iðXiÞÞ
2w1ðXiÞ (3)

where ĝ�iðXiÞ ¼
Pn

jaiYjKðXi;XjÞ=
Pn

jaiKðXi;XjÞ is the leave-one-out ker-
nel estimator of gðXiÞ � EðYijXiÞ, and 0 � w1ð�Þ � 1 is a weight function
(which has a compact support) that serves to avoid difficulties caused by
dividing by zero, or by the slower convergence rate arising when Xi lies near
the boundary of the support of X. Although it is necessary to introduce the
weight function wl( � ) from the theoretical point of view, in practice the use
of the weight function may not be necessary. In applications, since the data
range is always finite, one usually does not need to use any weight function,
or equivalently one can use w1(Xi)�1 for all i ¼ 1, y, n.

Now suppose that Xd
s , the sth component of Xd, is an irrelevant

component, that is, EðYijXi ¼ xÞ ¼ EðYijXi=X
d
is ¼ x=xds Þ almost every-

where, where Xi=X
d
is denote the set of variables in Xi with Xd

is being
removed. Let ls denote the smoothing parameter associated with irrelevant
component Xd

s . Hall et al. (2007) showed that, when Xd
s is an irrelevant

regressor, the cross-validated ls converges to 1 in probability. Recall that
when ls ¼ 1, the corresponding variable Xd

s is completely removed from the
nonparametric kernel estimator bgðxÞ. This means that all irrelevant discrete
variables can be automatically removed (asymptotically) by the least squares
CV method. Similar results hold true for the continuous covariates. Indeed,
Hall et al. (2007) showed that, when Xc

s is an irrelevant covariate, then the
cross-validated smoothing parameter hs diverges to þN. In such a case, the
corresponding kernel function wððXc

is � xcsÞ=hsÞ ! wð0Þ becomes a constant.
Moreover, this constant is cancelled out from bgðxÞ because the same
constant appears at both the numerator and the denominator of bgðxÞ.
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Hence, asymptotically all irrelevant covariates, either continuous or
discrete, is smoothed out from the regression model by the CV method.

The nonparametric estimator bgðxÞ with the cross-validated smoothing
parameters has the same asymptotic distribution of a kernel estimator of g(x)
that first removes the irrelevant covariates. Hall et al. (2007) defined the
irrelevant variables as those regressors that are independent with both the
dependent variable and the relevant regressors. However, the simulation
results suggest that the CV method can still remove irrelevant variables as
long as those irrelevant variables are independent with the dependent variable
conditional on the relevant variables. However, it is still of theoretical interest
if one can also relax the independent assumption to conditional independent
assumption, and this remains an interesting open question.

Note that the above result was extended by Li and Racine (2009) to the
case of estimating a varying-coefficient model and by Li, Ouyang, and Racine
(2009) and Su, Chen, and Ullah (2009) to weakly dependent data case.

When all the covariates are discrete, the asymptotic analysis is quite dif-
ferent and cannot be obtained from the regression model with mixed discrete
and continuous regressors as a special case (since the above result assumes
that qZ1, where q is the number of continuous regressors). When all the
regressors are discrete variables, irrelevant discrete covariates are smoothed
out by the least squares CV method with a positive probability, say d. Indeed,
Ouyang, Li, and Racine (2009) concluded that 0.5odo1. More precisely,
the simulation results reported in their paper suggest that dA[0.6, 0.65].
In summary, when all the regressors are discrete, one can still remove the
irrelevant regressors (by the CV method) with a positive probability, but this
probability is strictly less than one, even as the sample size goes to þN.

Finally, various programs for implementing the CV method to estimate
a regression model with mixed discrete and continuous covariates
are available. For example, a R-package (np) is currently available at
http://www.R-project.org for a free download and a Stata program will be
available soon.

2.2. Consistent Model Specification Tests

It is well known that the selection of smoothing parameter is of crucial
importance in nonparametric estimation. It is probably less well known
(say, to applied econometricians) what important roles the smoothing
parameters play in nonparametric model specification testing. In this
subsection, we first consider a simple univariate regression model to
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illustrate how the selection of smoothing parameter affects the performance
of a nonparametric test. Toward this end, we consider the following
nonparametric regression model

Yi ¼ gðXiÞ þ ui

where Xi is a univariate continuous random variable and g( � ) is a smooth
function. We are interested in testing the null hypothesis H0 : EðYijXiÞ ¼

b0 þ Xib1 almost surely (a.s.). One can construct a test based on
I ¼ E½uiEðuijXiÞf ðXiÞ�, where ui ¼ Yi � b0 � Xib1 and f( � ) is the density
function of Xi. This is because I ¼ E½ðEðuijXiÞÞ

2f ðXiÞ� � 0, and it equals to 0
if and only if the null hypothesis is true. Hence, I serves as a proper
candidate for testing H0. A feasible test statistic based on I is given by:

In ¼
1

n

Xn

i¼1

bui bE�iðuijXiÞ
bf�iðXiÞ ¼

1

nðn� 1Þ

Xn

i¼1

Xn

jai

buibujKh;ij

where Kh;ij ¼ KhðXi � XjÞ and KhðvÞ ¼ h�1Kðv=hÞ. It can be shown that In
converges to 0 under H0 ðindeed; In ¼ Opððnh

1=2
Þ
�1
Þ under H0Þ, and that In

goes to a positive constant if H0 is false. A standardized test is given
by where Tn ¼ nh1=2In=bs0, where bs20 ¼ 2½nðn� 1Þh��1

Pn
i¼1

Pn
jaibu

2
i bu

2
i K

2
h;ij.

One can show that Tn converges to a standard normal random variable
under H0, and it diverges to þN at the rate of nh1/2 if H0 does not hold.
In practice, some residual-based bootstrap methods (say, the wild bootstrap
method) are recommended for a better approximation to the finite-sample
null distribution of the test statistic Tn. The conditions on h are the usual
ones: h-0 and nh-N as n-N.

Now the question is: How does the selection of h affect the performance
of the Tn test? And how should we select h in practice? Given that residual-
based bootstrap methods can give quite satisfactory estimated sizes for Tn, a
sensible starting point seems to examine the power property of the test. For
a given significance level for a test, one would prefer a test with a large
power. To examine how h affects the power of the test, we need to know the
behavior of gðxÞ � EðYijXi ¼ xÞ when H0 fails to hold. In this case, g(x) is a
nonlinear function of x. Let us consider a specific example. Suppose that
XA[0,2] and g(x) ¼ sin(mpx), where m is a positive constant. Now consider
the case that m is small, say m ¼ 1/4. Then g(x) changes from sin(0) ¼ 0 to
sin(p/2) ¼ 1 as x varies from 0 to 2. The function is monotonically
increasing (slowly) over the domain of x. For such a slowly changing
function (as x varies), intuitively it is not hard to imagine that the optimal
smoothing should be relatively large. In contrast, if m ¼ 2, then mpx
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changes from 0 to 4p (as x moves from 0 to 2) and the function sin(mpx)
completes two full periods, moving up and down several times as x varies in
the domain. This function changes more rapidly compared to the case of
m ¼ 1/4, the optimal smoothing for this fast changing function should be
much smaller compared to a slow changing function (the case of m ¼ 1/4).
We generate Xi’s uniformly from [0, 2] and use the least squares CV method to
select the smoothing parameters. For a sample size of n ¼ 100 and over 1,000
simulations, the median value of bh (cross-validated h) is 0.172 for m ¼ 1/4,
and 0.068 form ¼ 2. If we use an ad hoc rule such as h ¼ xsdn

�1/5
¼ 0.230 for

n ¼ 100, where xsd is the sample standard error of fXig
n
i¼1. We say that the

optimal smoothing parameter (in estimation) can be quite different depending
on the different shapes of the unknown regression functions.

How is the nonparametric estimation accuracy related to a power of a
nonparametric test? In general, more accurate estimation of the unknown
function is expected to lead to a better power of a test if the test is based on
the difference between the null hypothesized linear model and the true
unknown function.1 For this reason, Hsiao, Li, and Racine (2007) suggested
using the least squares CV method to select the smoothing parameters in
a nonparametric smoothing test. Hsiao et al. (2007) considered the problem
of testing a parametric regression functional form with mixed discrete and
continuous covariates. We next describe their testing procedure.

For testing the null hypothesis that a parametric regression model is
correctly specified, we state it as,

H0 : P½EðYijXiÞ ¼ mðXi; bÞ� ¼ 1 for some b 2 B (4)

where m( � , � ) is a known function with b being a p� 1 vector of unknown
parameters and B is a compact subset in <p. The alternative hypothesis is
the negation of H0, that is,

H1 : P½EðYijXiÞ ¼ mðXi;bÞ�o1 for all b 2 B (5)

Hsiao et al. (2007) considered a test statistic that was independently
proposed by Fan and Li (1996) and Zheng (1996).2

The test statistic is based on I ¼ E½uiEðuijXiÞf ðXiÞ� as we discussed
earlier. The sample analogue of I is given by:

In ¼ n�1
Xn

i¼1

bui bE�iðuijXiÞ
bf �iðXiÞ ¼ n�1

Xn

i¼1

bui n�1
Xn

j¼1;jai

bujWh;ijLl;ij

( )

¼ n�2
X

i

X

jai

buibujKg;ij ð6Þ
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where Kg;ij ¼Wh;ijLl;ijðg ¼ ðh; lÞÞ; bui ¼ Yi �mðXi;bbÞ is the residual
obtained from estimating the parametric null model, bb is a

ffiffiffi
n
p

-consistent
estimator of b (under H0), and bE�iðuijXiÞ

bf �iðXiÞ is a leave-one-out kernel
estimator of EðYijXiÞf ðXiÞ: In the case where we have only continuous
regressors Xc

i and use a nonstochastic value of hs (hs-0 and nh1y hq-N),
the asymptotic null (normal) distribution of the In test was derived
independently by Fan and Li (1996) and Zheng (1996).

For the In test with the mixed discrete and continuous covariates, Hsiao et
al. (2007) advocated the use of CV methods for selecting the smoothing
parameter vectors h and l. We use bIn to denote the test statistic with CV
selected smoothing parameters, that is, bIn is defined the same way as In given
in (6) but with ðh1; . . . ; hq; l1; . . . ; lrÞ replaced by the CV smoothing
parameters ðbh1; . . . ; bhq; bl1; . . . ; blrÞ. The asymptotic distribution of our
CV-based test was derived by Hsiao et al. (2007):

bTn �
nðbh1 . . . bh

q
Þ
1=2Î n

ffiffiffiffi
bO

p !
d
Nð0; 1Þ

under H0, where ‘‘!
d
’’ denotes the convergence in distribution and

bO ¼ ½2ðbh1 . . . bhqÞ=n2�
Pn

i¼1

Pn
ja1bu

2
i bu

2
j W

2

bh;ij
L2

bl;ij
.

Hsiao et al. (2007) also showed that the bTn test diverges to þN if H0 is
false; thus it is a consistent test. Hsiao et al. (2007) recommended the use of
a residual-based wild bootstrap method to better approximate the null
distribution of bTn. Specifically, one generates the wild bootstrap error u�i
via a two point distribution u�i ¼ ½ð1�

ffiffiffi
5
p
Þ=2�ûi with probability

ð1þ
ffiffiffi
5
p
Þ=½2

ffiffiffi
5
p
�, and u�i ¼ ½ð1þ

ffiffiffi
5
p
Þ=2�bui with probability ð

ffiffiffi
5
p
� 1Þ=½2

ffiffiffi
5
p
�.

Using fu�i g
n
i¼1, one generates Y

�
i ¼ mðXi; bbÞ þ u�i for i ¼ 1; . . . ; n: fXi;Y

�
i g

n
i¼1

is called the ‘‘bootstrap sample,’’ and one uses this bootstrap sample to
obtain a nonlinear least squares estimator of b (a least squares estimator if
mðXi;bÞ ¼ XT

i bÞ: Let bb
�

denote the resulting estimator. The bootstrap
residual is given by bu�i ¼ Y�i �mðXi;bb

�

Þ. The bootstrap test statistic bT
�

n is
obtained the same way as bTn with bui being replaced by bu�i . Note that we use
the same CV selected smoothing parameters bh and bl when computing the
bootstrap statistics. That is, there is no need to rerun CV with the bootstrap
sample. Therefore, our bootstrap test is computationally quite simple. In
practice, one repeats the above steps a large number of times, say B ¼ 1,000
times, then, the original test statistic bTn plus the B bootstrap test statistics
give us the empirical distribution of the bootstrap statistics, which is then
used to approximate the finite-sample null distribution of bTn.

By adopting the concept of ‘‘convergence in distribution in probability’’
(see e.g., Li, Hsiao, & Zinn, 2003) to study the asymptotic distribution of the
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bootstrap statistic bT
�

n, Hsiao et al. (2007) showed that the wild bootstrap
method works by proving the following result:

sup
z2<jPð

bT
�

n � zjfXi;Yig
n
i¼1Þ � FðzÞj ¼ opð1Þ (7)

where F( � ) is the cumulative distribution function of a standard normal
random variable. The simulation results reported in Hsiao et al. (2007) show
that the proposed bootstrap procedure indeed works well in finite sample
applications. See Hsiao et al. (2007) for details on this regard.

2.3. Testing Significance (Relevance) of Discrete Variables

When all the regressors are discrete variables, Ouyang et al. (2009) showed
that while the irrelevant variables can be smoothed out with about 65%
probability, there is a 35% probability that the cross-validated l takes
values strictly o1 even as n-N. Therefore, sometimes the CV method may
not be able to determine whether a given variable is irrelevant or not. In
such cases, one can use the test statistic proposed by Racine, Hart, and Li
(2006) to test whether a given discrete variable is relevant or not. The null
hypothesis is,

H0 : mðx; zÞ ¼ EðY jX ¼ x;Z ¼ zÞ ¼ EðY jX ¼ xÞ almost everywhere ða:e:Þ

(8)

where Z is a discrete variable and X can contain both discrete and
continuous components. Under the null hypothesis, the discrete variable Z
is an irrelevant regressor.

Assume that Z takes c different values, without loss of generality,
say that Z 2 f0; 1; . . . ; c� 1g. The null hypothesis H0 is equivalent to:
m(X, Z ¼ l) ¼ m(X, Z ¼ 0) for l ¼ 1,y, c�1 (for all X). Racine et al. (2006)
suggested constructing a test statistic based on

I ¼
Xc�1

l¼1

Ef½mðX ;Z ¼ lÞ �mðX ;Z ¼ 0Þ�2g (9)

Obviously, IZ0 and I ¼ 0 if and only if H0 is true. Therefore, I serves as a
proper measure for testing H0. A feasible test statistic is given by:

bIn ¼
1

n

Xn

i¼1

Xc�1

l¼1

½ bmðXi;Zi ¼ lÞ � bmðXi;Zi ¼ 0Þ�2 (10)

where bmðXi;ZiÞ is the kernel estimator of m(Xi, Zi).
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Racine et al. (2006) recommended using the least squares CV method to
select the smoothing parameters. Let blz denote the smoothing parameter
selected by the CV method. Since under H0, blz has a nondegenerate
(complicated) limiting distribution, the null distribution of bIn is unknown
even as n-N. Therefore, Racine et al. (2006) recommended using some
bootstrap procedures to approximate the null distribution of the bIn test, one
of which is described below.

2.3.1. A Bootstrap Procedure

1. Randomly select Z�i from fZjg
n
j¼1 with replacement, and call

fYi;Xi;Z
�
i g

n
i¼1 the bootstrap sample.

2. Use the bootstrap sample to compute the bootstrap statistic bI
�

n, where
bI
�

n

is the same as bIn except that Zi is replaced by Z�i (using the same cross-
validated smoothing parameters of bh, bl, and blz obtained earlier).

3. Repeat steps 1 and 2, a large number of times, say B times. Let fbI
�

n;jg
B
j¼1 be

the ordered (in an ascending order) statistic of the B bootstrap statistics,
and let bI

�

n;ðaÞ denote the (1�a)th percentile of fbI
�

n;jg
B
j¼1. We reject H0 if

bIn4bI
�

n;ðaÞ at the level a.

The simulation results reported in Racine et al. (2006) show that the
above bootstrap procedure works well in finite sample applications.
See Racine et al. (2006) for details on empirical studies.

3. NONPARAMETRIC REGRESSION MODELS

WITH NONSTATIONARY DATA

Phillips and Park (1998) were the first to study the asymptotic theory on
nonparametric estimation of econometric models with nonstationary data.
Recently, nonparametric estimation of regression functions has attracted
many attentions among statisticians and econometricians. Juhl (2005) and
Wang and Phillips (2008, 2009) considered nonparametric regression models
with nonstationary regressors, while Cai, Li, and Park (2009) and Xiao
(2009) considered semiparametric varying-coefficient models with some of
the regressors being nonstationary. Gao, King, Lu, and Tjøstheim (2008)
and Sun, Cai, and Li (2008a) considered nonparametric testing issues
with nonstationary data. Finally, Karlsen, Myklebust, and Tjöstheim (2007)
considered nonparametric estimation of a regression model for a more
general type of nonstationary processes, a subclass of the class of null
recurrent Markov chains. We summarize some of these works below.
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3.1. Nonparametric Density and Regression Function Estimation

Phillips and Park (1998) considered a nonparametric autoregressive regres-
sion model with the true data generated by an unit root process:

Yt ¼ mðYt�1Þ þ ut � Yt�1 þ ut

where ut, for expositional simplicity, is assumed to be i.i.d. ð0;s2uÞ. Phillips
and Park (1998) suggested using a LC method to estimate m( � ) as,

bmðxÞ ¼

Pn
t¼1YtKhðYt�1 � xÞ
Pn

t¼1KhðYt�1 � xÞ
�
ðnhÞ�1

Pn
t¼1YtKhðYt�1 � xÞ

bf nðxÞ
(11)

where KhðvÞ ¼ h�1Kðv=hÞ, h is the bandwidth, K( � ) the kernel function, and
bf nðxÞ ¼ ðnhÞ

�1Pn
t¼1KhðYt�1 � xÞ, which would be regarded as an estimator

of the density function if Yt were stationary. Phillips and Park (1998)
derived the asymptotic distributions for both bmðxÞ and bf nðxÞ.

It follows from Donsker’s theorem that under some regularity conditions,
for 0 � r � 1, Y ½nr�=

ffiffiffi
n
p
)WuðrÞ, where [ � ] denotes the integer part of � , .

denotes weak convergence, Wu( � ) is a Brownian motion on ½0; 1�;s�1u WuðrÞ
is a standard Brownian motion on [0, 1], and s2u ¼ Eðu2t Þ. Define the local
time LW(t, x) for a Brownian motion W( � ) as,

LW ðt; xÞ¼
lim
2!0

1

22

Z t

0

1ðjWðsÞ � xj �2Þds (12)

Under some regularity conditions including h-0 and nh-N, as n-N,
Phillips and Park (1998) established the following result:

n1=4h1=2ð bmðxÞ �mðxÞÞ!
d
MN

0;s2un0ðKÞ
LWu
ð1; 0Þ

� �

(13)

where MN(m, S) denotes a mixed normal distribution with mean m and
conditional variance S, and n0ðKÞ ¼

R
K2ðvÞdv. Note that there is no bias

term in Eq. (13) because m(x) ¼ x is a linear function so that its derivatives
with orders greater or equal to two all vanish.

Wang and Phillips (2009) considered the following nonlinear cointegra-
tion model:

Yt ¼ gðXtÞ þ ut; t ¼ 1; 2; . . . ; n

where X0 ¼ 0 and Xt ¼ Xt�1 þ �t, both ut and et are mean zero stationary
processes. Wang and Phillips (2009) considered the LC estimator for g(x)
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given by:

bgðxÞ ¼

Pn
t¼1YtKhðXt � xÞ
Pn

t¼1KhðXt � xÞ

Under some regularity conditions including nh-N and nh3-0 (under-
smoothing) as n-N, Wang and Phillips (2009) showed that

n�1=2
Xn

t¼1

KhðXt � xÞ

 !1=2

n1=4h1=2ðbgðxÞ � gðxÞÞ!
d
Nð0;s21Þ (14)

where s21 ¼ s2un0ðKÞ. When Xt ¼ Yt–1, Eq. (14) gives the asymptotic
distribution of bmðxÞ defined in Eq. (11). This is because the asymptotic
variances in Eqs. (13) and (14) are the same since it can be shown that
n�1
Pn

t¼1KhðXt � xÞ!
p
LW ð1; 0Þ=s�, where W( � ) is a standard Brownian

motion and s2� ¼ limn!1Varðn
�1=2

Pn
t¼1�tÞ ðs

2
� ¼ Varð�tÞ if et is serially

uncorrelated). Finally, Wang and Phillips (2008) extended the result of
Wang and Phillips (2009) to allow for endogenous regressors.

3.2. Semiparametric Estimation of a Varying-Coefficient
Model with Nonstationary Covariates

Cai et al. (2009) considered the following varying-coefficient model:

Yt ¼ XT
t bðZtÞ þ ut ¼ XT

t1b1ðZtÞ þ XT
t2b2ðZtÞ þ ut; t ¼ 1; . . . ; n (15)

where AT denotes the transpose of a matrix or vector A, Xt1, Zt, and ut
are stationary, Xt2 is an I(1) process, bðZtÞ ¼ ðb1ðZtÞ

T;b2ðZtÞ
T
Þ
T, and

Xt ¼ ðX
T
t1;X

T
t2Þ

T. Here Xti is a di� 1 vector, i ¼ 1, 2, d1þd2 ¼ d, and the first
component of Xt1 is identically one. Also, Yt, Zt, and ut are scalars, and
EðutÞ ¼ 0, s2u ¼ limn!1Varðn

�1=2
Pn

t¼1utÞ is finite, and ut is assumed to be
independent with (Xt, Zt).

3 When there is no term XT
t1b1ðZtÞ, Eq. (15)

reduces to the model investigated by Xiao (2009). Note that Yt can be
stationary or nonstationary. If Yt is nonstationary, model (15) implies that
Yt and Xt2 are cointegrated with a varying cointegration vector b2(Zt).
The reason why Cai et al. (2009) considered a following varying-coefficient
model in Eq. (15) is that it might approximate a general nonparametric
model well (see Eq. (36) for details).
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It is easy to see that the local linear (LL) estimator for b(z) and its
derivative function b(1)(z) ¼ db(z)/dz is given by:

bbðzÞ

bb
ð1Þ
ðzÞ

0

@

1

A ¼
Xn

t¼1

Xt

ðZt � zÞXt

 !	2

KhðZt � zÞ

2

4

3

5

�1

�
Xn

t¼1

Xt

ðZt � zÞXt

 !

YtKhðZt � zÞ

(16)

where A	2 ¼ AAT and A	1 ¼ A.
We assume that Xt2 can be written as Xt2 � Xt�1;2 ¼ Zt, where Zt is a zero

mean stationary process. Then under some standard regularity conditions,
Xt2=

ffiffiffi
n
p
)WZ2ðrÞ, where WZ2ð�Þ is a d2-dimensional Brownian motion on

[0, 1]. By the continuous mapping theorem, we know that, for l ¼ 1, 2,

1

n

Xn

t¼1

Xt2
ffiffiffi
n
p

� �	l
!
d
Z 1

0

½WZ2ðrÞ�
	ldr �W

ðlÞ
Z2 (17)

Let fz(z) be the marginal density of Zt. Define MkðzÞ ¼ E½X	kt1 jZt ¼ z� for
1 � k � 2. Further, let

SðzÞ ¼
M2ðzÞ M1ðzÞW

ð1ÞT

Z2

W
ð1Þ
Z2M1ðzÞ

T W
ð2Þ
Z2

0

@

1

A

and Dn ¼ diagfId1
;
ffiffiffi
n
p

Id2
g. Then, Cai et al. (2009) showed that under some

regularity conditions,

ffiffiffiffiffi
nh
p

Dn
bbðzÞ � bðzÞ �

1

2
h2m2ðKÞb

ð2Þ
ðzÞ

� �

!
d
MNð0;S

b
ðzÞÞ (18)

where MN(0, Sb(z)) is a mixed normal variable with mean zero and con-
ditional covariance SbðzÞ ¼ s2un0ðKÞSðzÞ

�1=f zðzÞ and m2ðKÞ ¼
R
v2KðvÞdv.

Eq. (18) implies that bb1ðzÞ � b1ðzÞ ¼ Opðh
2
þ ðnhÞ�1=2Þ and bb2ðzÞ � b2ðzÞ ¼

Opðh
2
þ ðn2hÞ�1=2Þ. Thus, the convergence rate for bb2ðzÞ � b2ðzÞ is faster than

that of bb1ðzÞ � b1ðzÞ. The bias term is O(h2) for both bb1ðzÞ and bb2ðzÞ, and
the variance of bb1ðzÞ is OððnhÞ

�1
Þ, while the variance of bb2ðzÞ is Oððn

2hÞ�1=2Þ.
This is similar to the linear regression model case because

Pn
t¼1X2tX

T
t2 ¼

Opðn
2Þ and

Pn
t¼1Xt1X

T
t1 ¼ OpðnÞ. The estimated coefficient for the I(1)

regressor is n-consistent, while the estimated coefficient for the I(0) regressor
has the standard

ffiffiffi
n
p

rate of convergence.
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Cai et al. (2009) also considered the case that Xt is I(0) but Zt is I(1).
For such a case, Zt can be expressed as Zt ¼ Zt�1 þ vt ¼ Z0 þ

Pt
s¼1vs,

where {vs} is a stationary process with mean zero and s2u ¼ limn!1

Varðn�1=2
Pn

t¼1vtÞ40. Then, it follows from Donsker’s theorem that under
some regularity conditions, for 0 � r � 1;Z½nr�=

ffiffiffi
n
p
)WvðrÞ, where Wv( � ) is

a Brownian motion on [0, 1] and s�1v WvðrÞ is a standard Brownian motion
on [0, 1]. Cai et al. (2009) established the following asymptotic result:

ffiffiffiffiffiffiffiffiffiffiffi
n1=2h

p
½bbðzÞ � bðzÞ � h2BðzÞ�!

d
MNð0;S1Þ (19)

where BðzÞ ¼ m2ðKÞb
ð2Þ
ðzÞ=2; MNð0;S1Þ is a mixed normal distribution with

mean zero and conditional covariance S1 ¼ svs2un0ðKÞ½EðXtX
T
t �LW ð1; 0Þ�

�1.
Eq. (19) implies that bbðzÞ � bðzÞ ¼ Opðh

2
þ ðn1=4h1=2Þ�1Þ so that the optimal

smoothing h is proportional to n�1=10. Thus, h should converge to 0 at
a fairly slow rate at n�1/10. This is because when Zt is I(1), it returns to the
fixed interval [z�h, zþh] less often compared to the case when Zt is I(0).
Therefore, one needs to let h go to 0 slowly so as to balance the squared bias
and the variance.

When d ¼ 1 and Xt ¼ 1, the varying-coefficient model reduces to a simple
regression model Yt ¼ bðZtÞ þ utðZt is Ið1ÞÞ. The asymptotic variance in
Eq. (19) simplifies to sus2un0ðKÞLW ð1; 0Þ

�1. It can be shown that bf ðzÞ �
n�1=2

Pn
t¼1KhðZt � zÞ consistently estimates LW ð1; 0Þ=sv; see Phillips and

Park (1998). Hence, in this case Eq. (19) can be equivalently written as,

½bs2un0ðKÞ�
�1=2½bf ðzÞ�1=2

ffiffiffiffiffiffiffiffiffiffiffi
n1=2h

p
½bbðzÞ � bðzÞ � h2BðzÞ�!

d
Nð0; 1Þ (20)

where bs2u ¼ n�1
Pn

i¼1½Yt �
bbðZtÞ�

2 is a consistent estimator for s2u. As
expected, Eq. (20) is the same as that in Wang and Phillips (2009) for a
nonparametric regression model with an I(1) regressor.

Bachmeier, Leelahanon, and Li (2006) considered the following
semiparametric dynamic varying-coefficient model:

Yt ¼ b1ðZtÞ þ Yt�1b2ðZtÞ þ ut (21)

where Yt is the rate of inflation, and Zt is an I(1) variable ‘‘velocity of money
supply.’’ Bachmeier et al. (2006) applied the above model to forecast U.S.
inflation rate and showed that the semiparametric varying-coefficient
dynamic model (with a nonstationary covariate) has smaller forecast
mean squared error compared with the conventional linear model, or some
nonparametric model using only stationary covariates. For more examples
in finance, the reader is referred to the paper by Cai and Hong (2009).
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Park and Hahn (1999) considered the varying-coefficient model in
Eq. (15) with Zt being replaced by the time trend variable t, and established
the asymptotic distribution of a series-based estimator for b(t). Park and
Hahn (1999) also proposed a test statistics for testing a parametric function
form for b( � ) and for testing cointegration in a time-varying coefficient
model framework.

Cai and Wang (2009) considered a similar time-varying coefficient model
as the one considered in Park and Hahn (1999) with nonstationary or nearly
nonstationary (local to unit root) and endogenous regressors. Cai and Wang
(2009) used a LL estimation method and derived the asymptotic distribution
of their proposed estimators. Finally, Cai and Wang (2009) applied the
above model to test the stability of the predictability of asset returns in
finance. That is,

rt ¼ b0t þ b1txt�1 þ ut

where rt is the asset return and xt�1 is the first lag of financial instrument,
say the logarithm of the earnings-price ratio or the dividend-price ratio or
other financial variables. But ut and xt�1 is usually correlated and xt is
nonstationary like I(1) or near I(1) and highly persistent. For details about
the theory and applications, we refer the reader to the paper by Cai and
Wang (2009).

3.3. Data-Driven Method of Selecting Smoothing Parameter

Sun and Li (2009a) considered the problem of selecting the smoothing
parameter h of model (15) by the least squares CV method. They proposed
to choosing h by minimizing the following least squares CV objective
function:

CVðhÞ ¼ n�1
Xn

t¼1

½Yt � XT
t
bb�tðZtÞ�

2
MðZtÞ (22)

where bb�tðZtÞ is a leave-one-out kernel estimator of b(Zt).
Sun and Li (2009a) first considered the case that Xt is I(1) (there is no I(0)

components in Xt), Zt and ut are stationary processes. They found
an interesting result that the LC and the LL estimation methods lead
to very different asymptotic behaviors for ĥ by the CV method selected
smoothing parameter. Specifically, they showed that for the LC estimation
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method (assuming Xt is a scalar to simplify the notation)

ffiffiffi
n
p bhLC�CV �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ns2un0

R
MðzÞdz

n2c2n
R
ðbð1ÞðzÞÞ2MðzÞdz

s

!
p
0 (23)

where c1n ¼ n�2
Pn

t¼1X
2
t , c2n ¼ n�3

P
tX

4
t , and nj ¼

R
vjK2ðvÞdu. For the LL

estimation method the result is,

n2=5bhLL�CV �
4s2un0

R
MðzÞdz

c1nm2ðKÞEððb
ð2Þ
t Þ

2MtÞ

 !1=5

!
p
0 (24)

One interesting implication of Eqs. (23) and (24) is that the CV selected h
is stochastic even asymptotically. Also, comparing Eq. (23) with Eq. (24) we
see that the CV selected h has different convergence rates. Both these results
are in sharp contrast to the stationary data or independent data case
where we know that the CV selected smoothing parameter is asymptotically
nonstochastic and that the CV functions have the same probability
order whether one uses the LC or the LL method. The reason for the
different rates of convergence of bh is that CVLCðhÞ ¼ Opðhþ ðnhÞ

�1
Þ, while

CVLLðhÞ ¼ Opðnh
4
þ ðnhÞ�1Þ. This also implies that CVLCð

bhÞ ¼ Opðn
�1=2Þ

and CVLLð
bhÞ ¼ Opðn

�3=5Þ. Hence, the LL method leads to more efficient
estimation than the LC method.

Sun and Li (2009a) further provided asymptotic analysis for CV selected h
for model (15) with Xt containing both I(0) and I(1) components.

3.4. Testing a Parametric Coefficient Functional Form

Sun et al. (2008a) considered the problem of testing the null hypothesis (H0)
that P(b(Z) ¼ b0) ¼ 1 for some d� 1 vector of constant coefficient b0 in the
following semiparametric model:

Yt ¼ XTbðZtÞ þ ut ¼ XT
1tb1ðZtÞ þ XT

2tb2ðZtÞ þ ut

where X1t, Zt, and ut are I(0) variables, and X2t is an I(1) process. They
proposed a test statistic based on the sample analogue of

R
jjDðbbðzÞ�

bb0ðzÞÞjj
2dz, where bbðzÞ is the semiparametric estimator of b(z), bb0 is the

least squares estimator of b0 and D is a positive definite weight matrix.
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The test statistic proposed by Sun et al. (2008a) can be simplified to

bIn ¼
1

n3

Xn

t¼1

Xn

sat

XT
t XsbutbusKh;ts (25)

where but is the residual obtained from the parametric null model.
Sun et al. (2008a) showed that under some regularity conditions and

under H0,

bJn ¼
n
ffiffiffi
h
p
bIn
ffiffiffiffiffi
bs2b

q !
d
Nð0; 1Þ

where bs2b ¼ n�4h
Pn

t¼1

Pn
sat ~u

2
t ~u

2
s ½X

T
t Xs�

2K2
h;ts; ~ut ¼ Yt � XT

t
bb�tðZtÞ is the

nonparametric residual and bb�tðZtÞ is the leave-one-out estimator of b(Zt).
The power of the test statistic Jn depends on whether b2(z) ¼ b20 or not,

where b20 is a vector of constant parameters. If b2(z) 6¼b20 for some z in a set
with positive measure, Sun et al. (2008a) showed that the bJn test statistic
diverges to þN at the rate of n2h. However, when b2(z) ¼ b20 for all z, and
b1(z) 6¼b10 on a set with positive measure, bJn diverges to þN at the rate of
n
ffiffiffi
h
p

: Intuition behind this result is that, since X2tX
T
2t is larger than X1tX

T
1t

by an order of n, hence, the test statistic diverges to þN at a faster rate
when b2(z), the coefficient of X2t, is not a constant vector. We summarize the
above results on power of the Jn test statistic as follow.

Sun et al. (2008a) showed that under some regularity conditions and H1,
the following two results hold.

(i) If P½b2ðZtÞ ¼ b20�o1 for any b20 2 B2, where B2 is a compact subset of
Rd2 , then P½Jn4Bn� ! 1 as n-N for any nonstochastic sequence
Bn ¼ oðn2

ffiffiffi
h
p
Þ.

(ii) If P½b2ðZtÞ ¼ b20� ¼ 1 for some b20 2 B2, and P½b1ðZtÞ ¼ b10�o1 for any
b10 2 B1, where B1 is a compact subset of Rd1 , then P½Jn4Bn� ! 1 as
n-N for any nonstochastic sequence Bn ¼ oðn

ffiffiffi
h
p
Þ.

The above results imply that underH1, the test statistic Jn diverges to þN
at different rates depending on whether b2(z) ¼ b20 (a constant vector) or
not. Nevertheless, the test statistic Jn is consistent in both cases, and a larger
sample size might be required for the power of the test statistic to approach
one if b2(z) ¼ b20, and only the coefficients associated with the I(0) variables
are nonconstant (b1(z) 6¼b10) �

Also, Sun et al. (2008a) showed that when b1(z) ¼ b10 (a constant vector)
for all z, and b2ðzÞab20, then the least squares estimator bb10 diverges to þN
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at the rate of
ffiffiffi
n
p

. Therefore, a misspecified linear model not only leads to
inconsistent estimation result but also overestimates the true parameter b10
by a different order of magnitude (the true b10 ¼ O(1) is finite, while
bb10 diverges to N at the rate of

ffiffiffi
n
p

). Thus, one drastically overestimates b10
in such a case if one estimates a misspecified linear model in which one
assumes that the model is linear in both X1t and X2t, while in fact the true
model is only linear in stationary covariate X1t, but the coefficient of
the nonstationary variable X2t is a smoothing function of the stationary
covariate Zt. This result suggests that it is very important to test if the model
specification is correct when there are integrated regressors in the model.

3.5. Testing Cointegration in Semiparametric Varying-Coefficient Models

In this subsection, we discuss the problem of testing whether ut is an I(1) or
an I(0) process through a varying-coefficient model:

Yt ¼ XT
t bðZtÞ þ ut

where Xt is a d� 1 vector of I(1) variables, Zt is an I(0) scalar process, and ut
follows an AR(1) process as,

ut ¼ rut�1 þ �t

where et is a mean zero stationary process.
Xiao (2009) set the null hypothesis as Ha

0: ut is an I(0) process (i.e., r ¼ 0)
and the alternative is Ha

1: ut is an I(1) process (r ¼ 1). It is easy to see that
under Ha

0;VarðutÞ ¼ s2u, a positive constant, while under Ha
1, VarðutÞ ¼

a0 þ a1t, where a0 and a1 are positive constants. Hence, Xiao (2009)
suggested testing Ha

0 by testing a1 ¼ 0. The test statistic is based on the
following regression:

bu2t ¼ a0 þ a1tþ error (26)

where but ¼ Yt � XT
t
bbðZtÞ. Xiao (2009) showed that under Ha

0,
bta1 ¼ ba1=seðba1Þ!

d
Nð0; 1Þ, where ba1 is the OLS estimator of a1 based on

Eq. (26) and SEðba1Þ is the estimated standard error of ba1.
However, Sun and Li (2009b) considered the case that under the null

hypothesis, ut is an I(1) process. Therefore, the null hypothesis considered by
Sun and Li (2009b) is Hb

0: ut is an I(1) process, and the alternative is Hb
1: ut is

an I(0) process. Thus, the null hypothesis is Hb
0 : r ¼ 1 and the alternative

hypothesis is Hb
1 |r|o1. We consider only the case that b(z) is not a constant
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function. Based on the well-established cointegration testing for linear
models, one can test H0 based on

br ¼
P

t butbut�1P
t bu

2
t�1

where but is an estimator for ut ¼ Yt � XT
t bðZtÞ and the test statistic is

nðbr� 1Þ. Sun and Li (2009b) showed that the leading term of the test
statistic depends on bbðZtÞ in a complicated way and the asymptotic
distribution is not nuisance parameter free. Therefore, one needs to design
some simulation (or bootstrap) methods to approximate the null distribu-
tion of nðbr� 1Þ. It is still an open question as how to approximate the null
distribution of the test statistic considered by Sun and Li (2009b).

3.6. Varying-Coefficient Models with Time Trend Variables

Gu and Hernandez-Verme (2009) and Liang and Li (2009) considered a
varying-coefficient model with regressors containing a time trend:

Yt ¼ XT
t bðZtÞ þ ut (27)

where XT
t ¼ ðX

T
1t; tÞ and X1t is an I(0) variable. Gu and Hernandez-Verme

(2009) considered the LL estimation method and applied the method to
evaluate the presence of credit rationing in the U.S. credit markets, while
Liang and Li (2009) considered both the LC and local polynomial estimation
methods.

3.7. Varying-Coefficient Models with I(1) Error

Sun, Hsiao, and Li (2008b) consider the problem of estimating a varying-
coefficient model

Yt ¼ XT
t bðZtÞ þ ut (28)

when both Xt and the error term ut are integrated I(1) processes. They show
that in this case, it is still possible to obtain consistent estimate of b( � ),
but the rate of convergence will be reduced to Opðh

2
þ ðnhÞ�1=2Þ rather than

Opðh
2
þ ðn2hÞ�1=2Þ as compared to the case when ut is a stationary process.
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4. NONPARAMETRIC INSTRUMENTAL

VARIABLE ESTIMATION

There is a vast amount of papers available in the literature on parametric
IVs estimation of econometric models in economics and finance. As
with other economic models, one may consider nonparametric structural
modeling to permit greater flexibility than tightly specified parametric
models in describing such relationships. However, new problems arise for
inference in nonparametric structural models that are not present in
standard nonparametric regression; see Newey and Powell (2003). Estima-
tion of such models depend on strong regularization and sometimes
preclude the asymptotic distribution theory required for inference. To deal
with these problems, Newey and Powell (1988) were the first to explore the
nonparametric IV models and part of their result was later published in
Newey and Powell (2003). Since then, some of the other papers in this area
include Newey, Powell, and Vella (1999), Daroles, Florens, and Renault
(2002), Blundell and Powell (2003), Das (2003, 2005), Ai and Chen (2003),
Das, Newey, and Vella (2003), Newey and Powell (2003), Hall and Horowitz
(2005), Cai, Das, Xiong, and Wu (2006) (CDXW, hereinafter), Horowitz
(2007), and the references therein.

We describe the nonparametric model (with endogenous regressors)
below. Suppose we have i.i.d. data fðXi;Yi;ZiÞg

n
i¼1, and the data are

generated by the following data generating process:

Yi ¼ gðXi;Zi1Þ þ ui (29)

where gð�Þ is an unknown structural function of interest, Zi1 is a d1� 1
vector of exogenous variables, and the ui’s denote disturbances. The ui’s are
correlated with the explanatory variables Xi and, in particular, EðuijXiÞa0,
so that Xi 2 <

dx is an endogenous variable. Suppose, however, that for each
i, we have available another observed data value, Zi ¼ ðZi1;Zi2Þ, for which
EðuijZiÞ ¼ 0, where Zi2 is a d2� 1 vector of the so-called IVs. Clearly, the
nonparametric IV model is different from the standard nonparametric
model in the sense that because EðuijXi;Zi1Þa0, the structural function gð�Þ
is not given by the regression EðYijXi;Zi1Þ.

Taking the conditional expectation of Eq. (29) yields the following
integration equation:

zðzÞ � E½YijZi ¼ z� ¼ E½gðXi; z1ÞjZi ¼ z� ¼

Z

gðx; z1ÞdFxjzðxjzÞ (30)
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where FxjzðxjzÞ is the conditional distribution function of Xi given as Zi ¼ z.
Although z(z) and FxjzðxjzÞ are estimable based on data fðXi;Yi;ZiÞg,
estimation of gð�Þ is difficult because the relation that identifies gð�Þ is a
Fredholm equation of the first kind, which leads to the difficulty called ill-
posed inverse problem in the literature. That is, for nonparametric estimators
bzðzÞ and bFxjzðxjzÞ obtained from preliminary nonparametric estimation,

bzðzÞ ¼
Z

gðx; z1Þd bFxjzðxjzÞ

may not exist a solution for ĝð�Þ. Even if it exists, it may not be computable
and continuous in bzðzÞ and bFxjzðxjzÞ. As pointed out by Newey and Powell
(2003), noncontinuity of ĝð�Þ is the biggest obstacle to overcome and the lack
of continuity of ĝð�Þ in bzð�Þ and bFxjzð�Þ means that a small change in bzð�Þ and
bFxjzð�Þ may cause a huge error to ĝð�Þ. Therefore, the consistency of ĝð�Þ may
not exist even if both bzð�Þ and bFxjzð�Þ are consistent. To recover the structural
function gð�Þ and to overcome these difficulties, in nowadays, several methods
were proposed in the literature, described below.

4.1. Series Estimation

Newey and Powell (2003) suggested using the series method to approximate
the unknown function gð�Þ as,

gðwÞ 

XJ

j¼1

gjjjðwÞ (31)

where w ¼ ðx; z1Þ; fjjð�Þg is a sequence of basis functions and {gj} are the
corresponding coefficients. Substitution of Eq. (31) into Eq. (30) leads to

zðzÞ ¼ E½YijZi ¼ z� 

XJ

j¼1

gjE½jjðWiÞjZi ¼ z� �
XJ

j¼1

gjpjðzÞ ¼ gTPðzÞ

where pjðzÞ ¼ E½jjðWiÞjZi ¼ z�; g ¼ ðg1; . . . ; gJÞ
T and PðzÞ ¼ ðp1ðzÞ; . . . ;

pJðzÞÞ
T. Now, to estimate g(z), one can use a nonparametric two-stage

approach. At the first stage, using a nonparametric method to obtain bpjðzÞ
and then at the second stage, using the least squares method to obtain bgj by
a regression of Yi on fbpjðZiÞg. Finally, one obtains bgðwÞ ¼

PJ
j¼1bgjjjðwÞ.

Under some regularity conditions, Newey and Powell (2003) derived the
consistency of bgðwÞ. But they did not obtain the asymptotic distribution of
their estimator.
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4.2. Functional Operator Approach

Hall and Horowitz (2005) considered a functional operator approach
for estimating gð�Þ. Taking an expectation of zðZiÞf x;zðv;ZiÞ for any fixed v,
we have

E½zðZiÞf x;zðv;ZiÞ� ¼

Z

zðzÞf z;zðv; zÞf zðzÞdz

where f x;zðx; zÞ and fz(z), respectively, denote the joint density of (Zi, Xi)
and the marginal density of Zi. Substitution of Eq. (30) into the above
equation yields

E½zðZiÞf x;zðv;ZiÞ� ¼

Z Z

gðx; z1Þf x;zðx; zÞf z;zðv; zÞdxdz

If one assumes that g(x, z1) ¼ g(x); that is, g( � ) depends only on the
endogenous variable Xi but not on any exogenous variable, then,

E½Yif x;zðv;ZiÞ� ¼ E½EðYijZiÞf x;zðv;ZiÞ� ¼

Z

gðxÞtðx; vÞdx � TgðvÞ

which defines a functional operator T, where

tðx; vÞ ¼

Z

f x;zðx; zÞf z;zðv; zÞdz

Clearly, T is a functional operator defined on the space of functions that are
square integrable on L2ð<

dx �<dxÞ. Assume that the functional operator T
is nonsingular. Then, for each v, g(v) can be expressed as,

gðvÞ ¼ E½YiðT
�1f x;zÞðv;ZiÞ� (32)

and g(v) could be estimated easily by,

bgðvÞ ¼
1

2

Xn

i¼1

YiðT
�1f x;zÞðv;ZiÞ

if the operator T and fx,z(v, Zi) were known. Clearly, fx,z(v, Zi) can be
estimated by a kernel method plus jackknife (leave-one-out) approach,
given by,

bf x;zðv;ZiÞ ¼
1

n

Xn

j¼1;jai

KhðXj � v;Zj � ZiÞ (33)
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where Kð�; �Þ is a kernel in <dxþdx . Hall and Horowitz (2005) proposed the
following estimator:

bgðvÞ ¼
1

2

Xn

i¼1

Yið bT
þbf x;zÞðv;ZiÞ (34)

where bT
þ
¼ ð bT þ anIÞ

�1, which is a ridge type estimator and an-0 is a
ridge parameter, and

btðx; vÞ ¼

Z
bf x;zðx; zÞ

bf z;zðv; zÞdz

where bf x;zðx; zÞ is defined in Eq. (33). Alternatively, Hall and Horowitz
(2005) suggested using a series method to estimate fx,z(x, z); see Hall and
Horowitz (2005) for details. Finally, for a general form of g(x, z1), one can
still define the functional operator Tz1 for a fixed z1 and then apply the same
idea as above to define the nonparametric estimator for g(x, z1); see Section
3 of Hall and Horowitz (2005) for the detailed discussions.

Remark 1. As addressed in Hall and Horowitz (2005) and Horowitz
(2007), Eq. (32) is a Fredholm equation of the first kind. T�1 may not
always exist and if not, it generates the so-called ill-posed inverse
problem. This phenomenon happens if zero is a limit point of the
eigenvalues of T, in particular, when fx,z(x, z) is a well-behaved density
function. In that case, T�1 is not a bounded operator, and g( � ) cannot be
estimated consistently by replacing unknown population quantities on
the right-hand side of Eq. (32) with consistent estimators. This problem is
well known in the theory of integral equations. One way to deal with
this problem is to modify T�1 to make it a continuous operator. Hall
and Horowitz (2005) suggested using a ridge idea to replace T�1 for
estimation purposes with (Tþan I)

�1 (see Eq. (34) above), where I is the
identity operator and {an} is a sequence of positive constants that
converge to 0 as n-N.

Hall and Horowitz (2005) derived the asymptotic mean square error of
their estimator and showed that for a certain class of distributions, the
convergence rates are optimal in a minimax sense, while Horowitz (2007)
obtained the asymptotic normality of bgðvÞ.

Remark 2. For convenience of discussion, assume that dx ¼ 1 (Xi is
univariate). Unfortunately, both papers by Hall and Horowitz (2005)
and Horowitz (2007) did not discuss whether the convergence rate (nh)�1/2

for ordinary nonparametric regression models can be achievable or not,
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since the convergence rates in both papers depend on the smoothness
conditions for the functions fx,z( � ) and g( � ). To answer the aforemen-
tioned question, let us look at Theorem 4.1 of Hall and Horowitz (2005)
or Theorem 1 of Horowitz (2007), from which, it follows that the
asymptotic integrated mean squared errors (AIMSE) is of the order
Oðn�ð2b�1Þ=ð2bþaÞÞ by using the same notation as in both papers. If it would
achieve the optimal convergence rate for ordinary nonparametric
regression models, ð2b� 1Þ=ð2bþ aÞ ¼ 4=5 so that a ¼ b=2� 5=4 that
does not satisfy Assumption A3 in Hall and Horowitz (2005) or
Assumption 3 in Horowitz (2007). Therefore, one might conclude that
the optimal convergence rate for bgðvÞ cannot reach the optimal AIMSE
rate O(n�4/5) for ordinary nonparametric regression models. Finally,
both papers mentioned above did not give an explicit expression for the
asymptotic bias. Therefore, it is difficult to make the adaptive bandwidth
selection feasibly implemented in practice. Now, a natural question arises
is whether the optimal convergence rate (nh)�1/2 is achievable for a
nonparametric estimator under nonparametric IV settings. If possible, it
would be interesting to investigate what the scenarios are. Also, it would
be warranted to explore the asymptotic bias.

4.3. Projection Method

Newey et al. (1999) proposed using a projection method to estimate g( � ).
The reduced form of Eq. (29) can be expressed as,

Xi ¼ pðZiÞ þ xi; E½xijZi� ¼ 0

where pðZiÞ ¼ EðXijZiÞ. Further, using the new notation Wi ¼

ðxi;Xi;Zi1Þ 2 <
2dxþd1 and taking the conditional expectation of Eq. (29)

conditional on (Xi, Zi), we have,

E½YijXi;Zi� ¼ gðXi;Zi1Þ þ E½uijXi;Zi� ¼ gðXi;Zi1Þ þ E½uijxi�

� gðXi;Zi1Þ þ l0ðxiÞ � h0ðWiÞ ð35Þ

by assuming that E½uijXi;Zi� ¼ E½uijxi�, where the definitions of l0(xi) and
h0(Wi) should be apparent. Since E½ui� ¼ 0, we have the following
projection:

E½h0ðx; z1; xiÞ� ¼ gðx; z1Þ þ E½l0ðxiÞ� ¼ gðx; z1Þ þ E½ui� ¼ gðx; z1Þ
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Therefore, g(x, z1) can be estimated by a projection method as,

bgpðx; z1Þ ¼ n�1
Xn

i¼1

bh0ðx; z1; xiÞ

if bh0ðx; z1; xiÞ and xi would be known. To find a nonparametric estimate
bh0ðx; z1; xiÞ in <

2dxþd1 , one can use a kernel smoothing technique (say,
LL fitting) as ordinary nonparametric regression by regressing Yi on
ðXi;Zi1;bxiÞ, where bxi is the nonparametric residual obtained from the
reduced form as bxi ¼ Xi � bpðZiÞ, where bpðZiÞ is a nonparametric estimate of
pðZiÞ. Therefore, the feasible estimate bgpðx; z1Þ is given by:

bgpðx; z1Þ ¼
1

n

Xn

i¼1

bh0ðx; z1;bxiÞ

This method is termed as two-stage nonparametric fitting plus a projection.
By following the steps in Masry and Tjøstheim (1997) and Cai and Masry
(2000), recently, Su and Ullah (2008) derived the asymptotic properties of
the estimator that are the exactly same as that for the ordinary
nonparametric regression models. The main disadvantage of using this
approach is that it suffers from the problem associated with the curse of
dimensionality. Since the unknown function g(x, z1) is defined in <dxþd1 , the
nonparametric model fitting has to be implemented in <2dxþd1 . This might
be infeasible in applications when dx is large.

Due to the computational convenience and high efficiency in imposing
additivity, alternatively, Newey et al. (1999) suggested a series method as
follows. At the first step, p(Zi) is estimated by:

bpðZiÞ ¼
XK1

j¼1

bgjrjðZiÞ

where fbgjg are obtained by a regression of Xi versus frjðZiÞg; frjðZiÞg is a
sequence of basis functions. Then, one obtains the residual bxi ¼ Xi � bpðZiÞ.
At the second step, a series method is used again as follows. Use the series
approximation again to approximate g(x, z1) and l0(x), respectively, as,

gðx; z1Þ 

XK2

l¼1

bl1flðx; z1Þ; and l0ðxÞ 

XK3

m¼1

bm2cmðxÞ

Some Recent Developments on Nonparametric Econometrics 519



where fflðx; z1Þg and fcmðxÞg are basis functions, so that

h0ðwÞ 

XK2

l¼1

bl1flðx; z1Þ þ
XK3

m¼1

bm2cmðxÞ

Then, {bl1} and {bm2} can be easily estimated by regressing Yi versus
fflðXi;Zi1Þg and fcmð

bxiÞg. Therefore, g(x, z1) can be estimated as,

bgsðx; z1Þ ¼
XK2

l¼1

bbl1flðx; z1Þ

Newey et al. (1999) derived the consistency of ĝsðx; z1Þ with a convergence
rate for consistency, but they did not derive the asymptotic distribution of
their proposed estimator.

4.4. Functional-Coefficient Modeling

Das (2005) considered a nonparametric IV model with discrete endogenous
variables. That is, Xi is a discrete variable. Without loss of generality,
assume that Xi ¼ 0 or 1. Then, g(x, z1) can be rewritten as,

gðx; z1Þ ¼ gð0; z1Þ1ðx ¼ 0Þ þ gð1; z1Þ1ðx ¼ 1Þ ¼ a0ðz1Þ þ a1ðz1Þx

where a0(z1) ¼ g(0, z1) and a1(z1) ¼ g(1, z1)�g(0, z1). Therefore, g(x, z1) is
linear in endogenous variable but nonlinear in exogenous variable, which is
called a functional-coefficient model in the literature; see Cai, Fan, and Yao
(2000), Li, Huang, Li, and Fu (2002), CDXW (2006), Juhl (2005), and Cai
and Xu (2008). Assuming that g(x, z1) has a higher order partial derivative
with respect to x, then applying Taylor expansion to g(x, z1) we obtain

gðx; z1Þ ¼
X1

j¼1

@jgð0; z1Þ

@xj
xj

j!


Xd

j¼0

ajðz1Þxj (36)

for some d, where ajðz1Þ ¼ @
jgð0; z1Þ=@xj and xj ¼ xj=j!. This implies that a

functional-coefficient model might approximate a general nonparametric
model well. Therefore, CDXW (2006) studied the following functional-
coefficient IV model:

Yi ¼
Xd

j¼1

ajðZi1Þ
TXij þ ui ¼ aðZi1Þ

TXi þ ui; E½uijZi� ¼ 0 (37)
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where Yi is an observable scalar random variable, {aj( � )} are the unknown
structural functions of interest, Xi0 � 1;Xi ¼ ðXi0;Xi1; . . . ; Xid Þ

T is a (dþ1)-
dimension vector consisting of d endogenous regressors, aðZi1Þ ¼

ða0ðZi1Þ; . . . ; adðZi1ÞÞ
T, and Zi is a (d1þd2)-dimension vector consisting of

a d1-dimension vector Zi1 of exogenous variables and a d2-dimension vector
Zi2 of IVs.

Model (37) includes the following nonparametric IV model with binary
endogenous variable Di as a special case:

Yi ¼ a0ðZi1Þ þ a1ðZi1ÞDi þ �i

which, as noted above, is analyzed in Das (2005). Further, if aj( � ) is a
threshold function such as,

ajðzÞ ¼ aj11ðz � rjÞ þ aj21ðz4rjÞ

for some rj, then model (37) may describe a threshold IV regression model.
Recently, a threshold model related to this with endogenous covariates
has been considered in Caner and Hansen (2004). In this way, the class of
models in Eq. (37) includes some interesting special cases that arise
commonly in empirical research.

As elaborated by CDXW (2006), functional-coefficient models are
appropriate for many applications in economics and finance, and in particular
when additive separability of covariates is unsuitable for the problem at hand.
For a specific example, CDXW (2006) considered a labor economics problem
which is to establish an empirical relationship between marginal returns to
education and the level of schooling (see Schultz, 1997). If work experience is
also an attribute valued by employers, then the marginal returns to education
should vary with experience. As suggested by Card (2001), if a wage model
assumes the additive separability of education and experience, the returns to
education can be understated at higher levels of education because the
marginal return to education is plausibly increasing in work experience. This
setting is, therefore, a natural one for a functional-coefficient model, which
was further explored by CDXW (2006). Indeed, the marginal returns to
education vary positively and nonlinearly with experience and these returns
are themselves declining in experience for both low experienced and high
experienced workers; see CDXW (2006) for details.

To estimate {aj(z1)} nonparametrically, CDXW (2006) proposed a two-
stage nonparametric method, described as follows. We begin with the first
stage, where we obtain bpjðZiÞ, the fitted value for pjðZiÞ ¼ E½XijjZi�

ð1 � j � d; 1 � i � nÞ. To this end, we apply the LL fitting technique and
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the jackknife (leave-one-out) idea as follows. Assuming that fpjð�Þg has a
continuous second-order derivative, when Zk falls in a neighborhood of Zi,
a Taylor expansion approximates pj(Zk) by,

pjðZkÞ 
 pjðZiÞ þ ðZk � ZiÞ
Tp0jðZiÞ ¼ aij þ ðZk � ZiÞ

Tbij

The jackknife idea is to use the all observations except the ith observations
in estimating pj(Zi). Then, the least squares estimator with a local weight
(i.e., locally weighted least squares) is given by,

Xn

kai

fXkj � aij � ðZk � ZiÞ
Tbijg

2 Kh1 ðZk � ZiÞ

Minimizing the above locally weighted least squares with respect to aij
and bij gives the LL estimate pjðZiÞ by bpj;�iðZiÞ ¼ baij . Now, we derive the
LL estimator of {aj( � )}. The LL estimators bbj and bcj are defined as the
minimizers of the sum of weighted least squares

Xn

i¼1

Yi �
Xd

j¼0

fbj þ ðZi1 � z1Þ
Tcjgbpj;�iðZiÞ

" #2

Lh2ðZi1 � z1Þ

and bajðziÞ ¼ bbj, where L( � ) is a kernel function at this step.
CDXW (2006) showed that under some regularity conditions,

ffiffiffiffiffiffiffiffiffi

nhd12

q

baðz1Þ � aðz1Þ �
h22
2
trfm2ðLÞa

00ðz1Þg þ opðh
2
2Þ

� �

!
d
Nð0;Sðz1ÞÞ (38)

where Sðz1Þ ¼ f �1z1
ðz1Þn0ðLÞO�10 ðz1ÞO1ðz1ÞO

�1
0 ðz1Þ; f z1ðz1Þ is the marginal

density of Zi1, O0ðz1Þ ¼ E½pðZiÞpðZiÞ
T
jZi1 ¼ z1�, and O1ðziÞ ¼ OZ;1ðz1Þþ

Ox;1ðziÞ � 2OZx;1ðz1Þ. The definitions of OZ;1ðz1Þ; Ox;1ðz1Þ, and OZx;1ðz1Þ can
be found in CDXW (2006) and they are omitted here due to too many
notations.

One difference of the results in Eq. (38) compared with those in some
other two-stage instrumental regressions (see Newey & Powell, 2003; Newey
et al., 1999) is the asymptotic variance term. Here the asymptotic variance
consists of three terms: the first addresses the variation of measurement
error in the second step, the second term accounts for variability of the
estimated reduced form, and the third term accounts correctly for the
asymptotic covariance between the first and second steps. The presence of
the covariance term is different from some other IV estimators (e.g., Newey
et al., 1999), and arises because the second step does not condition on the
first step dependent variables.
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4.5. Bandwidth Selection

Selecting an optimal (data-driven) bandwidth is an important aspect in
applications. Unfortunately, there is basically not an elegant approach to
discuss theoretically and empirically how to adaptively select a bandwidth
under nonparametric IV settings, when a nonparametric method is applied
to estimate the structural regression function, except a rule-of-thumb
bandwidth proposed by CDXW (2006) for the functional-coefficient IV
models in Eq. (37). As mentioned in CDXW (2006), the second stage
estimation is not sensitive to the choice of the first stage bandwidth so long
as the bandwidth h1 at the first stage is chosen small enough such that the
bias in the first stage is not too large. This gives us an ad hoc method to
choose h1, similar to that discussed in Cai (2002a): use the CV or generalized
CV criterion of Cai, Fan, and Li (2000) or others to select the bandwidth
bh10, Then use h1 ¼ A0

bh10ðA0 ¼ 1=2; say, or smaller) or choose a very
small h1 as the first-stage bandwidth. Alternatively, A0 can be taken to be
A0 ¼ n�a1 with a14l=ðd1 þ 4Þðd1 þ l þ 4Þ; as discussed in Cai (2002a),
where d1 is the dimension of the regressor z1.

In implementation at the second stage, the choice of bandwidth can be
carried out as in standard nonparametric regression. In that case, a number
of methods could be used to select h2, including CV (Stone, 1974),
generalized CV (Cai et al., 2000), preasymptotic substitution method (Fan &
Gijbels, 1996), the plug-in bandwidth selector (Ruppert, Sheather, & Wand,
1995), empirical bias method (Ruppert, 1997), nonparametric version of the
Akaike information criterion (AIC) (see Eq. (66) later) (Hurvich, Simonoff,
& Tsai, 1998; Cai & Tiwari, 2000) or the Schwarz-type information criterion
(SIC), among others. However, there appears to be no results in the
literature for a data-driven bandwidth selection with optimal properties
(see Newey et al. (1999) for the related discussion) under nonparametric IV
settings. It is an open question for future work and it would be very
interesting to give a more precise result. Nevertheless, as recommended
by CDXW (2006), the procedure suggested above is a useful one for
practitioners.

4.6. Semiparametric IV Models

Finally, we would like to mention some recent developments on nonpara-
metric IV models with a parametric part, so that they become semipara-
metric IV models. Due to the limitation of space, we only cite some
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references here. First, we mention the paper by Ai and Chen (2003) which
discussed a general framework for analyzing economic data (X, Y) by
assuming that the data satisfy some conditional moment restrictions such as,

E½rðZ; y;mð�ÞÞjX � ¼ 0 (39)

where Z ¼ ðTT;XT
z Þ

T;Xz is a subset of X, and r( � ) is a vector of known
(residual) functions. The true conditional distribution of Y given X is assumed
unknown and the parameters of interest contain a vector of finite dimen-
sional unknown parameters y and possibly a vector of infinite dimensional
unknown functions m( � ). Clearly, if ðZ ¼ ðY1;Y

T
2 ;X

T
1 ;X

T
2 Þ;Xz ¼ X1 and

rðZi; y;mð�ÞÞ ¼ Yi1 � yTXi1 �mðYi2Þ; model (39) reduces to a partially
linear model

Y1i ¼ bTXi1 þmðYi2Þ þ ui (40)

where E½uijXi� ¼ 0; which was studied by Newey et al. (1999) and Park
(2003), while Pakes and Olley (1995) considered a semiparametric IV model
with endogenous variables restricted only to the parametric part. Newey et al.
(1999) used the series method to approximate m( � ) and then to estimate both
b and m( � ) based on the nonparametric series method, whereas Pakes and
Olley (1995) and Park (2003) applied the generalized method of moment
estimation method to estimate b and m( � ).

As argued by Ai and Chen (2003), model (39) covers many known
nonparametric and semiparametric models as a special case. To estimate y
and m( � ), Ai and Chen (2003) proposed to approximate m( � ) by a sieve
method and then to estimate y and the sieve parameters jointly by applying
the method of minimum distance. They showed that the sieve estimator
of m( � ) is consistent with a rate faster than n�1/4 under certain metric and
the estimator of y is

ffiffiffi
n
p

-consistent and asymptotically normally distributed.
Finally, they addressed the efficiency by choosing the optimally weighted
minimum distance to attain the semiparametric efficiency bound. But, they
did not provide the asymptotic normality for the sieve estimator of m( � )
(see Ai & Chen, 2003 for details).

To obtain the asymptotic normality of nonparametric part, Cai and
Xiong (2006) considered a partially varying-coefficient IV model with the
following form:

Y ¼ gðX ;Z1Þ þ � ¼ g1ðZ11Þ
TZ12 þ g2ðZ11Þ

TX1 þ bT1Z13 þ bT2X2 þ � (41)

where Y is an observable scalar random variable, X ¼ ðXT
1 ;X

T
2 Þ

T is a vector
of endogenous variables including l-dimension vector X1 and p-dimension
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vector X2, Z1 ¼ ðZ
T
11;Z

T
12;Z

T
13Þ

T is a vector of exogenous variables,
consisting of d11-dimension vector Z11, d12-dimension vector Z12 with its
first element being one, and d13-dimension vector Z13, Z ¼ ðZT

1 ;Z
T
2 Þ

T is a
dz-dimension vector with Z2 being a vector of IVs of dimension d2,
dz ¼ d11þd12þd13þd2, and E(e |Z) ¼ 0.

To estimate b and g( � ) in (41), Cai and Xiong (2006) proposed a three-
stage method, briefly described below. First, by regarding b as a function of
Z11; that is b(Z11), then model (41) becomes (37). The nonparametric two
stage proposed in CDXW (2006) can be applied here to estimate g( � ) and
b( � ). Note that while b is a global parameter, the estimation of b( � ) only
involves the local data points in a neighborhood of Z11 so that the variance
is too large. To reduce variance, the estimation of the constant coefficients
requires using all data points. Cai and Xiong (2006) proposed using the
(weighting) average method to obtain the estimator for b and they showed
that the average estimator of b is

ffiffiffi
n
p

-consistent. To address the efficiency of
the constant parameter estimator, the weighted version estimator, similar
to Ai and Chen (2003), can be used to gain the efficiency by choosing the
optimal weighting function to minimize the asymptotic variance. See Cai
and Xiong (2006) for the related discussions.

Alternatively, one may use the profile likelihood (least squares for normal
likelihood) approach to estimate b1 and b2 in (41). It is well documented in
the literature that for ordinary semiparametric models, profile likelihood is a
useful approach and is semiparametrically efficient; see Speckman (1988),
Cai (2002a, 2002c), and Fan and Huang (2005) for details. Now we discuss
applying the profile likelihood approach to estimate b1 and b2 in (41).
For given b1 and b2, model (41) becomes

Y� ¼ g1ðZ11Þ
TZ12 þ g2ðZ11Þ

TX1 þ � (42)

where Y� ¼ Y � bT1Z13 � bT2X2 is the partial residual. This transforms the
partially varying-coefficient IV model (41) into the varying-coefficient IV
model (37). The two-stage LL estimation technique proposed in CDXW
(2006) can be applied to estimate the coefficient functions g1( � ) and g2( � ),
denoted by bg1ð�Þ and bg2ð�Þ, respectively. According to CDXW (2006), both
bg1ð�Þ and bg2ð�Þ are linear estimators of Y�. That is,

bM ¼

ĝ1ðZ11;1Þ
TZ12;1 þ ĝ2ðZ11;1Þ

TX1;1

..

.

ĝ1ðZ11;nÞ
TZ12;n þ ĝ2ðZ11;nÞ

TX1;n

0

B
B
@

1

C
C
A ¼ SY� ¼ SðY � Z13b1 � X2b2Þ
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where Y� ¼ ðY�1; . . . ; Y
�
nÞ

T. The matrix S is a smoothing matrix and
depends only on the data fðZ11;i;Z12;i;X1;i; bX1;iÞ; i ¼ 1; . . . ; ng and the kernel
function, where bX1;i is obtained from the reduced equation by the jackknife
least squares method; see CDXW (2006) for the explicit expression for S and
bX1;i (which depends on the data fðXj ;ZjÞ; j ¼ 1; . . . ; i � 1; i þ 1; . . . ; ngÞ:
Substituting cM into Eq. (42), we obtain the following linear IV model

ðI � SÞY ¼ ðI � SÞ½Z13b1 þ X2b2� þ � (43)

Applying the two-stage least squares to the linear model (43), we obtain the
profile likelihood estimators of b1 and b2, respectively, termed as profile
two-stage least squares estimate. Note that if there is no endogeneity in the
model, Fan and Huang (2005) showed that the profile likelihood estimator is
semiparametrically efficient. Therefore, we conjecture that the profile least
squares estimate for b2 described above should be

ffiffiffi
n
p

-consistent and semi-
parametrically efficient. It is interesting to justify this result theoretically.

5. NONPARAMETRIC QUANTILE

REGRESSION MODELS

Since quantile regression or conditional quantile was introduced by
Koenker and Bassett (1978), it has been successfully and widely used in
various disciplines, such as finance, economics, medicine, and biology.
In nowadays, estimation of conditional quantiles is a common practice in
risk management operations and many other financial applications. The
literature on estimating quantile regression function is large but is still
swiftly growing. Much of the study on quantile regression is based on linear
parametric quantile regression models. But in recent years, nonparametric
quantile regression models in both theory and applications have attracted
a great deal of research attentions due to their greater flexibility than
tightly specified parametric models. A nonexhaustive list of important recent
contributions to this growing literature include (but not limited to)
Chaudhuri (1991), Koenker, Portnoy, and Ng (1992), Fan, Hu, and Troung
(1994), Koenker, Ng, and Portnoy (1994), Chaudhuri, Doksum, and
Samarov (1997), He, Ng, and Portnoy (1998), Yu and Jones (1998), He and
Ng (1999), He and Portnoy (2000), Honda (2000, 2004), Khindanova
and Rachev (2000), Cai (2002b), Cai and Ould-Said (2003), De Gooijer and
Zerom (2003), Yu and Lu (2004), Engle and Manganelli (2004), Horowitz
and Lee (2005), Kim (2007), and Cai and Xu (2008) and references therein
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for recent statistics and econometrics literature on nonparametric estimation
of quantile regression models.

Let fXt;Ytg
n
t¼1 be a stationary sequence and F(y|x) denote the conditional

distribution of Yt given Xt ¼ x, where Xt is a vector of covariates in <d ;
including possibly exogenous variables and lagged variables, the conditional
quantile function of Yt given Xt ¼ x is defined as, for any 0oto1,

qtðxÞ ¼ inffy 2 < : FðyjxÞ � tg ¼ F�1ðtjxÞ (44)

where F�1(t|x) is the inverse function of F(y|x). Equivalently, qt(x) can be
expressed as,

qtðxÞ ¼ argmina2<EfrtðYt � aÞjXt ¼ xg (45)

where rtðyÞ ¼ y½t� Ifyo0g� with y 2 < is called the loss (‘‘check’’) function
and I{A} is the indicator function of any set A. Function qt(x) is called as a
conditional quantile function or regression quantile.

It is well documented that quantile regression has several important
properties, described as follows. It does not require knowing the distribution
of Yt and symmetry of the distribution. When t ¼ 1/2, it becomes the
median or least absolute deviation regression, which is well known to posses
the robustness. Therefore, it has a robust property. Also, it has an ability to
model heterogeneous effects and to account for unobserved heterogeneity.
To see the intuitive behind this property, we use the basic Skorohod
representation to express the quantile regression model. Using this
representation, the dependent variable Yt, conditional on the exogenous
variable of interest Xt, takes the form

Yt ¼ qðXt;UtÞ; where UtjXt � Uð0; 1Þ

where q(x, u) ¼ qu(x) is the conditional uth quantile of Yt given Xt ¼ x and
Ut is the nonseparable error. Furthermore, it is convenient to use the
conditional quantile for detecting conditional heteroskedasticity. To this
end, we assume that Yt is related to Xt through the model

Yt ¼ mðXtÞ þ sðXtÞ�t

where m( � ) is the mean function, s2( � ) is the variance function, and Xt and
et are independent. The conditional quantile of Yt given Xt is

qtðXtÞ ¼ mðXtÞ þ sðXtÞF
�1
�t
ðtÞ

where Fet( � ) is the distribution of et. An informal way to test conditional
heteroskedasticity is to use a graph. That is, if the curves of qt(x) for
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different values of t are parallel, this indicates that s( � ) should be a
constant. Moreover, regression quantiles can also be useful for the
estimation of predictive intervals. For example, in predicting the response
from a given covariate Xt, estimates of qa/2(Xt) and q1–a/2(Xt) can be used to
obtain a (1�a) 100% nonparametric predictive interval. Finally, it is very
useful in various applied fields. For example, in risk management, it can be
used to compute the conditional value-at-risk (CVaR): the percentage loss
in market value over a given time horizon that is exceeded with a certain
probability, and the conditional expected shortfall (CES). Indeed, CVaR
can be regarded as a special case of quantile regression. Of course, there are
many methods available to model the CVaR. The CES can be expressed in
terms of a regression quantile as,

E½YtjYt � qtðXtÞ;Xt� ¼

Z t

0

quðXtÞdu

t

For details, see Cai and Wang (2008).
Given observed data fXt;Ytg

n
t¼1; the main interest is to estimate qt(x).

If we assume that qtðxÞ ¼ bTt x; we obtain a linear quantile regression model,
which is popular in the literature; see the book by Koenker (2005), and we
can estimate easily the parameters (see Eq. (60) below). In some practical
applications, a linear quantile regression model might not be flexible enough
to capture the underlying complex dependence structure. For example, some
components may be highly nonlinear or some covariates may be interactive.
Therefore, to make quantile regression models more flexible, there is a
swiftly growing literature on nonparametric quantile regression. Various
smoothing techniques, such as kernel methods, splines, and their variants,
have been used to estimate the nonparametric quantile regression for both
independent and time series data. Some recent developments and detailed
discussions on theory, methodologies, and applications can be found in the
literature. For example, Chaudhuri (1991), Fan et al. (1994), Chaudhuri
et al. (1997), Yu and Jones (1998), Honda (2000), Cai (2002b), and Cai and
Ould-Said (2003) considered nonparametric kernel smoothing estimate
of quantile function, while He et al. (1998), He and Ng (1999), and He and
Portnoy (2000) used spline methods to obtain nonparametric estimate.
However, a purely nonparametric quantile regression model may suffer
from the so-called ‘‘curse of dimensionality’’ problem, the practical
implementation might not be easy, and the visual display may not be useful
for the exploratory purposes. To deal with the aforementioned problems,
some dimension reduction modeling methods have been proposed in the
literature. For example, De Gooijer and Zerom (2003), Yu and Lu (2004),

ZONGWU CAI ET AL.528



and Horowitz and Lee (2005) considered the additive quantile regression
models for i.i.d. data, while Honda (2004) and Cai and Xu (2008)
investigated the varying-coefficient quantile regression models for time
series processes. Particularly, there has been some study on a time-varying
coefficient quantile regression model, which is potentially useful to see
whether the quantile regression changes over time and in a case with a
practical interest is, for example, the analysis of the reference growth data
by Cole (1994), Wei, Pere, Koenker, and He (2006), Wei and He (2006), and
Kim (2007).

5.1. Direct Methods

A direct procedure is based on equation (44), described as follows. First,
estimate the conditional distribution function using a nonparametric
method such as the ‘‘double-kernel’’ LL technique of Yu and Jones (1998)
and then to invert the conditional distribution estimator to produce an
estimator of a conditional quantile. This estimator is called the Yu and
Jones estimator (see bqt;LLðxÞ in (57) later); see Yu and Jones (1998) for
details. As noticed by Cai (2002b) and Cai and Wang (2008), the key for
a direct estimation method is to find a good estimator for conditional
distribution function. Further, as demonstrated by Cai (2002b), although
LL estimators of the Yu and Jones type have some attractive properties such
as no boundary effects, design adaptation, and mathematical efficiency;
see, for example, Fan and Gijbels (1996), they have the disadvantage
of producing conditional distribution function estimators that are not
constrained either to lie between zero and one or to be monotone increasing
although some modifications in implementation were addressed by Yu and
Jones (1998). In both these respects, the NW methods are superior, despite
their rather large bias and boundary effects. The properties of positivity
and monotonicity are particularly advantageous if the method of inverting
the conditional distribution estimator is applied to produce an estimator of
a conditional quantile.

To overcome these difficulties, Cai (2002b) and Cai and Wang (2008)
proposed a weighted version of the NW (WNW) estimator and weighted
double kernel (WDK) estimator, which are designed to possess the superior
properties of LL methods such as bias reduction and no boundary effect and
to preserve the property that the NW estimator is always a distribution
function. Cai (2002b) and Cai and Wang (2008) established the asymptotic
normality and weak consistency for both the WNW and WDK estimators of
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conditional distribution for a-mixing under a set of weaker conditions at
both boundary and interior points. It is therefore shown, to the first order,
that the WNW method enjoys the same convergence rates as those of the LL
‘‘double-kernel’’ procedure of Yu and Jones (1998). More importantly, both
the WNW and WDK estimators have desired sampling properties at
both boundary and interior points of the support of the design density. Cai
(2002b) and Cai and Wang (2008) also derived both the WNW and WDK
estimators of the conditional quantile by inverting their estimated
conditional distributions estimator and showed that both the WNW and
WDK quantile estimators always exist as a result of both the WNW
and WDK distributions being a distribution function in finite samples and
that they inherit all advantages from the WNW and WDK estimators of
conditional distribution.

For simplicity of notation, we consider the case of d ¼ 1. We now turn to
the estimation of the conditional distribution function F(y|x). To this end,
let pt(x), for 1rtrn, denote the weight functions of the data X1, y, Xn and
the design point x with the property that each ptðxÞ � 0;

Pn
t¼1ptðxÞ ¼ 1 and

Xn

t¼1

ðXt � xÞptðxÞKhðx� XtÞ ¼ 0 (46)

where K( � ) is a kernel function, Kh( � ) ¼ K( � /h)/h, and h ¼ hnW0 is the
bandwidth. Motivated by the property of LL estimator, the constraint (46)
can be regarded as a discrete moment condition; see Fan and Gijbels (1996,
p. 63) for details. Of course, {pt(x)} satisfying these conditions are not
uniquely defined and we specify them by maximizing

Qn
t¼1ptðxÞ subject to

the constraints. The weighted version of NW estimator of the conditional
distribution F(y|x) of Yt given Xt ¼ x is defined

bFWNWðyjxÞ ¼

Pn

t¼1

ptðxÞKhðx� XtÞ1ðYt � yÞ

Pn

t¼1

ptðxÞKhðx� XtÞ

Note that 0 � bFWNWðyjxÞ � 1 and it is monotone in y. Cai (2002b) showed
that bFWNWðyjxÞ is first-order equivalent to a LL estimator (see bFLLðyjxÞ in
Eq. (56) later). More importantly, that bFWNWðyjxÞ has automatic good
behavior at boundaries. In contrast, bFLLðyjxÞ may not take values in [0,1]
and it may not be monotone in y.

The natural question arises regarding how to choose the weights.
Borrowing the idea is from the empirical likelihood, Cai (2002b) suggested
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maximizing
Pn

t¼1 logfptðxÞg subject to the constraints
Pn

t¼1ptðxÞ ¼ 1 and
Eq. (46) through the Lagrange multiplier method, the {pt(x)} are simplified to

ptðxÞ ¼ n�1f1þ lðXt � xÞKhðx� XtÞg
�1

where l, a function of data and x, is uniquely defined by Eq. (46), which
ensues that

Pn
t¼1ptðxÞ ¼ 1: Equivalently, l is chosen to maximize

LnðlÞ ¼
1

nh

Xn

t¼1

logf1þ lðXt � xÞKhðx� XtÞg (47)

In implementation, Cai (2002b) recommended using the Newton Raphson
scheme to find the root of equation L0nðlÞ ¼ 0:

Cai (2002b) showed that, under some regularity conditions including that
fðXt;YtÞg

n
t¼1 is an a-mixing sequence, then as n-N,

bFWNWðyjxÞ � FðyjxÞ ¼
1

2
h2m2ðKÞF

2;0ðyjxÞ þ opðh
2
Þ þOpððnhÞ

�1=2
Þ (48)

where Fa;bðyjxÞ ¼ @aþb=@ya@xbFðyjxÞ and mjðKÞ ¼
R
ujKðuÞdu: This, of

course, implies that bFWNWðyjxÞ ! FðyjxÞ in probability with a rate. In
addition, Cai (2002b) derived the asymptotic normality for bFWNWðyjxÞ as,

ffiffiffiffiffi
nh
p
½ bFWNWðyjxÞ � FðyjxÞ � Bf ðyjxÞ þ opðh

2
Þ�!

d
Nð0;s2f ðyjxÞÞ (49)

where the bias and variance are given, respectively, by:

Bf ðyjxÞ ¼
1

2
h2m2ðKÞF2;0ðyjxÞ; and s2f ðyjxÞ ¼ n0ðKÞFðyjxÞ

½1� FðyjxÞ�

f 1ðxÞ

(50)

with f1(x) being the marginal density of Xt. This implies that to the first
order, the WNW method enjoys the exactly same convergence rates as those
of LL ‘‘double-kernel’’ procedure (see bFLLðyjxÞ in Eq. (56) later) of Yu and
Jones (1998), under similar regularity conditions. However, Yu and Jones
(1998) treated only the case of independent data.

Based on Eq. (44), we define the WNW type conditional quantile
estimator bqWNWðxÞ to satisfy bFWNWðbqWNWðxÞjxÞ ¼ t so that

bqWNWðxÞ ¼ inffy 2 < : bFWNWðyjxÞ � tg � bF
�1

WNWðtjxÞ (51)

Clearly, bqWNWðxÞ always exists since bFWNWðyjxÞ is between 0 and 1 and
monotone in y, and it involves only one bandwidth so that it makes
practical implementation more appealing. In contrast, the LL double-kernel
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estimator of Yu and Jones (1998) has some difficulty of inverting the
conditional distribution estimator due to lack of monotonicity and it
requires choosing two bandwidths although the second bandwidth should
not be very sensitive (see Remark 3 later). Furthermore, Cai (2002b) showed
that the WNW estimator bqt;WNWðxÞ maintains the aforementioned
advantages as bFWNWðyjxÞ does. Also, Cai (2002b) showed that under some
regularity conditions, as n-N,

ffiffiffiffiffi
nh
p
½bqt;WNWðxÞ � qtðxÞ � BtðxÞ þ opðh

2
Þ�!

d
Nð0;s2tðxÞÞ (52)

where the bias and variance are given, respectively, by:

BtðxÞ ¼ �
Bf ðqtðxÞjxÞ

f ðqtðxÞjxÞ
and s2tðxÞ ¼

s2f ðqtðxÞjxÞ

f 2ðqtðxÞjxÞ
¼

n0ðKÞp½1� p�

f 2ðqtðxÞjxÞf 1ðxÞ
(53)

where f(y|x) is the conditional density of Yt ¼ y given Xt ¼ x.
It is clear that for given x, bFWNWðyjxÞ is not a continuous function of y.

It might cause the computational trouble when computing the estimated
conditional quantile bqt;WNWðxÞ by Eq. (51). To overcome this shortcoming,
Cai and Wang (2008) proposed a WDK estimator (see below), which indeed
is differentiable with respect to y. Cai and Wang (2008) showed that the
differentiability of the estimated conditional distribution function cannot
only make the asymptotic analysis much easier for the nonparametric
estimators of quantile regression, but also can reduce the asymptotic variance
(or asymptotic mean squared error) in a higher order sense. The main idea of
Cai and Wang (2008) is described as follows.

It is noted for a given symmetric kernel g( � ), where G( � ) is the
distribution function of g( � ), as h0-0,

EfGh0ðy� YtÞjXt ¼ xg ¼ FðyjxÞ þ
h20
2
m2ðgÞF

0;2ðyjxÞ þ oðh20Þ ! FðyjxÞ (54)

where Gh0 ðuÞ ¼ Gðu=h0Þ=h0: The above convergence ignores the higher terms
oðh20Þ since h0 ¼ o(h), where h is the smoothing bandwidth in the x direction
(see Eq. (55) below). We can see that Y�t ðyÞ ¼ Gh0 ðy� YtÞ can be regarded as
an initial estimate of F(y|x) smoothing in the y direction. Thus, the left-hand
side of Eq. (54) can be regraded as a nonparametric regression of the
observed variable Y�t ðyÞ versus Xt and the LL (or polynomial) fitting scheme
can be applied here. This leads to the locally weighted least squares
regression problem:

Xn

t¼1

fY�t ðyÞ � a� bðXt � xÞg2Khðx� XtÞ (55)
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Note that Eq. (55) involves two kernels g( � ) and K( � ) and two bandwidths
h0 and h. This is the reason for calling it ‘‘double kernel.’’

Minimizing Eq. (55) with respect to a and b, we obtain the locally
weighted least squares estimator of F(y|x), which is ba: It is easy to see that
this estimator can be reexpressed as a linear estimator as,

bFLLðyjxÞ ¼
Xn

t¼1

WLL;tðx; hÞGh0 ðy� YtÞ (56)

where with Sn;jðxÞ ¼
Pn

t¼1Khðx� XtÞðXt � xÞj ; the weights fWLL;tðx; hÞg are
given by,

WLL;tðx; hÞ ¼ ½Sn;2ðxÞ � ðx� XtÞSn;1ðxÞ�Khðx� XtÞ½Sn;0ðxÞSn;2ðxÞ � S2
n;1ðxÞ�

�1

Clearly, {WLL,t(x, h)} satisfy the discrete moments conditions given in
Eq. (46). bFLLðyjxÞ is the so-called Yu and Jones estimator. Yu and Jones
(1998) studied the asymptotic properties of bFLLðyjxÞ for i.i.d. data, which
are similar to those given in Eqs. (48) and (49) if h0 ¼ o(h).

Remark 3. If the bandwidth at the initial step h0 is not undersmoothed,
say h0 ¼ O(h), then there is an extra term in the asymptotic bias and
it is given by m2ðgÞðh

2
0=2ÞF

0;2ðyjxÞ; which is carried over from the initial
estimation.

Also, Yu and Jones (1998) considered the nonparametric estimate of qt(x)
based on bFLLðyjxÞ; which is defined as,

bqt;LLðxÞ ¼ bF
�1

LLðtjxÞ (57)

and they derived the asymptotic properties of bqt;LLðxÞ; which is the exactly
same as that given in Eq. (52). Further, Yu and Jones (1998) proposed an
ad hoc method to adaptively select the optimal bandwidths h0 and h.
Clearly, bFLLðyjxÞ may not be constrained either to lie between zero and one
or monotone increasing. To overcome this difficulty, some modifications in
implementation of bqt;LLðxÞ were addressed in Yu and Jones (1998).

To accommodate all of the above attractive properties (monotonicity,
continuity, differentiability, lying between zero and one, design adaption,
avoiding boundary effects, and mathematical efficiency) of both estimators
bFLLðyjxÞ and F̂WNWðyjxÞ under a unified framework, Cai and Wang (2008)
proposed the following nonparametric estimator for conditional distribu-
tion F(y|x), termed as WDK estimation,

bFWDKðyjxÞ ¼
Xn

t¼1

WWDK;tðx; hÞGh0 ðy� YtÞ (58)
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where

WWDK;tðx; hÞ ¼ ptðxÞWhðx� XtÞ
Xn

t¼1

ptðxÞWhðx� XtÞ

" #�1

and {pt(x)} is chosen to be ptðxÞ ¼ n�1f1þ lðXt � xÞWhðx� XtÞg
�1 � 0 to

satisfy Eq. (46). Here l is a function of the data and x and is uniquely
defined by Eq. (47). Cai and Wang (2008) showed that the asymptotic
properties for bFWDKðyjxÞ are similar to those given in Eqs. (48) and (49)
if h0 ¼ o(h). Note that this undersmoothing at the initial step is needed
(see Remark 3).

Moreover, Cai and Wang (2008) considered the nonparametric estimate
of qt(x) based on bFWDKðyjxÞ; which is defined as,

bqt;WDKðxÞ ¼ bF
�1

WDKðtjxÞ (59)

Note that bqt;WDKðxÞ always exists in finite samples and is uniquely
determined since bFWDKðyjxÞ is a continuous distribution function. Cai and
Wang (2008) also showed that bqt;WDKðxÞ has the exactly same asymptotic
behavior as that given in Eq. (52). In addition, Cai and Wang (2008)
proposed an ad hoc data-driven bandwidth selection method based on the
nonparametric version of the AIC.

Finally, Yu and Jones (1998), Cai (2002b) and Cai and Wang (2008)
discussed the asymptotic behavior of their nonparametric estimators
bqt;LLðxÞ; bqt;WNWðxÞ and bqt;WDKðxÞ at boundaries and the result shows that
all estimators have the exactly same asymptotic bias and do not have
boundary effect; see Yu and Jones (1998), Cai (2002b) and Cai and Wang
(2008) for details.

Cai and Wang (2008) considered a real data set on Dow Jones Industrials
(DJI) index returns and applied the proposed method to estimate the 5%
CVaR and CES functions. Both the CVaR and CES estimates exhibit a
U-shape, which corresponds to the so-called ‘‘volatility smile.’’ Therefore,
the risk tends to be lower when the lagged log loss of DJI is close to the
empirical average, and larger otherwise. We can also observe the curves are
asymmetric. This may indicate that the DJI index is more likely to fall if
there were a loss within the last day than if there was a same amount of
positive return.
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5.2. Loss Function Approaches

Based on Eq. (45), if qtðxÞ ¼ bTt x is linear in x, then, one can find the
estimate of bt by,

bbt ¼ argminbt

Xn

t¼1

rtðYt � bTt xÞ (60)

see Koenker and Bassett (1978, 1982) for details.
To compute bbt in Eq. (60), it can be implemented by using the function

rq( ) in the package quantreg in the computing language R, due to Koenker
(2004).

If qt(x) is a nonparametric function, there are several methods proposed
in the literature to estimate qt(x), we describe some of them below.

5.2.1. Local Polynomial Methods
If qt(x) is assumed to have continuous (mþ1)th order partial derivative, for
Xt in a neighborhood of x, qt(Xt) can be approximated by

Pm
j¼0yjðXt � xÞj

where yj ¼ ð1=j!Þ@jqtðxÞ=@x
j is the jth partial derivative of qt(x). Then, we

can use the following locally weighted loss function, which is a locally
weighted version of Eq. (60),

by ¼ argminy
Xn

t¼1

rt Yt �
Xm

j¼0

yjðXt � xÞj

 !

Khðx� XtÞ (61)

to obtain the local polynomial estimation of quantile function. Clearly,
bqtðxÞ ¼

by0 estimates the quantile function and bqðjÞt ðxÞ ¼ j!byj estimates the jth
partial derivative. Note that formula (61) has been addressed (essentially)
by Chaudhuri (1991), Fan et al. (1994), Koenker et al. (1992), Yu and Jones
(1998) for i.i.d. sample and Honda (2000) and Cai and Ould-Said (2003) for
time series.

To compute bqtðxÞ and bq
ðjÞ
t ðxÞ; one also can use the function rq( ) by setting

covariates as Xt � x; . . . ; ðXt � xÞm; and the weight as Kh(Xt�x). Alter-
natively, one can use the function lprq( ) in the same package.

By using the series expansion method, Chaudhuri (1991) was the first to
obtain the local Bahadur type representation of parameter’s estimators so
that one can easily derive some asymptotic results. Honda (2000) general-
ized these results to the a-mixing process by using local polynomial fitting,
and obtained the similar asymptotic results. To derive the asymptotic
properties, Honda (2000) and Cai and Xu (2008) gave the local Bahadur
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representation for bqtðxÞ for univariate case (d ¼ 1). That is, they showed
that under some regular conditions, the LL (m ¼ 1) quantile estimator bqtðxÞ
has the following representation,

ffiffiffiffiffi
nh
p
½bqtðxÞ � qtðxÞ� ¼

1

f yjxðqtðxÞjxÞf 1ðxÞ
ffiffiffiffiffi
nh
p

Xn

t¼1

ctðY
�
t ÞK

ðXt � xÞ

h

� �

þ opð1Þ

(62)

where ctðxÞ ¼ t� Ixo0 and Y�t ¼ Yt � qtðxÞ � q0tðxÞðXt � x0Þ: Therefore,
one can easily obtain the asymptotic normality as,

ffiffiffiffiffi
nh
p

bqtðxÞ � qtðxÞ �
h2

2
m2ðKÞq

00
t ðxÞ þ opðh

2
Þ

� �

!
d
Nð0;s2tðxÞÞ (63)

where s2tðxÞ is given in Eq. (53). Clearly, a comparison of Eqs. (52) and (63)
leads to conclusions that the LL quantile estimator bqtðxÞ and three direct
estimators share the exactly same asymptotic variance, but the biases
are quite different. Indeed, the bias term in Eq. (52) (see also Eq. (53)), the
quantity �F2;0ðqtðxÞjxÞ=f ðqtðxÞjxÞ; involving the second derivative of the
conditional distribution function, is replaced by q00t ðxÞ, the second derivative
of the conditional quantile function itself. This is not surprising since for the
direct methods, the approximation is applied to the conditional distribution
function, while for LL quantile estimator q̂tðxÞ, the approximation is applied
to the conditional quantile function itself.

5.2.2. Spline Approaches
In the 1990s, there were many research papers on nonparametric estimation
of quantile regression using various splines methods such as smoothing
splines and B-splines. For example, for a single covariate, He and Shi (1994)
used quantile regression B-splines and considered the convergence with
a rate of B-splines estimator, while Koenker et al. (1994) suggested quantile
smoothing splines. In bivariate smoothing, He et al. (1998) considered
bivariate quantile smoothing splines that belong to the space of bilinear
tensor product splines, while Portnoy (1997) and He and Portnoy (2000)
provided the asymptotic properties of these bivariate quantile splines
estimators. The optimality properties of the splines provide justification for
their use in nonparametric quantile function estimation, and the optimiza-
tion problems can be solved efficiently as linear programs. He and Ng (1999)
considered a general additive (several covariates) model with univariate
linear splines capturing the main effects and bilinear tensor product splines
capturing the second-order interactions. But all splines methods encounter
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the same difficulties that it is not easy to derive the asymptotic properties like
asymptotic normality and to make statistical inferences (see Remark 5 later
for more discussions), although they might be attractive in applications.

We now begin by briefly reviewing the smoothing splines technique; see
the aforementioned papers for details. For a univariate design variable Xt

with observed response Yt, the tth quantile smoothing spline function qt(x)
minimizes over

Xn

t¼1

rtðYt � qtðXtÞÞ þ lVðq0tÞ (64)

where VðhÞ ¼ sup
Pk

j¼1jhðxjÞ � hðxj�1Þj denotes the total variation of the
function h( � ) with the supremum being taken over all finite partitions
x0ox1o � � �oxk of the support of h( � ). If h( � ) is differentiable, it is easy to
see that

VðhÞ ¼

Z 1

0

jh0ðxÞjdx; if the support of hð�Þ is ½0; 1�

The optimal solution bqtðxÞ estimates the tth conditional quantile function
qt(x). The problem of quantile smoothing in expression (64) can be viewed
as a special case (p ¼ 1) of the following general form of quantile smoothing

Xn

t¼1

rtðYt � qtðXtÞÞ þ l
Z

jq00t ðxÞj
pdx

� �1=p

(65)

for pZ1. If p ¼ 2 in Eq. (65), the solution to expression (65) is a natural
cubic smoothing spline with knots at the observed design points. Its
computation is rather efficient as it simply amounts to solving a linear
system. The solution to expression (64) is a linear smoothing spline with
possible breaks in the derivative at the design points, and the computation
can be performed by modern linear programming methods. See the forgoing
papers for the computational issue. As for selecting the smoothing
parameter l, the SIC is commonly suggested in the smoothing spline
literature; see Koenker et al. (1994) and He and Ng (1999) for details. But it
is well known that the SIC is overfitting due to the heavy penalty (see Eq.
(66) later) when the sample is large.

Remark 4. As commented by He et al. (1998), generalization of
smoothing splines to bivariate or multivariate cases is not always
straightforward. The form of the solution often depends on the roughness
penalty used in the optimization process and it is quite complex. Due to
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the complicated notation, we ignore the presentation of smoothing splines
for multivariate case. Instead, we refer the reader to the papers by He and
Shi (1994), He et al. (1998), He and Ng (1999), and He and Portnoy (2000)
for the detailed discussions.

Remark 5. It is well known in the splines literature; see the previously
mentioned papers, that the rate of convergence for the nonparametric
estimates depends mainly on two aspects: the smoothness of the function
being estimated and the dimensionality of the spline space or, equivalently,
the number of knots. These issues are still valid for the conditional quantile
smoothing splines estimates. The asymptotic behavior such as the rate of
convergence for the quantile smoothing splines is rather difficult to analyze,
especially when a data-driven smoothing parameter is used. In the
univariate case when the smoothing parameter is not data-driven, Portnoy
(1997) derived some local asymptotic properties of the quantile smoothing
splines, while He and Ng (1999) and He and Portnoy (2000) presented the
asymptotic mean square error for bivariate and multivariate cases.
Unfortunately, the asymptotic normality of a quantile spline (smoothing
spline or B-spline) estimator for the data-driven smoothing parameters is
still open and it is warranted as a future research topic.

A B-spline approach can be formulated as follows. It is well known that a
B-spline approach depends on the degree of smoothness of the true quantile
function, which determines how well the quantile function can be
approximated. Therefore, it is commonly assumed that the quantile function
with a certain degree of smoothness r defined as follows. To this end, define
a functional space Qr to be the collection of all functions on a domain, say
[0, 1] for which the mth order derivative satisfies the Hölder condition of
order of g with r ¼ mþg. That is, for each h 2 Qr; jh

ðmÞ
ðsÞ � hðmÞðtÞj �

W0js� tjg for any 0rs, tr1 and a positive finite constant W0.
Here we first assume that the quantile regression function qt(x) is from Qr

and then, we can define B-splines of order mþ1 used to approximate the
quantile function qt( � ). We consider a sequence of positive integers {kn},
nZ1, (the number of knots) and an extended partition of [0, 1] by kn knots
with equal or unequal length. Then, we can define the associated B-spline
basis functions by fBjðxÞg; 1 � j � kn þmþ 1; see Schumaker (1981) for
details. The proposed B-spline estimator of qt(x) is given by,

bqtðxÞ ¼
Xknþmþ1

j¼1

byjBjðxÞ
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where byj solves the minimization problem

Xn

t¼1

rt Yt �
Xknþmþ1

j¼1

yjBjðXtÞ

 !

Clearly, when the B-spline basis is given, computations can be easily carried
using standard quantile regression algorithms as in Eq. (60). As for selecting
the order and knots for the splines, the SIC is commonly suggested in the
B-spline literature; see He and Shi (1994) and Kim (2007).

5.2.3. Smoothing Parameter Selection
It is well known that the smoothing tuning parameter Z (Z ¼ h for kernel
smoothing and Z ¼ l for smoothing spline) plays an essential role in the
trade-off between reducing bias and variance. To the best of our knowledge,
there has been very limited literature about selecting Z in the context of
estimating the quantile regression even though there is a rich amount of
literature on this issue in the mean regression setting; see, for example,
Cai et al. (2000) and Cai and Tiwari (2000). Indeed, Yu and Jones (1998) or
Yu and Lu (2004) proposed a simple and convenient method for the
nonparametric quantile estimation. Their approach assumes that the second
derivatives of the quantile function are parallel. However, this assumption
might not be valid for many applications due to (nonlinear) heteroscedas-
ticity. Further, the mean regression approach cannot directly estimate the
variance function. To attenuate these problems, Cai and Xu (2008) proposed
a method of selecting bandwidth for the foregoing estimation procedure,
based on the nonparametric version of the AIC, which can attend to the
structure of time series data and the overfitting or underfitting tendency. The
basic idea is motivated by its analogue of Cai and Tiwari (2000) for nonlinear
mean regression for time series models and we briefly describe it below.

By recalling the classical AIC for linear models under the likelihood
setting; that is the negative of twice of the maximized log likelihood plus
twice of the number of estimated parameters, Cai and Xu (2008) proposed
the following nonparametric version of the bias-corrected AIC; see
Hurvich et al. (1998) and Cai and Tiwari (2000) for nonparametric regres-
sion models, to select Z by minimizing

AICðZÞ ¼ logfbs2Zg þ
2ðpZ þ 1Þ

½n� ðpZ þ 2Þ�
(66)

where bs2Z ¼ n�1
Pn

t¼1rtðYt � bqtðXtÞÞ and pZ is the nonparametric version of
degrees of freedom, called the effective number of parameters. This criterion
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may be interpreted as the AIC for the local quantile smoothing problem and
seems to perform well in some limited applications. Note that similar to
Eq. (66), Koenker et al. (1994) considered the SIC with the second term on
the right-hand side of Eq. (66) replayed by 2n�1 pl log n, where pl is the
number of ‘‘active knots’’ for the smoothing spline quantile setting.

For different smoothing techniques, the choice of pZ might be different.
For example, see Koenker et al. (1994) on how to choose pZ ¼ pl in quantile
smoothing splines setting and Cai and Xu (2008) for how to determine
pZ ¼ ph under kernel smoothing framework.

5.2.4. Dimension Reduction Modeling
As mentioned earlier, a purely nonparametric quantile regression model may
suffer from the so-called ‘‘curse of dimensionality’’ problem. To overcome
this difficulty, some dimension reduction modeling methods have been
proposed in the literature such as additive and varying-coefficient models,
discussed next.

5.2.4.1. Additive Models. An additive quantile regression model takes a
form as,

qtðxÞ ¼ dþ
Xd

j¼1

qt;jðxjÞ (67)

which was studied by De Gooijer and Zerom (2003), Yu and Lu (2004), and
Horowitz and Lee (2005). For ease of notation, assume that d ¼ 2 in what
follows. De Gooijer and Zerom (2003) used a two-stage approach to
estimate each component in Eq. (67) as follows. First, estimate the
d-dimensional quantile regression surface gt(x) using Eq. (51) to obtain
bqt;WNWðxÞ and then use the projection method of Cai and Masry (2000) as,

bqt;1ðx1Þ ¼
1

n

Xn

t¼1

bqt;WNWðx1;Xt2ÞWðx1;Xt2Þ

where W( � ) is a weighting function, which can be chosen based on
minimizing the asymptotic variance as in Cai and Fan (2000) to achieve the
optimality or to screen out outliers. Similarly, one can estimate bqt;2ðx2Þ:
De Gooijer and Zerom (2003) also presented the asymptotic normality of
the proposed estimator.

Later, Yu and Lu (2004) proposed using a backfitting algorithm equipped
with a LL fitting as follows.
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1. Step (1), initial estimation. Set

d̂ ¼ argmind
Xn

t¼1

rtðYt � dÞ

and, for j ¼ 1 and 2,

ðbaj ; bbjÞ ¼ argmina;b
Xn

t¼1

rtðYt �
bd� a� bðXtj � xjÞÞKhjðXtj � xjÞ

Then, set q
ð0Þ
t;j ðxjÞ ¼ baj, and take q

�ð0Þ
t;j ðxjÞ as q

ð0Þ
t;j ðxjÞ minus the tth sample

quantile of fq
ð0Þ
t;j ðXtjÞg

n
t¼1.

2. Step (2), iteration. Set

bd
ðlÞ
¼ argmind

Xn

t¼1

rtðYt � q
�ðl�1Þ
t;1 ðXt1Þ � q

�ðl�1Þ
t;2 ðXt2Þ � dÞ

and for j ¼ 1 and 2 and m ¼ 3�j,

ðbaj ; bbjÞ ¼ argmina;b
Xn

t¼1

rtðYt �
bd
ðlÞ
� q�ðl�1Þt;m ðXtmÞ

� a� bðXtj � xjÞÞKhjðXtj � xjÞ

then take q
ðlÞ
t;jðxjÞ ¼ baj ; and take q

�ðlÞ
t;j ðxjÞ as q

ðlÞ
t;jðxjÞ minus the tth sample

quantile of fq
ðlÞ
t;jðXt;jÞg

n
t¼1:

3. Step (3), keep cycling step (2) for l ¼ 1; 2; 3; . . . until the value of q�ðlÞt ¼

ðbd
ðlÞ
; q�ðlÞt;1 ; q

�ðlÞ
t;2 Þ has converged. Next, for j ¼ 1 and 2, let ðbaj ; bbjÞ ¼

ðq
�ðlÞ
t;j ðxjÞ;

bbjÞ. Then, ðbaj ; bbjÞ gives the estimators of qt;jðxjÞ and q0t;jðxjÞ;

respectively.

Further, Yu and Lu (2004) investigated the large sample behavior of the
proposed backfitting estimator.

Recently, Horowitz and Lee (2005) used a two-stage approach which is
different from that in De Gooijer and Zerom (2003). At the first stage, use a
series approximation to each component as qt;jðxjÞ 


Pkj
l¼0yljfjlðxjÞ; where

ffjlð�Þg is a basis function, and then estimate ylj by,

argmind;y
Xn

t¼1

rt Yt � d
X2

j¼1

Xkj

l¼0

yljfjlðxjÞ

 !
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denoted by bylj ; to obtain

bqð0Þt;j ðxjÞ ¼
Xkj

l¼0

byljfjlðxjÞ

At the second stage, estimate qt,j(xj) by first finding

ðbaj ; bbjÞ ¼ argmina;b
Xn

t¼1

rtðYt �
bd� bqð0Þt;mðXtmÞ � a� bðXtj � xjÞÞKhjðXtj � xjÞ

and then taking bqt;jðxjÞ ¼ baj . Also, Horowitz and Lee (2005) derived the
asymptotic properties for the proposed two-stage estimator.

5.2.4.2. Varying-Coefficient Models. A varying-coefficient quantile regres-
sion model takes a form as,

qtðu;xÞ ¼
Xd

j¼1

at;jðuÞxj ¼ atðuÞ
Tx (68)

which was studied by Honda (2004) for i.i.d. data, Cai and Xu (2008)
for dynamic time series observations, and Kim (2007) for time-varying
coefficients (u is time) for i.i.d. samples. For easy exposition, we assume
that u is univariate below.

To estimate {ak( � )} using the local polynomial method based on
fUt;Xt;YtÞg

n
t¼1; assume that the coefficient functions {a( � )} have the

(mþ1)th derivative (mZ1), so that for any given gird point u 2 <; akð�Þ can
be approximated by a polynomial function in a neighborhood of the given
grid point u as aðUtÞ 


Pm
j¼0bjðUt � uÞj ; where bj ¼ aðjÞðuÞ=j! and a(j)(u) is

the jth derivative of a(u), so that qtðUt;XtÞ 

Pm

j¼0X
T
t bjðUt � uÞj : Then, the

locally weighted loss function is

Xn

t¼1

rt Yt �
Xm

j¼0

XT
t bjðUt � uÞj

 !

KhðUt � uÞ (69)

Solving the minimization problem in Eq. (69) gives baðuÞ ¼ bb0; the local
polynomial estimate of a(u), and baðjÞðuÞ ¼ j!bbjðj � 1Þ; the local polynomial
estimate of the jth derivative a(j)(u). By moving u along with the real line, the
estimate of the entire curve baðuÞ is obtained.

Cai and Xu (2008) derived the asymptotic properties for baðuÞ. Under
some regularity conditions, we have the following asymptotic normality
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for m odd,

ffiffiffiffiffi
nh
p

baðuÞ � aðuÞ �
hmþ1

ðmþ 1Þ!
aðmþ1ÞðuÞmmþ1ðKÞ þ opðh

mþ1
Þ

� �

!
d
Nð0;SaðuÞÞ

where SaðuÞ ¼ tð1� tÞSðuÞ; SðuÞ ¼ ½O�ðuÞ��1OðuÞ½O�ðuÞ��1=f uðuÞ; OðuÞ ¼
E½XtX

T
t jUt ¼ u�; O�ðuÞ ¼ E½XtX

T
t f yju;xðqtðu;XtÞÞjUt ¼ u�; f uð�Þ is the mar-

ginal density of Ut, and fy|u,x(y) is the conditional density of Yt given Ut

and Xt. Also, Cai and Xu (2008) proposed an ad hoc bandwidth selection
method that is similar to that described in Section 5.2.3.

Finally, Kim (2007) considered the time-varying coefficient quantile
regression model as,

qtðt;xÞ ¼
Xd

j¼1

at;jðtÞxj ¼ atðtÞ
Tx (70)

and used a B-spline technique to estimate at(t). Note that model (70) might
be potentially useful to see whether the quantile regression changes over
time and in a case with a practical interest is, for example, the analysis of
the reference growth data by Cole (1994), Wei et al. (2006), and Wei and
He (2006) for longitudinal data, and Kim (2007) for i.i.d. samples.
Finally, it is worth to point out that model (70) might be very useful for a
nonparametric testing for testing structural changes in regression quantiles
as in Qu (2008).

Cai and Xu (2008) used model (68) and its modeling approaches to
explore the possible nonlinearity feature, heteroscedasticity, and predict-
ability of the exchange rate series of the Japanese Yen in terms of the U.S.
dollar. Their empirical findings are that the quantile has a complex structure
and that both heteroscedasticity and nonlinearity exist. This implies that
the GARCH effects occur in the exchange rate time series. Finally, they
considered the one-step ahead post-sample forecasting for the last 25
observations and constructed the 95% nonparametric prediction interval
ðbq0:025ð�Þ; bq0:975ð�ÞÞ based on the past two lags. It turns out that 24 of 25
predictive intervals contain the corresponding true values. This means
that under the dynamic smooth coefficient quantile regression model
assumption, the prediction intervals based on the proposed method work
reasonably well.
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6. CONCLUSION

In this paper, we survey some recent developments in nonparametric eco-
nometrics, including (i) nonparametric estimation and testing of regression
functions with mixed discrete and continuous covariates; (ii) nonparametric
estimation/testing with nonstationary data; (iii) nonparametric IV estima-
tions; and (iv) nonparametric estimation of quantile regression models.

In the paper by Cai and Hong (2009), they gave a survey on the recent
developments of nonparametric estimation and testing of financial econo-
metric models. Due to space limitation, we omit some of the important areas
such as nonparametric/semiparametric with limited dependent variable
models and nonparametric/semiparametric panel data models. Another
promising line of research is to impose less restrictions on econometric
models and hence parameters may not be point identified but are set
identified. Readers interested in these areas of research should consult with
the works by Manski (2003), Imbens and Manski (2004), Honore and
Tamer (2006), and the references therein.

NOTES

1. This argument may not be always true as one can also choose a fixed value of h
in testing problems, resulting in a non-smoothing test, see Chapter 13 of Li and
Racine (2007) on more detailed discussions of non-smoothing tests.
2. Fan and Li (1996) proposed a nonparametric significance test. Gu, Li, and Liu

(2007) showed that a residual-based bootstrap method can be used to better
approximate the null distribution of Fan and Li’s test.
3. This independence assumption can be relaxed to E(ut|Xt, Zt) ¼ 0, which leads

to some modification to the asymptotic theory.
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