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ABSTRACT

This paper gives a selective review on some recent developments of
nonparametric methods in both continuous and discrete time finance,
particularly in the areas of nonparametric estimation and testing of
diffusion processes, nonparametric testing of parametric diffusion
models, nonparametric pricing of derivatives, nonparametric estimation
and hypothesis testing for nonlinear pricing kernel, and nonparametric
predictability of asset returns. For each financial context, the paper
discusses the suitable statistical concepts, models, and modeling procedures,
as well as some of their applications to financial data. Their relative
strengths and weaknesses are discussed. Much theoretical and empirical
research is needed in this area, and more importantly, the paper points to
several aspects that deserve further investigation.

1. INTRODUCTION

Nonparametric modeling has become a core area in statistics and
econometrics in the last two decades; see the books by Härdle (1990),
Fan and Gijbels (1996), and Li and Racine (2007) for general statistical
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methodology and theory as well as applications. It has been used
successfully in various fields such as economics and finance due to its
advantage of requiring little prior information on the data-generating
process; see the books by Pagan and Ullah (1999), Mittelhammer, Judge,
and Miller (2000), Tsay (2005), Taylor (2005), and Li and Racine (2007) for
real examples in economics and finance. Recently, nonparametric techni-
ques have been proved to be the most attractive way of conducting research
and gaining economic intuition in certain core areas in finance, such as
asset and derivative pricing, term structure theory, portfolio choice, risk
management, and predictability of asset returns, particularly, in modeling
both continuous and discrete financial time series models; see the books
by Campbell, Lo, and MacKinlay (1997), Gourieroux and Jasiak (2001),
Duffie (2001), Tsay (2005), and Taylor (2005).

Finance is characterized by time and uncertainty. Modeling both
continuous and discrete financial time series has been a basic analytic tool
in modern finance since the seminal papers by Sharpe (1964), Fama (1970),
Black and Scholes (1973), and Merton (1973). The rationale behind it is that
for most of time, news arrives at financial markets in both continuous
and discrete manners. More importantly, derivative pricing in theoretical
finance is generally much more convenient and elegant in a continuous-
time framework than through binomial or other discrete approximations.
However, statistical analysis based on continuous-time financial models has
just emerged as a field in less than a decade, although it has been used for
more than four decades for discrete financial time series. This is apparently
due to the difficulty of estimating and testing continuous-time models
using discretely observed data. The purpose of this survey is to review some
recent developments of nonparametric methods used in both continuous
and discrete time finance in recent years, and particularly in the areas of
nonparametric estimation and testing of diffusion models, nonparametric
derivative pricing and its tests, and predictability of asset returns based on
nonparametric approaches. Financial time series data have some distinct
important stylized facts, such as persistent volatility clusterings, heavy tails,
strong serial dependence, and occasionally sudden but large jumps.
In addition, financial modeling is often closely embedded in a financial
theoretical framework. These features suggest that standard statistical
theory may not be readily applicable to both continuous and discrete
financial time series. This is a promising and fruitful area for both financial
economists and statisticians to interact with.

Section 2 introduces various continuous-time diffusion processes and
nonparametric estimation methods for diffusion processes. Section 3 reviews
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the estimation and testing of a parametric diffusion model using
nonparametric methods. Section 4 discusses nonparametric estimation and
hypothesis testing of derivative and asset pricing, particularly the nonpara-
metric estimation of risk neutral density (RND) functions and nonlinear
pricing kernel models. Nonparametric predictability of asset returns is
presented in Section 5. In Sections 2–5, we point out some open and
interesting research problems, which might be useful for graduate students
to review the important research papers in this field and to search for their
own research topics, particularly dissertation topics for doctoral students.
Finally, in Section 6, we highlight some important research areas that
are not covered in this paper due to space limitation, say nonparametric
volatility (conditional variance) and ARCH- or GARCH-type models and
nonparametric methods in volatility for high-frequency data with/without
microstructure noise. We plan to write a separate survey paper to discuss
some of these omitted topics in the near future.

2. NONPARAMETRIC DIFFUSION MODELS

2.1. Diffusion Models

Modeling the dynamics of interest rates, stock prices, foreign exchange
rates, and macroeconomic factors, inter alia, is one of the most important
topics in asset pricing studies. The instantaneous risk-free interest rate or the
so-called short rate is, for example, the state variable that determines the
evolution of the yield curve in an important class of term structure models,
such as Vasicek (1977) and Cox, Ingersoll, and Ross (1985, CIR). It is of
fundamental importance for pricing fixed-income securities. Many theore-
tical models have been developed in mathematical finance to describe the
short rate movement.1

In the theoretical term structure literature, the short rate or the underlying
process of interest, {Xt, tZ0}, is often modeled as a time-homogeneous
diffusion process, or stochastic differential equation:

dXt ¼ mðXtÞdtþ sðXtÞdBt (1)

where {Bt, tZ0} is a standard Brownian motion. The functions m( � ) and
s2( � ) are, respectively, the drift (or instantaneous mean) and the diffusion
(or instantaneous variance) of the process, which determine the dynamics
of the short rate. Indeed, model (1) can be applied to many core areas in
finance, such as options, derivative pricing, asset pricing, term structure of
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interest rates, dynamic consumption and portfolio choice, default risk,
stochastic volatility, exchange rate dynamics, and others.

There are two basic approaches to identifying m( � ) and s( � ). The first is a
parametric approach, which assumes some parametric forms of m( � , y) and
s( � , y), and estimates the unknown model parameters, say y. Most existing
models in the literature assume that the interest rate exhibits mean reversion
and that the drift m( � ) is a linear or quadratic function of the interest rate
level. It is also often assumed that the diffusion s( � ) takes the form of s|Xt|

g,
where g measures the sensitivity of interest rate volatility to the interest rate
level. In modeling interest rate dynamics, this specification captures the
so-called ‘‘level effect,’’ that is, the higher the interest rate level, the larger
the volatility. With g ¼ 0 and 0.5, model (1) reduces to the well-known
Vasicek and CIR models, respectively. The forms of m( � , y) and s( � , y) are
typically chosen due to theoretical wisdom or convenience. They may not
be consistent with the data-generating process and there may be at risk of
misspecification.

The second approach is a nonparametric one, which does not assume any
restrictive functional form for m( � ) and s( � ) beyond regularity conditions.
In the last few years, great progress has been made in estimating and testing
continuous-time models for the short-term interest rate using nonparametric
methods.2 Despite many studies, empirical analysis on the functional forms
of the drift and diffusion is still not conclusive. For example, recent studies
by Ait-Sahalia (1996b) and Stanton (1997) using nonparametric methods
overwhelmingly reject all linear drift models for the short rate. They find
that the drift of the short rate is a nonlinear function of the interest rate
level. Both studies show that for the lower and middle ranges of the interest
rate, the drift is almost zero, that is, the interest rate behaves like a random
walk. But the short rate exhibits strong mean reversion when the interest
rate level is high. These findings lead to the development of nonlinear term
structure models such as those of Ahn and Gao (1999).

However, the evidence of nonlinear drift has been challenged by Pritsker
(1998) and Chapman and Pearson (2000), who find that the nonparametric
methods of Ait-Sahalia (1996b) and Stanton (1997) have severe finite
sample problems, especially near the extreme observations. The finite
sample problems with nonparametric methods cast doubt on the evidence of
nonlinear drift. On the other hand, the findings in Ait-Sahalia (1996b) and
Stanton (1997) that the drift is nearly flat for the middle range of the
interest rate are not much affected by the small sample bias. The reason is
that near the extreme observations, the nonparametric estimation might not
be accurate due to the sparsity of data in this region. Also, this region is
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close to the boundary point, so that the Nadaraya–Watson (NW) estimate
suffers a boundary effect. Chapman and Pearson (2000) point out that this is
a puzzling fact, since ‘‘there are strong theoretical reasons to believe that
short rate cannot exhibit the asymptotically explosive behavior implied by
a random walk model.’’ They conclude that ‘‘time series methods alone are
not capable of producing evidence of nonlinearity in the drift.’’ Recently, to
overcome the boundary effect, Fan and Zhang (2003) fit a nonparametric
model using a local linear technique and apply the generalized likelihood
ratio test of Cai, Fan, and Yao (2000) and Fan, Zhang, and Zhang (2001) to
test whether the drift is linear. They support Chapman and Pearson’s (2000)
conclusion. However, the generalized likelihood ratio test is developed
by Cai et al. (2000) for discrete time series and Fan et al. (2001) for
independently and identically distributed (iid) samples, but it is still
unknown whether it is valid for continuous time series contexts, which is
warranted for a further investigation. Interest rate data are well known for
persistent serial dependence. Pritsker (1998) uses Vasicek’s (1977) model of
interest rates to investigate the performance of a nonparametric density
estimation in finite samples. He finds that asymptotic theory gives poor
approximation even for a rather large sample size.

Controversies also exist on the diffusion s( � ). The specification of s( � ) is
important, because it affects derivative pricing. Chan, Karolyi, Longstaff, and
Sanders (1992) show that in a single factor model of the short rate, g roughly
equals to 1.5 and all the models with gr1 are rejected. Ait-Sahalia (1996b)
finds that g is close to 1; Stanton (1997) finds that in his semiparametric model
g is about 1.5; and Conley, Hansen, Luttmer, and Scheinkman (1997) show
that their estimate of g is between 1.5 and 2. However, Bliss and Smith (1998)
argue that the result that g equals to 1.5 depends on whether the data between
October 1979 and September 1982 are included. From the foregoing
discussions, it seems that the value of g may change over time.

2.2. Nonparametric Estimation

Under some regularity conditions, see Jiang and Knight (1997) and Bandi and
Nguyen (2000), the diffusion process in Eq. (1) is a one dimensional, regular,
strong Markov process with continuous sample paths and time-invariant
stationary transition density. The drift and diffusion are, respectively, the first
two moments of the infinitesimal conditional distribution of Xt:

mðXtÞ ¼ lim
D!0

D�1E½YtjXt�; and s2ðXtÞ ¼ lim
D!0

D�1E½Y2
t jXt� (2)
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where Yt ¼ XtþD�Xt (see, e.g., Øksendal, 1985; Karatzas & Shreve, 1988).
The drift describes the movement of Xt due to time changes, whereas the
diffusion term measures the magnitude of random fluctuations around
the drift.

Using the Dynkin (infinitesimal) operator (see, e.g., Øksendal, 1985;
Karatzas & Shreve, 1988), Stanton (1997) shows that the first-order
approximation:

mðXtÞ
ð1Þ
¼

1

D
EfXtþD � XtjXtg þOðDÞ

the second-order approximation:

mðXtÞ
ð2Þ
¼

1

2D
½4EfYtjXtg � EfXtþ2D � XtjXtg� þOðD2

Þ

and the third-order approximation:

mðXtÞ
ð3Þ
¼

1

6D
½18EfYtjXtg�9EfXtþ2D�XtjXtgþ2EfXtþ3D�XtjXtg�þOðD3

Þ

etc. Fan and Zhang (2003) derive higher-order approximations. Similar
formulas hold for the diffusion (see Stanton, 1997). Bandi and Nguyen
(2000) argue that approximations to the drift and diffusion of any order
display the same rate of convergence and limiting variance, so that
asymptotic argument in conjunction with computational issues suggest
simply using the first-order approximations in practice. As indicated by
Stanton (1997), the higher the order of the approximations, the faster they
will converge to the true drift and diffusion. However, as noted by Bandi
and Nguyen (2000) and Fan and Zhang (2003), higher-order approxima-
tions can be detrimental to the efficiency of the estimation procedure in
finite samples. In fact, the variance grows nearly exponentially fast as the
order increases and they are much more volatile than their lower-order
counterparts. For more discussions, see Bandi (2000), Bandi and Nguyen
(2000), and Fan and Zhang (2003). The question arises is how to choose the
order in application. As demonstrated in Fan and Zhang (2003), the first or
second order may be enough in most applications.

Now suppose we observe Xt at t ¼ tD, t ¼ 1,y, n, in a fixed time interval
[0, T] with T. Denote the random sample as fXtDg

n
t¼1. Then, it follows from

Eq. (2) that the first-order approximations to m(x) and s(x) lead to

mðxÞ �
1

D
E½Y tjXtD ¼ x� and s2ðxÞ �

1

D
E½Y2

t jXtD ¼ x� (3)
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for all 1rtrn�1, where Yt ¼ X(tþ1)D–XtD. Both m(x) and s2(x) become
classical nonparametric regressions and a nonparametric kernel smoothing
approach can be applied to estimating them.

There are many nonparametric approaches to estimating conditional
expectations. Most existing nonparametric methods in finance dwell mainly
on the NW kernel estimator due to its simplicity. According to Ait-Sahalia
(1996a, 1996b), Stanton (1997), Jiang and Knight (1997), and Chapman and
Pearson (2000), the NW estimators of m(x) and s2(x) are given for any given
grid point x, respectively, by

m̂ðxÞ
1

D

Pn�1
t¼1Y tKhðx� XtDÞ
Pn�1

t¼1Khðx� XtDÞ
; and ŝ2ðxÞ ¼

1

D

Pn�1
t¼1Y

2
tKhðx� XtDÞ

Pn�1
t¼1Khðx� XtDÞ

(4)

where KhðuÞ ¼ Kðu=hÞ=h; h ¼ hn40 is the bandwidth with h-0 and nh-
N as n-N, and K( � ): R! R is a standard kernel. Jiang and Knight
(1997) suggest first using Eq. (4) to estimate s2(x). Observe that the drift

mðXtÞ ¼
1

2pðXtÞ

@½s2ðXtÞpðXtÞ�

@Xt

where p(Xt) is the stationary density of {Xt}; see, for example, Ait-Sahalia
(1996a), Jiang and Knight (1997), Stanton (1997), and Bandi and Nguyen
(2000). Therefore, Jiang and Knight (1997) suggest estimating m(x) by

m̂ðxÞ ¼
1

2p̂ðxÞ
@fŝ2ðxÞp̂ðxÞg

@x

where p̂ðxÞ is a consistent estimator of p(x), say, the classical kernel density
estimator. The reason of doing so is based on the fact that in Eq. (1),
the drift is of order dt and the diffusion is of order

ffiffiffiffiffi
dt
p

, as
ðdBtÞ

2
¼ dtþOððdtÞ2Þ. That is, the diffusion has lower order than the drift

for infinitesimal changes in time, and the local-time dynamics of the
sampling path reflects more of the diffusion than those of the drift term.
Therefore, when D is very small, identification becomes much easier for the
diffusion term than the drift term.

It is well known that the NW estimator suffers from some disadvantages
such as larger bias, boundary effects, and inferior minimax efficiency (see,
e.g., Fan & Gijbels, 1996). To overcome these drawbacks, Fan and Zhang
(2003) suggest using the local linear technique to estimate m(x) as follows:
When XtD is in a neighborhood of the grid point x, by assuming that
the second derivative of m( � ) is continuous, m(XtD) can be approximated
linearly as b0 þ b1ðXtD � xÞ, where b0 ¼ m(x) and b1 ¼ mu(x), the first
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derivative of m(x). Then, the locally weighted least square is given by

Xn�1

t¼1

fD�1Y t � b0 � b1ðXtD � xÞg2KhðXtD � xÞ (5)

Minimizing the above with respect to b0 and b1 gives the local linear
estimate of m(x). Similarly, in view of Eq. (3), the local linear estimator of
s2( � ) can be obtained by changing D�1Yt in Eq. (5) into D�1Y2

t . However,
the local linear estimator of the diffusion s( � ) cannot be always nonnegative
in finite samples. To attenuate this disadvantage of local polynomial
method, a weighted NW method proposed by Cai (2001) can be used to
estimate s( � ). Recently, Xu and Phillips (2007) study this approach and
investigate its properties.

The asymptotic theory can be found in Jiang and Knight (1997) and
Bandi and Nguyen (2000) for the NW estimator and in Fan and Zhang
(2003) for the local linear estimator as well as Xu and Phillips (2007) for the
weighted NW estimator. To implement kernel estimates, the bandwidth(s)
must be chosen. In the iid setting, there are theoretically optimal bandwidth
selections. There are no such results for diffusion processes available
although there are many theoretical and empirical studies in the literature.
As a rule of thumb, an easy way to choose a data-driven fashion bandwidth
is to use the nonparametric version of the Akaike information criterion
(see Cai & Tiwari, 2000).

One crucial assumption in the foregoing development is the stationarity of
{Xt}. However, it might not hold for real financial time series data. If {Xt} is
not stationary, Bandi and Phillips (2003) propose using the following
estimators to estimate m(x) and s2(x), respectively:

m̂ðxÞ ¼
Pn

t¼1Khðx� XtDÞ ~mðXtDÞPn
t¼1Khðx� XtDÞ

; and ŝ2ðxÞ ¼
Pn

t¼1Khðx� XtDÞ ~s2ðXtDÞPn
t¼1Khðx� XtDÞ

where

~mðxÞ ¼
1

D

Pn�1
t¼1IðjXtD� xj � bÞY tPn
t¼1IðjXtD� xj � bÞ

; and ~s2ðxÞ ¼
1

D

Pn�1
t¼1IðjXtD� xj � bÞY2

tPn
t¼1IðjXtD� xj � bÞ

See also Bandi and Nguyen (2000). Here, b ¼ bnW0 is a bandwidth-
like smoothing parameter that depends on the time span and on the sample
size, which is called the spatial bandwidth in Bandi and Phillips (2003).
This modeling approach is termed as the chronological local time
estimation. Bandi and Phillips’s approach can deal well with the situation
that the series is not stationary. The reader is referred to the papers by

ZONGWU CAI AND YONGMIAO HONG386



Bandi and Phillips (2003) and Bandi and Nguyen (2000) for more
discussions and asymptotic theory.

Bandi and Phillips’s (2003) estimator can be viewed as a double kernel
smoothing method: The first step defines straight sample analogs to the
values that drift and diffusion take at the sampled points and it can be
regarded as a generalization of the moving average. Indeed, this step uses
the smoothing technique (a linear estimator with the same weights) to
obtain the raw estimates of the two functions ~mðxÞ and ~s2ðxÞ, respectively.
This approach is different from classical two-step method in the literature
(see Cai, 2002a, 2002b). The key is to figure out how important the first is to
the second step. To implement this estimator, an empirical and theoretical
study on the selection of two bandwidths b and h is needed.

2.3. Time-Dependent Diffusion Models

The time-homogeneous diffusion models in Eq. (1) have certain limitations.
For example, they cannot capture the time effect, as addressed at the end
of Section 2.1. A variety of time-dependent diffusion models have been
proposed in the literature. A time-dependent diffusion process is
formulated as

dXt ¼ mðXt; tÞdtþ sðXt; tÞdBt (6)

Examples of Eq. (6) include Ho and Lee (HL) (1986), Hull and White
(HW) (1990), Black, Derman, and Toy (BDT) (1990), and Black and
Karasinski (BK) (1991), among others. They consider, respectively, the
following models:

HL : dXt ¼ mðtÞdtþ sðtÞdBt

HW : dXt ¼ ½a0 þ a1ðtÞXt�dtþ sðtÞXg
t dBt; g ¼ 0 or 0:5

BDT : dXt ¼ ½a1ðtÞXt þ a2ðtÞXt logðXtÞ�dtþ sðtÞXtdBt

BK : dXt ¼ ½a1ðtÞXt þ a2ðtÞXt logðXtÞ�dtþ sðtÞXtdBt

where a2ðtÞ ¼ s0ðtÞ=sðtÞ. Similar to Eq. (2), one has

mðXt; tÞ ¼ lim
D!0

D�1EfYtjXtg; and s2ðXt; tÞ ¼ lim
D!0

D�1EfY2
t jXtg

where Yt ¼ XtþD�Xt, which provide a regression form for estimating m( � , t)
and s2( � , t).
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By assuming that the drift and diffusion functions are linear in Xt with
time-varying coefficients, Fan, Jiang, Zhang, and Zhou (2003) consider the
following time-varying coefficient single factor model:

dXt ¼ ½a0ðtÞ þ a1ðtÞXt�dtþ b0ðtÞX
b1ðtÞ
t dBt (7)

and use the local linear technique in Eq. (5) to estimate the coefficient
functions {aj( � )} and {bj( � )}. Since the coefficients depend on time, {Xt}
might not be stationary. The asymptotic properties of the resulting
estimators are still unknown. Indeed, the aforementioned models are a
special case of the following more general time-varying coefficient multi-
factor diffusion model:

dXt ¼ mðXt; tÞdtþ sðXt; tÞdBt (8)

where

mðXt; tÞ ¼ a0ðtÞ þ a1ðtÞgðXtÞ and ðsðXt; tÞsðXt; tÞ
>
Þij ¼ b0;ijðtÞ þ b1;ijðtÞ

>hijðXtÞ

and g( � ) and {hij( � )} are known functions. This is the time-dependent
version of the multifactor affine model studied in Duffie, Pan, and Singleton
(2000). It allows time-varying coefficients in multifactor affine models.
A further theoretical and empirical study of the time-varying coefficient
multifactor diffusion model in Eq. (8) is warranted. It is interesting to point
out that the estimation approaches described above are still applicable to
model (8) but the asymptotic theory is very challenging because of the
nonstationarity of unknown structure of the underlying process {Xt}.

2.4. Jump-Diffusion Models

There has been a vast literature on the study of diffusion models with
jumps.3 The main purpose of adding jumps into diffusion models or
stochastic volatility diffusion models is to accommodate impact of sudden
and large shocks to financial markets, such as macroeconomic announce-
ments, the Asian and Russian finance crisis, the US finance crisis, an
unusually large unemployment announcement, and a dramatic interest rate
cut by the Federal Reserve. For more discussions on why it is necessary to
add jumps into diffusion models, see, for example, Lobo (1999), Bollerslev
and Zhou (2002), Liu, Longstaff, and Pan (2002), and Johannes (2004),
among others. Also, jumps can capture the heavy tail behavior of the
distribution of the underlying process.
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For the expositional purpose, we only consider a single factor diffusion
model with jump:

dXt ¼ mðXtÞdtþ sðXtÞdBt þ dJt (9)

where Jt is a compensated jump process (zero conditional mean) with
arrival rate (conditional probability) lt ¼ l(Xt)Z0, which is an instanta-
neous intensity function. There are several studies on specification of Jt. For
example, a simple specification is to assume Jt ¼ xPt, where Pt is a Poisson
process with an intensity l(Xt) or a binomial distribution with probability
l(Xt), and the jump size, x, has a time-invariant distribution P( � ) with mean
zero. P( � ) is commonly assumed to be either normally or uniformly
distributed. If l( � ) ¼ 0 or E(x2) ¼ 0, the jump-diffusion model in Eq. (9)
becomes the diffusion model in Eq. (1). More generally, Chernov, Gallant,
Ghysels, and Tauchen (2003) consider a Lévy process for Jt. A simple jump-
diffusion model proposed by Kou (2002) is discussed in Tsay (2005) by
assuming that Jt ¼

Pnt
i¼1ðLi � 1Þ, where nt is a Poisson process with rate l

and {Li} a sequence of iid nonnegative random variables such that ln(Li) has
a double exponential distribution with probability density function f ðxÞ ¼
expð�jx� y1j=y2Þ=2y2 for 0oy2o1. This simple model enjoys several nice
properties. The returns implied by the model are leptokurtic and asymmetric
with respect to zero. In addition, the model can reproduce volatility smile
and provide analytical formulas for the prices of many options.

In practice, l( � ) might be assumed to have a particular form. For
example, Chernov et al. (2003) consider three different types of special
forms, each having the appealing feature of yielding analytic option pricing
formula for European-type contracts written on the stock price index. There
are some open issues for the jump-diffusion model: (i) jumps are not
observed and it is not possible to say surely if they exist; (ii) if they exist, a
natural question arises is how to estimate a jump time t, which is defined
to be the discontinuous time at which XtþaXt�, and the jump size
x ¼ Xtþ�Xt�. We conjecture that a wavelet method may be potentially
useful here because a wavelet approach has an ability of capturing the
discontinuity and removing the contaminated noise. For detailed discussion
on how to use a wavelet method in this regard, the reader is referred to the
paper by Fan and Wang (2007). Indeed, Fan and Wang (2007) propose
using a wavelet method to cope with both jumps in the price and market
microstructure noise in the observed data to estimate both integrated
volatility and jump variation from the data sampled from jump-diffusion
price processes, contaminated with the market microstructure noise.
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Similar to Eq. (2), the first two conditional moments are given by

m1ðXtÞ ¼ lim
D#0

D�1E½YtjXt� ¼ mðXtÞ þ lðXtÞEðxÞ

and

m2ðXtÞ ¼ lim
D#0

D�1E½Y2
t jXt� ¼ s2ðXtÞ þ lðXtÞEðx

2
Þ

Clearly, m2(Xt) is much bigger than s2(Xt) if there is a jump. This means
that adding a jump into the model can capture the heavy tails. Also, it is
easy to see that the first two moments are the same as those for a diffusion
model by using a new drift coefficient ~mðXtÞ ¼ mðXtÞ þ lðXtÞEðxÞ and a new
diffusion coefficient ~s2ðxÞ ¼ s2ðxÞ þ lðxÞEðx2Þ. However, the fundamental
difference between a diffusion model and a diffusion model with jumps relies
on higher-order moments. Using the infinitesimal generator (Øksendal,
1985; Karatzas and Shreve, 1988) of Xt, we can compute, jW2,

mjðXtÞ ¼ lim
D!0

D�1E½Yj
tjXt� ¼ lðXtÞEðx

j
Þ

See Duffie et al. (2000) and Johannes (2004) for details. Obviously, jumps
provide a simple and intuitive mechanism for capturing the heavy tail
behavior of underlying process. In particular, the conditional skewness and
kurtosis are, respectively, given by

sðXtÞ �
lðXtÞEðx

3
Þ

½s2ðXtÞ þ lðXtÞEðx
2
Þ�3=2

; and kðXtÞ �
lðXtÞEðx

4
Þ

½s2ðXtÞ þ lðXtÞEðx
2
Þ�2

Note that s(Xt) ¼ 0 if x is symmetric. By assuming x � Nð0; s2xÞ, Johannes
(2004) uses the conditional kurtosis to measure the departures for the
treasury bill data from normality and concludes that interest rates exchanges
are extremely non-normal.

The NW estimation of mj( � ) is considered by Johannes (2004) and Bandi
and Nguyen (2003). Moreover, Bandi and Nguyen (2003) provide a general
asymptotic theory for the resulting estimators. Further, by specifying a
particular form of P(x) ¼ P0(x, y), say, x � Nð0; s2xÞ, Bandi and Nguyen
(2003) propose consistent estimators of l( � ), s2x, and s2( � ) and derive their
asymptotic properties.

A natural question arises is how to measure the departures from a pure
diffusion model statistically. That is to test model (9) against model (1).
It is equivalent to checking whether l( � )� 0 or x ¼ 0. Instead of using the
conditional skewness or kurtosis, a test statistic can be constructed based on
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the higher-order conditional moments. For example, one can construct the
following nonparametric test statistics:

T1 ¼

Z

m̂4ðxÞwðxÞdx; or T2 ¼

Z

m̂23ðxÞwðxÞdx (10)

where w( � ) is a weighting function. The asymptotic theory for T1 and T2 is
still unknown. It needs a further investigation theoretically and empirically.
Based on a Monte Carlo simulation approach, Cai and Zhang (2008b) use
the aforementioned testing statistics in an application, described as follows.

It is well known that prices fully reflect the available information in the
efficient market. Thus, Cai and Zhang (2008b) consider the market
information consisting of two components. The first is the anticipated
information that drives market prices’ daily normal fluctuation, and the
second is the unanticipated information that determines prices to excep-
tional fluctuation, which can be characterized by a jump process. Therefore,
Cai and Zhang (2008b) investigate the market information via a jump-
diffusion process. The jump term in the dynamic of stock price or return rate
reflects the sensitivity of unanticipated information for the related firms.
This implies that the investigation of the jump parameters for firms with
different sizes would help us to find the relationship between firm sizes and
information sensitivity. With the nonparametric method as described above,
Cai and Zhang (2008b) use the kernel estimation method, and reveal how
the nonparametric estimation of the jump parameters (functions) reflect the
so-called information effect. Also, they test the model based on the test
statistic formulated in Eq. (10). Due to the lack of the relevant theory of
the test statistics in Eq. (10), Cai and Zhang (2008b) use the Monte Carlo
simulation, and find that a jump-diffusion process performs better to model
with all market information, including anticipated and unanticipated
information than the pure diffusion model. Empirically, Cai and Zhang
(2008b) estimate the jump intensity and jump variance for portfolios with
different firm sizes for data from both the US and Chinese markets, and find
some evidences that there exists information effect among different firm
sizes, from which we could get valuable references for investors’ decision
making. Finally, using a Monte Carlo simulation method, Cai and Zhang
(2008a) examine the test statistics in Eq. (10) to see how the discontinuity of
drift or diffusion function affects the performance of the test statistics. They
find that the discontinuity of drift or diffusion function has an impact on the
performance of the test statistics in Eq. (10).
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More generally, given a discrete sample of a diffusion process, can one tell
whether the underlying model that gave rise to the data was a diffusion, or
should jumps be allowed into the model? To answer this question,
Ait-Sahalia (2002b) proposes an approach to identifying the sufficient
and necessary restriction on the transition densities of diffusions, at the
sampling interval of the observed data. This restriction characterizes
the continuity of the unobservable continuous sample path of the
underlying process and is valid for every sampling interval including long
ones. Let {Xt, tZ0} be a Markovian process taking values in D � R.
Let p(D, y|x) denote the transition density function of the process over
interval length D, that is, the conditional density of XtþD ¼ y given Xt ¼ x,
and it is assumed that the transition densities are time homogenous.
Ait-Sahalia (2002b) shows that if the transition density p(D, y|x) is strictly
positive and twice-continuously differentiable on D	D and the following
condition:

@2

@x @y
ln pðD; yjxÞ40 for all D40 and ðx; yÞ 2 D	D

(which is the so-called ‘‘diffusion criterion’’ in Ait-Sahalia, 2002b), is
satisfied, then the underlying process is a diffusion. From a discretely
sampled time series {XtD}, one could test nonparametrically the hypothesis
that the data were generated by a continuous-time diffusion {Xt}. That is to
test nonparametrically the null hypothesis

H0 :
@2

@x @y
ln pðD; yjxÞ40 for all x; y

versus the alternative

Ha :
@2

@x @y
ln pðD; yjxÞ � 0 for some x; y

One could construct a test statistic based on checking whether the above
‘‘diffusion criterion’’ holds for a nonparametric estimator of p(D, y|x).
This topic is still open. If the model has a specific form, say a parametric
form, the diffusion criterion becomes a simple form, say, it becomes just
a constraint for some parameters. Then, the testing problem becomes
testing a constraint on parameters; see Ait-Sahalia (2002b) for some real
applications.
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2.5. Time-Dependent Jump-Diffusion Models

Duffie et al. (2000) consider the following time-dependent jump-diffusion
model:

dXt ¼ mðXt; tÞdtþ sðXt; tÞdBt þ dJt (11)

where Jt is a compensated jump process with the time-varying intensity
l(Xt, t) ¼ l0(t)þ l1(t)XT; and Chernov et al. (2003) consider a more general
stochastic volatility model with the time-varying stochastic intensity
lðx0; Xt; tÞ ¼ l0ðx0; tÞ þ l1ðx0; tÞXt, where x0 is the size of the previous
jump. This specification yields a class of jump Lévy measures which
combine the features of jump intensities depending on, say, volatility, as well
as the size of the previous jump. Johannes, Kumar, and Polson (1999)
also propose a class of jump-diffusion processes with a jump intensity
depending on the past jump time and the absolute return. Moreover,
as pointed out by Chernov et al. (2003), another potentially very useful
specification of the intensity function would include the past duration,
that is, the time since the last jump, say t(t), which is the time that has
elapsed between the last jump and t where t(t) is a continuous function of t,
such as

lðx0; Xt; t; tÞ ¼ fl0ðtÞ þ l1ðtÞXtglftðtÞg expfGðx0Þg (12)

which can accommodate the increasing, decreasing, or hump-shaped
hazard functions of the size of the previous jump, and the duration
dependence of jump intensities. However, to the best of our knowledge,
there have not been any attempts in the literature to discuss the estimation
and test of the intensity function l( � ) nonparametrically in the above
settings.

A natural question arises is how to generalize model (9) economically and
statistically to a more general time-dependent jump-diffusion model given in
Eq. (11) with the time-dependent intensity function lðx0; Xt; t; tÞ without
any specified form or with some nonparametric structure, say, like Eq. (12).
Clearly, they include the aforementioned models as a special case, which are
studied by Duffie et al. (2000), Johannes et al. (1999), and Chernov et al.
(2003), among others. This is still an open problem.
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3. NONPARAMETRIC INFERENCES OF

PARAMETRIC DIFFUSION MODELS

3.1. Nonparametric Estimation

As is well known, derivative pricing in mathematical finance is generally much
more tractable in a continuous-time modeling framework than through
binomial or other discrete approximations. In the empirical literature,
however, it is an usual practice to abandon continuous-time modeling when
estimating derivative pricing models. This is mainly due to the difficulty that
the transition density for most continuous-time models with discrete
observations has no closed form and therefore the maximum likelihood
estimation (MLE) is infeasible.

One major focus of the continuous-time literature is on developing
econometric methods to estimate continuous-time models using discretely
sampled data.4 This is largely motivated by the fact that using the discrete
version of a continuous-time model can result in inconsistent parameter
estimates (see Lo, 1988). Available estimation procedures include the MLE
method of Lo (1988); the simulated methods of moments of Duffie and
Singleton (1993) and Gourieroux, Monfort, and Renault (1993); the general-
ized method of moments (GMM) of Hansen and Scheinkman (1995); the
efficient method of moments (EMM) of Gallant and Tauchen (1996); the
Markov chain Monte Carlo (MCMC) of Jacquier, Polson, and Rossi (1994),
Eraker (1998), and Jones (1998); and the methods based on the empirical
characteristic function of Jiang and Knight (2002) and Singleton (2001).

Below we focus on some nonparametric estimation methods of a
parametric continuous-time model

dXt ¼ mðXt; yÞdtþ sðXt; yÞdBt (13)

where m( � , � ) and s( � , � ) are known functions and y an unknown
parameter vector in an open bounded parameter space Y. Ait-Sahalia
(1996b) proposes a minimum distance estimator:

ŷ ¼ arg min
y2Y

n�1
Xn

t¼1

½p̂0ðXtDÞ � pðXtD; yÞ�2 (14)

where

p̂0ðxÞ ¼ n�1
Xn

t¼1

Khðx� XtDÞ
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is a kernel estimator for the stationary density of Xt, and

pðx; yÞ ¼
cðyÞ

s2ðx; yÞ
exp

Z x

x

0

2mðu; yÞ
s2ðu; yÞ

du

( )

(15)

is the marginal density estimator implied by the diffusion model, where
the standardization factor c(y) ensures that p( � , y) integrates to 1 for
every yAY, and x
0 is the lower bound of the support of Xt. Because the
marginal density cannot capture the full dynamics of the diffusion
process, one can expect that ŷ will not be asymptotically most efficient,
although it is root-n consistent for y0 if the parametric model is correctly
specified.

Next, we introduce the approximate maximum likelihood estimation
(AMLE) approach, according to Ait-Sahalia (2002a). Let pxðD; xjx0yÞ be
the conditional density function of XtD ¼ x given X ðt�1ÞD ¼ x0 induced by
model (13). The log-likelihood function of the model for the sample is

lnðyÞ ¼
Xn

t¼1

ln pxðD; XtDjX ðt�1ÞD; yÞ

The MLE estimator that maximizes ln(y) would be asymptotically most
efficient if the conditional density pxðD; xjx0; yÞ has a closed form.
Unfortunately, except for some simple models, pxðD; xjx0; yÞ usually does
not have a closed form.

Using the Hermite polynomial series, Ait-Sahalia (2002a) proposes
a closed-form sequence fpðJÞx ðD; xjx0; yÞg to approximate pxðD; xjx0; yÞ
and then obtains an estimator ŷ

ðJÞ

n that maximizes the approximated model

likelihood. The estimator ŷ
ðJÞ

n enjoys the same asymptotic efficiency as the
(infeasible) MLE as J ¼ Jn-N. More specifically, Ait-Sahalia (2002a) first
considers a transformed process:

Yt � gðXt; yÞ ¼
Z Xt

�1

1

sðu; yÞ
du

This transformed process obeys the following diffusion:

dYt ¼ myðYt; yÞdtþ dBt

where

myðy; yÞ ¼
m½g�1ðy; yÞ; y�
s½g�1ðy; yÞ; y�

�
1

2

@s½g�1ðy; yÞ; y�
@x
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The transform X-Y ensures that the tail of the transition density
pyðD; yjy0; yÞ of Yt will generally vanish exponentially fast so that Hermite
series approximations will converge. However, pyðD; yjy0; yÞ may get
peaked at y0 when the sample frequency D gets smaller. To avoid this,
Ait-Sahalia (2002a) considers a further transformation as

Zt ¼ D�1=2ðYt � y0Þ

and then approximates the transition density of Zt by the Hermite
polynomials:

pðJÞz ðzjz0; yÞ ¼ fðzÞ
XJ

j¼0

ZðjÞz ðz0; yÞHjðzÞ

where f( � ) is the N(0, 1) density, and {Hj(z)} is the Hermite polynomial
series. The coefficients fZðjÞz ðz0; yÞg are specific conditional moments of
process Zt, and can be explicitly computed using the Monte Carlo method
or using a higher Taylor series expansion in D.

The approximated transition density of Xt is then given as follows:

pxðxjx0; yÞ ¼ sðx; yÞ�1pyðgðx; yÞjgðx; yÞ; yÞ

¼ D�1=2pzðD
�1=2
ðgðx; yÞ � gðx; yÞÞjgðx0; yÞ; yÞ

Under suitable regularity conditions, particularly when J ¼ Jn-N as
n-N, the estimator

ŷ
ðJÞ

n ¼ arg min
y2Y

Xn

t¼1

ln pðJÞx ðXtDjX ðt�1ÞD; yÞ

will be asymptotically equivalent to the infeasible MLE. Ait-Sahalia (1999)
applies this method to estimate a variety of diffusion models for spot interest
rates, and finds that J ¼ 2 or 3 already gives accurate approximation for
most financial diffusion models. Egorov, Li, and Xu (2003) extend this
approach to stationary time-inhomogeneous diffusion models. Ait-Sahalia
(2008) extends this method to general multivariate diffusion models and
Ait-Sahalia and Kimmel (2007) to affine multifactor term structure models.

In contract to the AMLE in Ait-Sahalia (2002a), Jiang and Knight (2006)
consider a more general Markov models where the transition density is
unknown. The approach Jiang and Knight (2006) propose is based on the
empirical characteristic function estimation procedure with an approximate
optimal weight function. The approximate optimal weight function is
obtained through an Edgeworth/Gram-Charlier expansion of the

ZONGWU CAI AND YONGMIAO HONG396



logarithmic transition density of the Markovian process. They derive
the estimating equations and demonstrate that they are equivalent to the
AMLE as in Ait-Sahalia (2002a). However, in contrast to the common
AMLE, their approach ensures the consistency of the estimator even in
the presence of approximation error. When the approximation error of the
optimal weight function is arbitrarily small, the estimator has MLE
efficiency. For details, see Jiang and Knight (2006).

Finally, in a rather general continuous-time setup which allows for
stationary multifactor diffusion models with partially observable state
variables, Gallant and Tauchen (1996) propose an EMM estimator that also
enjoys the asymptotic efficiency as the MLE. The basic idea of EMM is to
first use a Hermite polynomial-based semi-nonparametric (SNP) density
estimator to approximate the transition density of the observed state
variables. This is called the auxiliary model and its score is called the score
generator, which has expectation zero under the model-implied distribution
when the parametric model is correctly specified. Then, given a parameter
setting for the multifactor model, one may use simulation to evaluate the
expectation of the score under the stationary density of the model and
compute a w2 criterion function. A nonlinear optimizer is used to find the
parameter values that minimize the proposed criterion.

Specifically, suppose {Xt} is a stationary possibly vector valued process
such that the true conditional density function p0ðD; XtDjXsD; s � t� 1Þ ¼
p0ðD; XtDjY tDÞ where Y tD � ðX ðt�1ÞD; . . . ; X ðt�dÞDÞ

> for some fixed integer
dZ0. This is a Markovian process of order d. To check the adequacy of a
parametric model in Eq. (13), Gallant and Tauchen (1996) propose to check
whether the following moment condition holds:

Mðbn; yÞ �
Z
@ log f ðD; x; y; bnÞ

@bn
pðD; x; y; yÞdxdy ¼ 0; if y ¼ y0 2 Y

(16)

where p(D, x, y; y) is the model-implied joint density for ðXtD; Y
>
tDÞ
>, y0 the

unknown true parameter value, and f(D, x, y; bn) an auxiliary model for the
conditional density of ðXtD; Y

>
tDÞ
>. Note that bn is the parameter vector

in the SNP density model f(D, x, y; bn) and generally does not nest the
parametric parameter y. By allowing the dimension of bn to grow with
the sample size n, the SNP density f(D, x, y; bn) will eventually span the
true density p0(D, x, y) of ðXtD; Y

>
tDÞ
>, and thus it is free of model

misspecification asymptotically. Gallant and Tauchen (1996) use a Hermite
polynomial approximation for f(D, x, y; bn), with the dimension of bn
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determined by a model selection criterion such as the Baysian information
criterion (BIC). The integration in Eq. (16) can be computed by simulating
a large number of realizations under the distribution of the parametric
model p(D, x, y; y).

The EMM estimator is defined as follows:

ŷ ¼ arg min
y2Y

Mðb̂n; yÞ
>Î
�1

yð ÞMðb̂n; yÞ

where b̂ is the quasi-MLE estimator for bn, the coefficients in the Hermite
polynomial expansion of the SNP density model f(x, y, bn), and the
matrix ÎðyÞ is an estimate of the asymptotic variance of

ffiffiffi
n
p

@Mnðb̂n; yÞ=@y
(Gallant & Tauchen, 2001). This estimator ŷ is asymptotically as efficient as
the (infeasible) MLE.

The EMM has been applied widely in financial applications. See, for
example, Andersen and Lund (1997), Dai and Singleton (2000), and Ahn,
Dittmar, and Gallant (2002) for interest rate applications; Liu (2000),
Andersen, Benzoni, and Lund (2002), Chernov et al. (2003) for estimating
stochastic volatility models for stock prices with such complications as long
memory and jumps; Chung and Tauchen (2001) for estimating and testing
target zero models of exchange rates; Jiang and van der Sluis (2000) for price
option pricing; and Valderrama (2001) for a macroeconomic application.
It would be interesting to compare the EMM method and Ait-Sahalia’s
(2002a) approximate MLE in finite sample performance and this topic is
still open.

3.2. Nonparametric Testing

In financial applications, most continuous-time models are parametric. It is
important to test whether a parametric diffusion model adequately captures
the dynamics of the underlying process. Model misspecification generally
renders inconsistent estimators of model parameters and their variance–
covariance matrix, leading to misleading conclusions in inference and
hypothesis testing. More importantly, a misspecified model can yield large
errors in hedging, pricing, and risk management.

Unlike the vast literature of estimation of parametric diffusion models,
there are relatively few test procedures for parametric diffusion models
using discrete observations. Suppose {Xt} follows a continuous-time
diffusion process in Eq. (6). Often it is assumed that the drift and diffusion
m( � , t) and s( � , t) have some parametric forms m( � , t, y) and s( � , t, y), where
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yAY. We say that models m( � , t, y) and s( � , t, y) are correctly specified for
the drift and diffusion m( � , t) and s( � , t), respectively, if

H0 : P½mðXt; t; y0Þ ¼ mðXt; tÞ; sðXt; t; y0Þ ¼ sðXt; tÞ� ¼ 1 for some y0 2 Y

(17)

As noted earlier, various methods have been developed to estimate y0,
taking Eq. (17) as given. However, these methods generally cannot deliver
consistent parameter estimates if m( � , t, y) or s( � , t, y) is misspecified in the
sense that

Ha : P½mðXt; t; yÞ ¼ mðXt; tÞ; sðXt; t; yÞ ¼ sðXt; tÞ�o1 for all y 2 Y

(18)

Under Ha of Eq. (18), there exists no parameter value yAY such that the
drift model m( � , t, y) and the diffusion model s( � , t, y) coincide with the true
drift m( � , t) and the true diffusion s( � , t), respectively.

There is a growing interest in testing whether a continuous-time model is
correctly specified using a discrete sample fXtDg

n
t¼1. Next we will present

some test procedures for testing the continuous-time models. Ait-Sahalia
(1996b) observes that for a stationary time-homogeneous diffusion process
in Eq. (13), a pair of drift and diffusion models m( � , y) and s( � , y) uniquely
determines the stationary density p( � , y) in Eq. (15). Ait-Sahalia (1996b)
compares a parametric marginal density estimator pð�; ŷÞ with a nonpara-
metric density estimator p̂0ð�Þ via the quadratic form:

M �

Z x

1

x

0

½p̂0ðxÞ � pðx; ŷÞ�
2
p̂0ðxÞdx (19)

where x
1 is the upper bound for Xt, ŷ the minimum distance estimator given
by Eq. (14). The M statistic, after demeaning and scaling, is asymptotically
normal under H0.

The M test makes no restrictive assumptions on the data-generating
process and can detect a wide range of alternatives. This appealing power
property is not shared by parametric approaches such as GMM tests
(e.g., Conley et al., 1997). The latter has optimal power against certain
alternatives (depending on the choice of moment functions) but may be
completely silent against other alternatives. In an application to Euro-dollar
interest rates, Ait-Sahalia (1996b) rejects all existing one-factor linear
drift models using asymptotic theory and finds that ‘‘the principal source of
rejection of existing models is the strong nonlinearity of the drift,’’ which is
further supported by Stanton (1997).
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However, several limitations of this test may hinder its empirical
applicability. First, as Ait-Sahalia (1996b) has pointed out, the marginal
density cannot capture the full dynamics of {Xt}. It cannot distinguish two
diffusion models that have the same marginal density but different
transition densities.5 Second, subject to some regularity conditions, the
asymptotic distribution of the quadratic form M in Eq. (19) remains the
same whether the sample XtDf gnt¼1 is iid or highly persistently dependent
(Ait-Sahalia, 1996b). This convenient asymptotic property unfortunately
results in a substantial discrepancy between the asymptotic and finite sample
distributions, particularly when the data display persistent dependence
(Pritsker, 1998). This discrepancy and the slow convergence of kernel
estimators are the main reasons identified by Pritsker (1998) for the poor
finite sample performance of the M test. They cast some doubts on the
applicability of first-order asymptotic theory of nonparametric methods in
finance, since persistent serial dependence is a stylized fact for interest rates
and many other high-frequency financial data. Third, a kernel density
estimator produces biased estimates near the boundaries of the data
(e.g., Härdle, 1990, and Fan & Gijbels, 1996). In the present context, the
boundary bias can generate spurious nonlinear drifts, giving misleading
conclusions on the dynamics of {Xt}.

Recently, Hong and Li (2005) have developed a nonparametric test for
the model in Eq. (6) using the transition density, which can capture the full
dynamics of {Xt} in Eq. (13). Let p0(x, t|x0, s) be the true transition density
of the diffusion process Xt, that is, the conditional density of Xt ¼ x given
Xs ¼ x0, sot. For a given pair of drift and diffusion models m( � , t, y)
and s( � , t, y), a certain family of transition densities fpðx; tjx0; s; yÞg is
characterized. When (and only when) H0 in Eq. (17) holds, there exists some
y0AY such that pðx; tjx0; s; y0Þ ¼ p0ðx; tjx0; sÞ almost everywhere for all
tWs. Hence, the hypotheses of interest H0 in Eq. (17) versus Ha in Eq. (18)
can be equivalently written as follows:

H0 : pðx; tjy; s; y0Þ ¼ p0ðx; tjy; sÞ almost everywhere for some y0 2 Y

(20)

versus the alternative hypothesis:

Ha : pðx; tjy; s; yÞap0ðx; tjy; sÞ for some t4s and for all y 2 Y (21)

Clearly, to test H0 in Eq. (20) versus Ha in Eq. (21) would be to compare
a model transition density estimator pðx; tjx0; s; ŷÞ with a nonparametric
transition density estimator, say p̂0ðx; tjx0; sÞ. Instead of comparing
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pðx; tjx0; s; ŷÞ and p̂0ðx; tjx0; sÞ directly, Hong and Li (2005) first transform
fXtDg

n
t¼1 via a probability integral transformation. Define a discrete

transformed sequence

ZtðyÞ �
Z XtD

�1

p½x; tDjX ðt�1ÞD; ðt� 1ÞD; y�dx; t ¼ 1; . . . ; n (22)

Under (and only under) H0 in Eq. (20), there exists some y0AY such that
p½x; tDjX ðt�1ÞD; ðt� 1ÞD; y0� ¼ p0½x; tDjX ðt�1ÞD; ðt� 1ÞD� almost surely for
all DW0. Consequently, the transformed series fZt � Ztðy0Þgnt¼1 is iid U[0, 1]
under H0 in Eq. (20). This result is first proven, in a simpler context, by
Rosenblatt (1952), and is more recently used to evaluate out-of-sample
density forecasts (e.g., Diebold, Gunther, & Tay, 1998) in a discrete-time
context. Intuitively, we may call {Zt(y)} ‘‘generalized residuals’’ of the
model p(x, t|y, s, y).

To test H0 in Eq. (20), Hong and Li (2005) check whether fZtg
n
t¼1 is both

iid and U[0, 1]. They compare a kernel estimator ĝjðz1; z2Þ defined in
Eq. (23) below for the joint density of {Zt, Zt�j} with unity, the product
of two U[0, 1] densities. This approach has at least three advantages.
First, since there is no serial dependence in {Zt} under H0 in Eq. (20),
nonparametric joint density estimators are expected to perform much better
in finite samples. In particular, the finite sample distribution of the resulting
tests is expected to be robust to persistent dependence in data. Second, there
is no asymptotic bias for nonparametric density estimators under H0 in
Eq. (20). Third, no matter whether {Xt} is time inhomogeneous or even
nonstationary, {Zt} is always iid U[0, 1] under correct model specification.

Hong and Li (2005) employ the kernel joint density estimator:

ĝjðz1; z2Þ � ðn� jÞ�1
Xn

t¼jþ1

Khðz1; ẐtÞKhðz2; Ẑt�jÞ; j40 (23)

where Ẑt ¼ ZtðŷÞ; ŷ is any
ffiffiffi
n
p

-consistent estimator for y0, and for xA[0, 1],

Khðx; yÞ �

h�1k
x� y

h

� �
=
R 1
�ðx=hÞ kðuÞdu; if x 2 ½0; hÞ

h�1k
x� y

h

� �
; if x 2 ½h; 1� h�

h�1k
x� y

h

� �
=
R ð1�xÞ=h
�1 kðuÞdu; if x 2 ð1� h; 1�

8
>>>>><

>>>>>:

is the kernel with boundary correction (Rice, 1986) and k( � ) is a standard
kernel. This avoids the boundary bias problem, and has some advantages
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over some alternative methods such as trimming and the use of the jackknife
kernel.6 To avoid the boundary bias problem, one might apply other
kernel smoothing methods such as local polynomial (Fan & Gijbels, 1996)
or weighted NW (Cai, 2001).

Hong and Li’s (2005) test statistic is

Q̂ðjÞ �
ðn� jÞh

R 1
0

R 1
0 ½ĝjðz1; z2Þ � 1�2dz1dz2 � A0

h

h i

V
1=2
0

where A0
h and V0 are non-stochastic centering and scale factors which are

functions of h and k( � ).
In a simulation experiment mimicking the dynamics of US interest rates

via the Vasicek model, Hong and Li (2005) find that Q̂ðjÞ has rather
reasonable sizes for n ¼ 500 (i.e., about two years of daily data). This is a
rather substantial improvement over Ait-Sahalia’s (1996b) test, in lights of
Pritsker’s (1998) simulation evidence. Moreover, Q̂ðjÞ has better power than
the marginal density test. Hong and Li (2005) find extremely strong evidence
against a variety of existing one-factor diffusion models for the spot interest
rate and affine models for interest rate term structures. Egorov, Hong, and
Li (2006) have recently extended Hong and Li (2005) to evaluate out of
sample of density forecasts of a multivariate diffusion model possibly with
jumps and partially unobservable state variables.

Because the transition density of a continuous-time model generally has
no closed form, the probability integral transform {Zt(y)} in Eq. (22) is
difficult to compute. However, one can approximate the model transi-
tion density using the simulation methods developed by Pedersen (1995),
Brandt and Santa-Clara (2002), and Elerian, Chib, and Shephard (2001).
Alternatively, we can use Ait-Sahalia’s (2002a) Hermite expansion
method to construct a closed-form approximation of the model transition
density.

When a misspecified model is rejected, one may like to explore what are
the possible sources for the rejection. For example, is the rejection due to
misspecification in the drift, such as the ignorance of mean shifts or jumps?
Is it due to the ignorance of GARCH effects or stochastic volatility? Or is
it due to the ignorance of asymmetric behaviors (e.g., leverage effects)?
Hong and Li (2005) consider to examine the autocorrelations in the various
powers of {Zt}, which are very informative about how well a model fits
various dynamic aspects of the underlying process (e.g., conditional mean,
variance, skewness, kurtosis, ARCH-in-mean effect, and leverage effect).
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Gallant and Tauchen (1996) also propose an EMM-based minimum w2

specification test for stationary continuous-time models. They examine the
simulation-based expectation of an auxiliary SNP score function under
the model distribution, which is zero under correct model specification.
The greatest appeal of the EMM approach is that it applies to a wide range
of stationary continuous-time processes, including both one-factor and
multifactor diffusion processes with partially observable state variables
(e.g., stochastic volatility models). In addition to the minimum w2 test for
generic model misspecifications, the EMM approach also provides a class of
individual t-statistics that are informative in revealing possible sources of
model misspecification. This is perhaps the most appealing strength of the
EMM approach.

Another feature of the EMM tests is that all EMM test statistics avoid
estimating long-run variance–covariances, thus resulting in reasonable finite
sample size performance (cf. Andersen, Chung, & Sorensen, 1999). In
practice, however, it may not be easy to find an adequate SNP density model
for financial time series, as is shown in Hong and Lee (2003b). For example,
Andersen and Lund (1997) find that an AR(1)-EGARCH model with a
number of Hermite polynomials adequately captures the full dynamics of
daily S&P 500 return series, using a BIC criterion. However, Hong and Lee
(2003a) find that there still exists strong evidence on serial dependence in the
standardized residuals of the model, indicating that the auxiliary SNP model
is inadequate. This affects the validity of the EMM tests, because their
asymptotic variance estimators have exploited the correct specification of
the SNP density model.7

There has also been an interest in separately testing the drift model and
the diffusion model in Eq. (13). For example, it has been controversial
whether the drift of interest rates is linear. To test the linearity of the drift
term, one can write it as a functional coefficient form (Cai et al., 2000)
m(Xt) ¼ a0(Xt)þa1(Xt)Xt. Then, the null hypothesis is H0: a0( � )� a0 and
a1( � )� a1. Fan and Zhang (2003) apply the generalized likelihood ratio test
developed by Cai et al. (2000) and Fan et al. (2001). They find that H0 is not
rejected for the short-term interest rates. It is noted that the asymptotic
theory for the generalized likelihood ratio test is developed for the iid
samples, but it is still unknown whether it is valid for a time series context.
One might follow the idea from Cai et al. (2000) to use the bootstrap or wild
bootstrap method instead of the asymptotic theory for time series context.
Fan and Zhang (2003) and Fan et al. (2003) conjecture that it would hold
based on their simulations. On the other hand, Chen, Härdle, and Kleinow
(2002) consider an empirical likelihood goodness-of-fit test for time series
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regression model, and they apply the test to test a discrete drift model of a
diffusion process.

There has also been interest in testing the diffusion model s( � , y). The
motivation comes from the fact that derivative pricing with an underlying
equity process only depends on the diffusion s( � ), which is one of the
most important features of Eq. (13) for derivative pricing. Kleinow (2002)
recently proposes a nonparametric test for a diffusion model s( � ). More
specifically, Kleinow (2002) compares a nonparametric diffusion estimator
ŝ2ð�Þ with a parametric diffusion estimator s2( � , y) via an asymptotically w2

test statistic

T̂l ¼
Xk

t¼1

½T̂ðxtÞ�
2

where

T̂ðxÞ ¼ ½nhp̂ðxÞ�1=2 ŝ2ðxÞ=ŝ2ðx; ŷÞ � 1
h i

ŷ is an
ffiffiffi
n
p

-consistent estimator for y0 and

ŝ2ðx; yÞ ¼
1

nhp̂ðxÞ

Xn

t¼1

s2ðx; ŷÞKh
x� Xt

h

� �

is a smooth version of s2(x, y). The use of ŝ2ðx; ŷÞ instead of s2ðx; ŷÞ
directly reduces the kernel estimation bias in T̂ðxÞ, thus allowing the use of
the optimal bandwidth h for ŝ2ðxÞ. This device is also used in Härdle and
Mammen (1993) in testing a parametric regression model. Kleinow (2002)
finds that the empirical level of T̂k is too large relative to the significance
level in finite samples and then proposes a modified test statistic using the
empirical likelihood approach, which endogenously studentizes conditional
heteroscedasticity. As expected, the empirical level of the modified test
improves in finite samples, though not necessarily for the power of the test.

Furthermore, Fan et al. (2003) test whether the coefficients in the time-
varying coefficient single factor diffusion model of Eq. (7) are really time
varying. Specially, they apply the generalized likelihood ratio test to check
whether some or all of {aj( � )} and {bj( � )} are constant. However, the
validity of the generalized likelihood ratio test for nonstationary time series
is still unknown and it needs a further investigation.

Finally, Kristensen (2008) considers an estimation method for two classes
of semiparametric scalar diffusion models. In the first class, the diffusion
term is parameterized and the drift is left unspecified, while in the second
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class, only the drift term is specified. Under the assumption of stationarity,
the unspecified term can be identified as a function of the parametric
component and the stationary density. Given a discrete sample with a fixed
time distance, the parametric component is then estimated by maximizing
the associated likelihood with a preliminary estimator of the unspecified
term plugged in. Kristensen (2008) shows that this pseudo-MLE (PMLE) isffiffiffi
n
p

-consistent with an asymptotically normal distribution under regularity
conditions, and demonstrates how the estimator can be used in specification
testing not only of the semiparametric model itself but also of fully
parametric ones. Since the likelihood function is not available on closed
form, the practical implementation of the proposed estimator and tests will
rely on simulated or approximate PMLE. Under regularity conditions,
Kristensen (2008) verifies that the approximate/simulated version of the
PMLE inherits the properties of the actual but infeasible estimator. Also,
Kristensen (2007) proposes a nonparametric kernel estimator of the drift
(diffusion) term in a diffusion model based on a preliminary parametric
estimator of the diffusion (drift) term. Under regularity conditions, rates of
convergence and asymptotic normality of the nonparametric estimators are
established. Moreover, Kristensen (2007) develops misspecification tests
of diffusion models based on the nonparametric estimators, and derives the
asymptotic properties of the tests. Furthermore, Kristensen (2007) proposes
a Markov bootstrap method for the test statistics to improve on the finite
sample approximations.

4. NONPARAMETRIC PRICING KERNEL MODELS

In modern finance, the pricing of contingent claims is important given the
phenomenal growth in turnover and volume of financial derivatives over the
past decades. Derivative pricing formulas are highly nonlinear even when they
are available in a closed form. Nonparametric techniques are expected to be
very useful in this area. In a standard dynamic exchange economy, the
equilibrium price of a security at date t with a single liquidating payoff Y(CT)
at date T, which is a function of aggregate consumption CT, is given by

Pt ¼ Et½YðCT ÞMt;T � (24)

where the conditional expectation is taken with respect to the information
set available to the representative economic agent at time t, Mt;T ¼

dT�1U 0ðCT Þ=U
0ðCtÞ, the so-called stochastic discount factor (SDF), is the
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marginal rate of substitution between dates t and T, d the rate of time
preference; and U( � ) the utility function of the economic agent. This is the
stochastic Euler equation, or the first-order condition of the intertemporal
utility maximization of the economic agent with suitable budget constraints
(e.g., Cochrane, 1996, 2001). It holds for all securities, including assets and
various derivatives. All capital asset pricing (CAP) models and derivative
pricing models can be embedded in this unified framework – each model
can be viewed as a specific specification of Mt,T. See Cochrane (1996, 2001)
for an excellent discussion.

There have been some parametric tests for CAP models (e.g., Hansen &
Janaganan, 1997). To the best of our knowledge, there are only a few
nonparametric tests available in the literature for testing CAP models based
on the kernel method, see Wang (2002, 2003) and Cai, Kuan and Sun
(2008a, 2008b), which will be elaborated in detail in Section 4.3 later. Also,
all the tests for CAP models are formulated in terms of discrete-time frame-
works. We focus on nonparametric derivative pricing in Section 4.2 and the
nonparametric asset pricing will be discussed separately in Section 4.3.

4.1. Nonparametric Risk Neutral Density

Assuming that the conditional distribution of future consumption CT

has a density representation ft( � ), then the conditional expectation can be
expressed as

Et½YðCT ÞMt;T � ¼ expð�trtÞ
Z

YðCT Þf


t ðCT ÞdCT ¼ expð�trtÞE
t ½YðCtÞ�

where rt is the risk-free interest rate, t ¼ T�t, and

f 
t ðCT Þ ¼
Mt;T f tðCT ÞR

Mt;Tf tðCT ÞdCT

is called the RND function; see Taylor (2005, Chapter 16) for details about the
definition and estimation methods. This function is also called the risk-neutral
pricing probability (Cox & Ross, 1976), or equivalent martingale measure
(Harrison & Kreps, 1979), or the state-price density (SPD). It contains
rich information on the pricing and hedging of risky assets in an economy,
and can be used to price other assets, or to recover the information about
the market preferences and asset price dynamics (Bahra, 1997; Jackwerth,
1999). Obviously, the RND function differs from ft(CT), the physical density
function of CT conditional on the information available at time t.
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4.2. Nonparametric Derivative Pricing

In order to calculate an option price from Eq. (24), one has to make some
assumption on the data-generating process of the underlying asset, {Pt}.
For example, Black and Scholes (1973) assume that the underlying asset
follows a geometric Brownian motion:

dPt ¼ mPtdtþ sPtdBt

where m and s are two constants. Applying Ito’s Lemma, one can show
immediately that Pt follows a lognormal distribution with parameter
ðm� 1

2
s2Þt and s

ffiffiffi
t
p

. Using a no-arbitrage argument, Black and Scholes
(1973) show that options can be priced if investors are risk neutral by setting
the expected rate of return in the underlying asset, m, equal to the risk-free
interest rate, r. Specifically, the European call option price is

pðKt; Pt; r; tÞ ¼ PtFðdtÞ � e�rttKtFðdt � s
ffiffiffi
t
p
Þ (25)

where Kt is the strike price, F( � ) the standard normal cumulative distribu-
tion function, and dt ¼ flnðPt=KtÞ þ ðrþ

1
2
s2Þtg=ðs

ffiffiffi
t
p
Þ. In Eq. (25), the only

parameter that is not observable a time t is s. This parameter, when
multiplied with

ffiffiffi
t
p

, is the underlying asset return volatility over the
remaining life of the option. The knowledge of s can be inferred from the
prices of options traded in the markets: given an observed option price,
one can solve an appropriate option pricing model for s which is essentially
a market estimate of the future volatility of the underlying asset returns.
This estimate of s is known as ‘‘implied volatility.’’

The most important implication of Black–Scholes option pricing model is
that when the option is correctly priced, the implied volatility s2 should be
the same across all exercise prices of options on the same underlying asset
and with the same maturity date. However, the implied volatility observed
in the market is usually a convex function of exercise price, which is often
referred to as the ‘‘volatility smile.’’ This indicates that market participants
make more complicated assumptions than the geometric Brownian motion
for the dynamics of the underlying asset. In particular, the convexity of
‘‘volatility smile’’ indicates the degree to which the market RND function
has a heavier tail than a lognormal density. A great deal of effort has been
made to use alternative models for the underlying asset to smooth out the
volatility smile and so to achieve higher accuracy in pricing and hedging.

A more general approach to derivative pricing is to estimate the RND
function directly from the observed option prices and then use it to price
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derivatives or to extract market information. To obtain better estimation of
the RND function, several econometric techniques have been introduced.
These methods are all based on the following fundamental relation between
option prices and RNDs: Suppose Gt ¼ G(Kt, Pt, rt, t) is the option pricing
formula, then there is a close relation between the second derivative of Gt

with respect to the strike price Kt and the RND function:

@2Gt

@K2
t

¼ expð�trtÞf


t ðPT Þ (26)

This is first shown by Breeden and Litzenberger (1978) in a time-state
preference framework.

Most commonly used estimation methods for RNDs are various
parametric approaches. One of them is to assume that the underlying asset
follows a parametric diffusion process, from which one can obtain the
option pricing formula by a no-arbitrage argument, and then obtain the
RND function from Eq. (26) (see, e.g., Bates, 1991, 2000; Anagnou,
Bedendo, Hodges, & Tompkins, 2005). Another parametric approach is to
directly impose some form for the RND function and then estimate
unknown parameters by minimizing the distance between the observed
option prices and those generated by the assumed RND function (e.g.,
Jackwerth & Rubinstein, 1996; Melick & Thomas, 1997; Rubinstein, 1994).
A third parametric approach is to assume a parametric form for the call
pricing function or the implied volatility smile curve and then apply Eq. (26)
to get the RND function (Bates, 1991; Jarrow & Tudd, 1982; Longstaff,
1992, 1995; Shimko, 1993).

The aforementioned parametric approaches all impose certain restrictive
assumptions, directly or indirectly, on the data-generating process as well as
the SDF in some cases. The obtained RND function is not robust to the
violation of these restrictions. To avoid this drawback, Ait-Sahalia and Lo
(1998) use a nonparametric method to extract the RND function from
option prices.

Given observed call option prices {Gt, Kt, t}, the price of the underlying
asset {Pt}, and the risk-free rate of interest {rt}, Ait-Sahalia and Lo (1998)
construct a kernel estimator for E(Gt|Pt, Kt, t, rt). Under standard regularity
conditions, Ait-Sahalia and Lo (1998) show that the RND estimator is
consistent and asymptotically normal, and they provide explicit expressions
for the asymptotic variance of the estimator.

Armed with the RND estimator, Ait-Sahalia and Lo (1998) apply it to the
pricing and delta hedging of S&P 500 call and put options using daily data
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obtained from the Chicago Board Options Exchange for the sample
period from January 4, 1993 to December 31, 1993. The RND estimator
exhibits negative skewness and excess kurtosis, a common feature of
historical stock returns. Unlike many parametric option pricing models, the
RND-generated option pricing formula is capable of capturing persistent
‘‘volatility smiles’’ and other empirical features of market prices. Ait-Sahalia
and Lo (2000) use a nonparametric RND estimator to compute the
economic value at risk, that is, the value at risk of the RND function.

The artificial neural network (ANN) has received much attention in
economics and finance over the last decade. Hutchinson, Lo, and Poggio
(1994), Anders, Korn, and Schmitt (1998), and Hanke (1999) have
successfully applied the ANN models to estimate pricing formulas of
financial derivatives. In particular, Hutchinson et al. (1994) use the ANN to
address the following question: If option prices are truly determined by
the Black–Scholes formula exactly, can ANN ‘‘learn’’ the Black–Scholes
formula? In other words, can the Black–Scholes formula be estimated
nonparametrically via learning networks with a sufficient degree of
accuracy to be of practical use? Hutchinson et al. (1994) perform Monte
Carlo simulation experiments in which various ANNs are trained on
artificially generated Black–Scholes formula and then compare to the
Black–Scholes formula both analytically and in out-of-sample hedging
experiments. They begin by simulating a two-year sample of daily
stock prices, and creating a cross-section of options each day according to
the rules used by the Chicago Broad Options Exchange with prices
given by the Black–Scholes formula. They find that, even with training
sets of only six months of daily data, learning network pricing formulas
can approximate the Black–Scholes formula with reasonable accuracy. The
nonlinear models obtained from neural networks yield estimated option
prices and deltas that are difficult to distinguish visually from the true
Black–Scholes values.

Based on the economic theory of option pricing, the price of a call option
should be a monotonically decreasing convex function of the strike price
and the SPD proportional to the second derivative of the call function
(see Eq. (26)). Hence, the SPD is a valid density function over future values
of the underlying asset price and must be nonnegative and integrate to one.
Therefore, Yatchew and Härdle (2006) combine shape restrictions with
nonparametric regression to estimate the call price function and the SPD
within a single least squares procedure. Constraints include smoothness of
various order derivatives, monotonicity and convexity of the call function,
and integration to one of the SPD. Confidence intervals and test procedures
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are to be implemented using bootstrap methods. In addition, they apply the
procedures to option data on the DAX index.

There are several directions of further research on nonparametric
estimation and testing of RNDs for derivative pricing. First, how to evaluate
the quality of an RND function estimated from option prices? In other
words, how to judge how well an estimated RND function reflects the market
expected uncertainty of the underlying asset? Because the RND function
differs from the physical probability density function of the underlying asset,
the valuation of the RND function is rather challenging. The method
developed by Hong and Li (2005) cannot be applied directly. One possible
way of evaluating the RND function is to assume a certain family of
utility functions for the representative investor, as in Rubinstein (1994) and
Anagnou et al. (2005). Based on this assumption, one can obtain the SDF and
then the physical probability density function, to which Hong and Li’s (2005)
test can be applied. However, the utility function of the economic agent is
not observable. Thus, when the test delivers a rejection, it may be due to
either misspecification of the utility function or misspecification of the data-
generating process, or both. More fundamentally, it is not clear whether the
economy can be regarded as a proxy by a representative agent.

A practical issue in recovering the RND function is the limitation of
option prices data with certain common characterizations. In other words,
the sample size of option price data could be small in many applications.
As a result, nonparametric methods should be carefully developed to fit the
problems on hand.

Most econometric techniques to estimate the RND function is restricted
to European options, while many of the more liquid exchange-traded
options are often American. Rather complex extensions of the existing
methods, including the nonparametric ones, are required in order to
estimate the RND functions from the prices of American options. This is an
interesting and practically important direction for further research.

4.3. Nonparametric Asset Pricing

The CAP model and the arbitrage asset pricing theory (APT) have been
cornerstones in theoretical and empirical finance for decades. A classical
CAP model usually assumes a simple and stable linear relationship
between an asset’s systematic risk and its expected return; see the books
by Campbell et al. (1997) and Cochrane (2001) for details. However, this
simple relationship assumption has been challenged and rejected by several
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recent studies based on empirical evidences of time variation in betas and
expected returns (as well as return volatilities). As with other models, one
considers the conditional CAP models or nonlinear APT with time-
varying betas to characterize the time variations in betas and risk premia.
In particular, Fama and French (1992, 1993, 1995) use some instrumental
variables such as book-to-market equity ratio and market equity as proxies
for some unidentified risk factors to explain the time variation in returns.
Although Ferson (1989), Harvey (1989), Ferson and Harvey (1991, 1993,
1998, 1999), Ferson and Korajczyk (1995), and Jagannathan and Wang
(1996) conclude that beta and market risk premium vary over time, a static
CAP model should incorporate time variations in beta in the model.
Although there is a vast amount of empirical evidences on time variation in
betas and risk premia, there is no theoretical guidance on how betas and risk
premia vary with time or variables that represent conditioning information.
Many recent studies focus on modeling the variation in betas using
continuous approximation and the theoretical framework of the conditional
CAP models; see Cochrane (1996), Jagannathan and Wang (1996, 2002),
Wang (2002, 2003), Ang and Liu (2004), and the references therein.
Recently, Ghysels (1998) discusses the problem in detail and stresses the
impact of misspecification of beta risk dynamics on inference and estimation.
Also, he argues that betas change through time very slowly and linear
factor models like the conditional CAP model may have a tendency to
overstate the time variation. Further, Ghysels (1998) shows that among
several well-known time-varying beta models, a serious misspecification
produces time variation in beta that is highly volatile and leads to large
pricing errors. Finally, Ghysels (1998) concludes that it is better to use the
static CAP model in pricing when we do not have a proper model to capture
time variation in betas correctly.

It is well documented that large pricing errors could be due to the linear
approach used in a nonlinear model, and treating a nonlinear relationship
as a linear could lead to serious prediction problems in estimation. To
overcome these problems, some nonlinear models have been considered
in the recent literature. Following are some examples: Bansal, Hsieh, and
Viswanathan (1993) and Bansal and Viswanathan (1993) advocate the idea
of a flexible SDF model in empirical asset pricing, and they focus on
nonlinear arbitrage pricing theory models by assuming that the SDF is a
nonlinear function of a few state variables. Further, Akdeniz, Altay-Salih,
and Caner (2003) test for the existence of significant evidence of nonlinearity
in the time series relationship of industry returns with market returns using
the heteroskedasticity consistent Lagrange multiplier test of Hansen (1996)
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under the framework of the threshold model, and they find that there exists
statistically significant nonlinearity in this relationship with respect to real
interest rates. Wang (2002, 2003) explores a nonparametric form of the SDF
model and conducted a test based on the nonparametric model. Parametric
models for time-varying betas can be the most efficient if the underlying
betas are correctly specified. However, a misspecification may cause serious
bias, and model constraints may distort the betas in local area.

To follow the notions from Bansal et al. (1993), Bansal and Viswanathan
(1993), Ghysels (1998), and Wang (2002, 2003), which are slightly different
from those used in Eq. (24), a very simplified version of the SDF framework
for asset pricing admits a basic pricing representation, which is a special case
of model (24),

E½mtþ1ri;tþ1jOt� ¼ 0 (27)

where Ot denotes the information set at time t, mtþ1 the SDF or the
pricing kernel, and ri,tþ1 the excess return on the ith asset or portfolio. Here,
�tþ1 ¼ mtþ1ri;tþ1 is called the pricing error. In empirical finance, different
models impose different constraints on the SDF. Particularly, the SDF is
usually assumed to be a linear function of factors in various applications
and then it becomes the well-known CAP model, see Jagannathan and
Wang (2002) and Wang (2003). Indeed, Jagannathan and Wang (2002) give
the detailed comparison of the SDF and CAP model representations.
Further, when the SDF is fully parameterized such as linear form, the
general method of moments (GMM) of Hansen (1982) can be used to
estimate parameters and test the model; see Campbell et al. (1997) and
Cochrane (2001) for details.

Recently, Bansal et al. (1993) and Bansal and Viswanathan (1993) assume
that mtþ1 is a nonlinear function of a few state variables. Since the exact
form of the nonlinear pricing kernel is unknown, Bansal and Viswanathan
(1993) suggest using the polynomial expansion to approximate it and then
apply the GMM for estimating and testing. As pointed out by Wang (2003),
although this approach is intuitive and general, one of the shortcomings
is that it is difficult to obtain the distribution theory and the effective
assessment of finite sample performance. To overcome this difficulty,
instead of considering the nonlinear pricing kernel, Ghysels (1998) focuses
on the nonlinear parametric model and uses a set of moment conditions
suitable for GMM estimation of parameters involved. Wang (2003) studies
the nonparametric conditional CAP model and gives an explicit expression
for the pricing kernel mtþ1, that is, mtþ1 ¼ 1� bðZtÞrp;tþ1, where Zt is a k	 1
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vector of conditioning variables from Ot; bðZtÞ ¼ Eðrp;tþ1jZtÞ=Eðr2p;tþ1jZtÞ

which is an unknown function, and rp,tþ1 is the return on the market
portfolio in excess of the riskless rate. Since the functional form of b( � ) is
unknown, Wang (2003) suggests estimating b( � ) by using the NW method
to two regression functions E(rp,tþ1|Zt) and Eðr2p;tþ1jZtÞ. Also, he conducts a
simple nonparametric test about the pricing error. Indeed, his test is the
well-known F-test by running a multiple regression of the estimated pricing
error �̂tþ1 versus a group of information variables; see Eq. (32) later for
details. Further, Wang (2003) extends this setting to multifactor models by
allowing b( � ) to change over time, that is, b(Zt) ¼ b(t). Finally, Bansal et al.
(1993), Bansal and Viswanathan (1993), and Ghysels (1998) do not assume
that mtþ1 is a linear function of rp,tþ1 and instead they consider a parametric
model by using the polynomial expansion.

To combine the models studied by Bansal et al. (1993), Bansal and
Viswanathan (1993), Ghysels (1998), and Wang (2002, 2003), and some
other models in the finance literature under a very general framework,
Cai, Kuan, and Sun (2008a) assume that the nonlinear pricing kernel has
the form of mtþ1 ¼ 1�m(Zt)rp,tþ1, where m( � ) is unspecified and they focus
on the following nonparametric APT model:

E½f1�mðZtÞrp;tþ1gri;tþ1jOt� ¼ 0 (28)

where m( � ) is an unknown function of Zt which is a k	 1 vector of
conditioning variables from Ot. Indeed, Eq. (28) can be regarded as a
moment (orthogonal) condition. The main interest of Eq. (28) is to identify
and estimate the function m(Zt) as well as test whether the model is correctly
specified.

Let It be a q	 1 (qZk) vector of conditional variables from Ot, including
Zt, satisfying the following orthogonal condition:

E½f1�mðZtÞrp;tþ1gri;tþ1jI t� ¼ 0 (29)

which can be regarded as an approximation of Eq. (28). It follows from the
orthogonality condition in Eq. (29) that for any vector function Q(Vt)�Qt

with a dimension dq specified later,

E½Qtf1�mðZtÞrp;tþ1gri;tþ1jI t� ¼ 0

and its sample version is

1

T

XT

t¼1

Qtf1�mðZtÞrp;tþ1gri;tþ1 ¼ 0 (30)
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Therefore, Cai et al. (2008a) propose a new nonparametric estimation
procedure to combine the orthogonality conditions given in Eq. (30) with the
local linear fitting scheme of Fan and Gijbels (1996) to estimate the unknown
function m( � ). This nonparametric estimation approach is called by Cai et al.
(2008a) as the nonparametric generalized method of moment (NPGMM).

For a given grid point z0 and {Zt} in a neighborhood of z0, the
orthogonality conditions in Eq. (30) can be approximated by the following
locally weighted orthogonality conditions:

XT

t¼1

Qt½1� ða� bT ðZt � z0ÞÞrp;tþ1�ri;tþ1KhðZt � z0Þ ¼ 0 (31)

where Khð�Þ ¼ h�kKð�=hÞ; Kð�Þ is a kernel function in Rk and h ¼ hnW0 a
bandwidth, which controls the amount of smoothing used in the estimation.
Eq. (31) can be viewed as a generalization of the nonparametric estimation
equations in Cai (2003) and the locally weighted version of (9.2.29) in
Hamilton (1994, p. 243). Therefore, solving the above equations leads to the
NPGMM estimate of m(z0), denoted by m̂ðz0Þ, which is â, where ðâ; b̂Þ is the
minimizer of Eq. (31). Cai et al. (2008a) discuss how to choose Qt and derive
the asymptotic properties of the proposed nonparametric estimator.

Let êi;tþ1 be the estimated pricing error, that is, êi;tþ1 ¼ m̂tþ1ri;tþ1, where
m̂tþ1 ¼ 1� m̂ðZtÞrp;tþ1. To test Eðei;tþ1jOtÞ ¼ 0, Wang (2002, 2003) con-
siders a simple test as follows. First, to run a multiple regression

êi;tþ1 ¼ VT
t di þ vi;tþ1 (32)

where Vt is a q	 1 (qZk) vector of observed variables from Ot,
8 and then

test if all the regression coefficients are zero, that is, H0 : d1 ¼ � � � ¼ dq ¼ 0.
By assuming that the distribution of vi,tþ1 is normal, Wang (2002, 2003)
uses a conventional F-test. Also, Wang (2002) discusses two alternative test
procedures. Indeed, the above model can be viewed as a linear approxima-
tion of E[ei,tþ1|Vt]. To examine the magnitude of pricing errors, Ghysels
(1998) considers the mean square error (MSE) as a criterion to test if the
conditional CAP model or APT model is misspecified relative to the
unconditional one.

To check the misspecification of the model, Cai, Kuan, and Sun (2008b)
consider the testing hypothesis H0,

H0 : mð�Þ ¼ m0ð�Þ versus Ha : mð�Þam0ð�Þ (33)

where m0( � ) has a particular form. For example, if m0( � ) ¼ b( � ), where b( � )
is given in Wang (2003), this test is about testing the mean-covariance

ZONGWU CAI AND YONGMIAO HONG414



efficiency. If m( � ) is a linear function, the test reduces to testing whether
the linear pricing kernel is appropriate. Then, Cai et al. (2008b) construct a
consistent nonparametric test based on a U-Statistics technique, described as
follows. Since It is a q	 1 (qZk) vector of observed variables from Ot,
similar to Wang (2003), It is taken to be Zt. It is clear that E(ei,tþ1|Zt) ¼ 0,
where ei;tþ1 ¼ ½1�m0ðZtÞrp;tþ1�ri;tþ1, if and only if ½Eðei;tþ1jZtÞ�

2f ðZtÞ ¼ 0,
and if and only if Eðei;tþ1Eðei;tþ1jZtÞf ðZtÞ ¼ 0, where f( � ) is the density of
Zt. Interestingly, the testing problem on conditional moment becomes
unconditional. Obviously, the test statistic could be postulated as

UT ¼
1

T

XT

t¼1

ei;tþ1Eðei;tþ1jZtÞf ðZtÞ (34)

if ei;tþ1Eðei;tþ1jZtÞf ðZtÞ would be known. Since Eðei;tþ1jZtÞf ðZtÞ is unknown,
its leave-one-out Nadaraya–Watson estimator can be formulated as

Êðei;tþ1jZtÞf ðZtÞ ¼
1

T � 1

XT

sat

ei;sþ1KhðZs � ZtÞ (35)

Plugging Eq. (35) into Eq. (34) and replacing ei,tþ1 by its estimate
êi;tþ1 ¼ êt, one obtain the test statistic, denoted by ÛT , as

ÛT ¼
1

TðT � 1Þ

X

sat

KhðZs � ZtÞêsêt (36)

which is indeed a second-order U-statistics. Finally, Cai et al. (2008b) show
that this nonparametric test statistic is consistent. In addition, they apply
the proposed testing procedure to test if either the CAP model or the
Fama and French model, in the flexible nonparametric form, can explain the
momentum profit which is the value-weighted portfolio of NYSE stocks as
the market portfolio, using the dividend-price ratio, the default premium,
the one-month Treasury bill rate, and the excess return on the NYSE
equally weighted portfolio as the conditioning variables.

5. NONPARAMETRIC PREDICTIVE

MODELS FOR ASSET RETURNS

The predictability of stock returns has been studied for the last two decades
as a cornerstone research topic in economics and finance,9 and it is now
routinely used in studies of many financial applications such as mutual fund
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performances, tests of the conditional CAP, and optimal asset allocations.10

Tremendous empirical studies document the predictability of stock returns
using various lagged financial variables, such as the log dividend-price ratio,
the log earning-price ratio, the log book-to-market ratio, the dividend yield,
the term spread and default premium, and the interest rates. Important
questions are often asked about whether the returns are predictable and
whether the predictability is stable over time. Since many of the predictive
financial variables are highly persistent and even nonstationary, it is really
challenging econometrically or statistically to answer these questions.

Predictability issues are generally assessed in the context of parametric
predictive regression models in which rates of returns are regressed against
the lagged values of stochastic explanatory variables (or state variables).
Mankiw and Shapiro (1986) and Stambaugh (1986) were first to discern
the econometric and statistical difficulties inherent in the estimation of
predictive regressions through the structural predictive linear model as

yt ¼ a0 þ a1xt�1 þ �t; xt ¼ rxt�1 þ ut; 1 � t � n (37)

where yt is the predictable variable, say excess stock return at time t;

innovations {(et, ut)} are iid bivariate normal N(0, S) with
P
¼

s2� s�u
s�u s2u

 !

;

and xt�1 is the first lag of a financial variable such as the log dividend-price
ratio, which is commonly modeled by an AR(1) model as the second
equation in model (37).

There are several limitations to model (37) that should be seriously
considered. First, note that the correlation between two innovations et and
ut in Eq. (37) is f ¼ seu/sesu, which is unfortunately non-zero for many
empirical applications; see, for example, Table 4 in Campbell and Yogo
(2006) and Table 1 in Torous, Valkanov, and Yan (2004) for some real
applications. This creates the so-called ‘‘endogeneity’’ (xt�1 and et may be
correlated) problem which makes modeling difficult and produces biased
estimation. Another difficulty comes from the parameter r, which is the
unknown degree of persistence of the variable xt. That is, xt is stationary
if |r|o1 – see Viceira (1997), Amihud and Hurvich (2004), Paye and
Timmermann (2006), and Dangl and Halling (2007); or it is unit root or
integrated if r ¼ 1, denoted by I(1) – see Park and Hahn (1999), Chang
and Martinez-Chombo (2003), and Cai, Li, and Park (2009b); or it is
local to unity or nearly integrated if r ¼ 1þc/n for some co0, denoted by
NI(1) – see Elliott and Stock (1994), Cavanagh, Elliott, and Stock (1995),
Torous et al. (2004), Campbell and Yogo (2006), Polk, Thompson, and
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Vuolteenaho (2006), and Rossi (2007), among others. This means that the
predictive variable xt is highly persistent, and even nonstationary, which
may cause troubles for econometric modeling.

The third difficulty is the instability issue of the return predictive model.
In fact, in return predictive models based on financial instruments such as
the dividend and earnings yield, short interest rates, term spreads, and
default premium, and so on, there have been many evidences on the
instability of prediction model, particularly based on the dividend and
earnings yield and the sample from the second half of the 1990s. This leads
to the conclusion that the coefficients should change over time; see, for
example, Viceira (1997), Lettau and Ludvigsson (2001), Goyal and Welch
(2003), Paye and Timmermann (2006), Ang and Bekaert (2007), and Dangl
and Halling (2007). While the aforementioned studies found evidences of
instability in return predictive models, they did not provide any guideline on
how the coefficients change over the time and where the return models may
have changed. It is well known that if return predictive models are unstable,
one can only assess the economic significance of return predictability
provided it can be determined how widespread such instability changes over
time and the extent to which it affects the predictability of stock returns.
Therefore, all of the foregoing difficulties about the classical predictive
regression models motivate us to propose a new varying coefficient
predictive regression model. The proposed model is not only interesting in
its applications to finance and economics but also important in enriching
the econometric theory.

As shown in Nelson and Kim (1993), because of the endogeneity, the
ordinary least squares (OLS) estimate of the slope coefficient a1 in Eq. (37)
and its standard errors are substantially biased in finite samples if xt is
highly persistent, not really exogenous, and even nonstationary. Conven-
tional tests based on standard t-statistics from OLS estimates tend to over
reject the null of non-predictability in Monte Carlo simulations. Some
improvements have been developed recently to deal with the bias issue. For
example, the first-order bias-correction estimator is proposed by Stambaugh
(1999) based on Kendall’s (1954) analytical result for the bias expression of
the least squares estimate of r, while Amihud and Hurvich (2004) propose a
two-stage least squares estimator by using a linear projection of et onto ut.
Finally, the conservative bias-adjusted estimator is proposed by Lewellen
(2004) if r is very close to one for some predicting variables. Unfortunately,
all of them still have not overcome the instability difficulty mentioned
above. To deal with the instability problems, Paye and Timmermann (2006)
analyze the excess returns on international equity indices related to state
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variables such as the lagged dividend yield, short interest rate, term spread,
and default premium, to investigate how widespread the evidence of
structural breaks is and to what extent breaks affect the predictability
of stock returns. Finally, Dangl and Halling (2007) consider equity return
prediction model with random coefficients generated from a unit root
process, related to 16 state variables.

Cai and Wang (2008a) consider a time-varying coefficient predictive
regression model to allow the coefficients a0 and a1 in Eq. (37) to change
over time (to be function of time), denoted by a0(t) and a1(t). They use a
nonlinear projection of et onto ut, that is et ¼ a2(t) utþvt, and then model
(37) becomes the following time-varying coefficient predictive model:

yt ¼ a0ðtÞ þ a1ðtÞxt�1 þ a2ðtÞut þ vt; xt ¼ rxt�1 þ ut; 1 � t � n (38)

They apply the local linear method to find the nonparametric estimates
for aj(t) and derive the asymptotic properties for the proposed estimator.
Also, they derive the limiting distribution of the proposed nonparametric
estimator, which is a mixed normal with conditional variance being a
function of integrations of an Ornstein–Uhlenbeck process (mean-reverting
process). They also show that the convergence rates for the intercept
function (the regular rate at (nh)1/2) and the slope function (a faster rate at
(n2h)1/2) are totally different due to the NI(1) property of the state variable,
although the asymptotic bias, coming from the local linear approximation,
is the same as the stationary covariate case. Therefore, to estimate the
intercept function optimally, Cai and Wang (2008a) propose a two-stage
optimal estimation procedure similar to the profile likelihood method;
see, for example, Speckman (1988), Cai (2002a, 2002b), and Cai et al.
(2009b), and they also show that the proposed two-stage estimator reaches
indeed the optimality.

Cai and Wang (2008b) consider some consistent nonparametric tests for
testing the null hypothesis of whether a parametric linear regression model is
suitable or if there is no relationship between the dependent variable and
predictors. Therefore, these testing problems can be postulated as the
following general testing hypothesis:

H0 : ajðtÞ ¼ ajðt; yjÞ (39)

where aj(t, yj) is a known function with unknown parameter yj. If aj(t, yj)
is constant, Eq. (39) becomes to test if model (37) is appropriate. If
a1(t, y1) ¼ 0, it is to test if there exists predictability. If aj(t, yj) is a piecewise
constant function, it is to test whether there exits any structural change.
Cai and Wang (2008b) propose a nonparametric test which is a U-statistic
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type, similar to Eq. (36), and they also show that the proposed test statistic
has different asymptotic behaviors depending on the stochastic properties of
xt. Specifically, Cai and Wang (2008b) address the following two scenarios:
(a) xt is nonstationary (either I(1) or NI(1)); (b) xt contains both stationary
and nonstationary components. Cai and Wang (2008a, 2008b) apply the
estimation and testing procedures described above to consider the instability
of predictability of some financial variables. Their test finds evidence for
instability of predictability for the dividend-price and earnings-price ratios.
They also find evidence for instability of predictability with the short rate
and the long-short yield spread, for which the conventional test leads to
valid inference.

For the linear projection used by Amihud and Hurvich (2004), it is
implicitly assumed that the joint distribution of two innovations et and ut
in model (37) is normal and this assumption might not hold for all
applications. To relax this harsh assumption, Cai (2008) considers a
nonlinear projection of et onto xt�1 instead of ut as et ¼ f(xt�1)þ vt, so that
E(vt|xt�1) ¼ 0. Therefore, the endogeneity is removed. Then, model (37)
becomes the following classical regression model with nonstationary
predictors:

yt ¼ gðxt�1Þ þ vt; xt ¼ rxt�1 þ ut; 1 � t � n (40)

where gðxt�1Þ ¼ a0 þ a1xt�1 þ fðxt�1Þ and E(vt|xt�1) ¼ 0. Now, for model
(40), the testing predictability H0: a1 ¼ 0 for model (37) as in Campbell and
Yogo (2006) becomes the testing hypothesis H0: g(x) ¼ c for model (40),
which is indeed more general. To estimate g( � ) nonparametrically, Cai
(2008) uses a local linear or local constant method and derives the limiting
distribution of the nonparametric estimator when xt is an I(1) process. It is
interesting to note that the limiting distribution of the proposed nonpara-
metric estimator is a mixed normal with a conditional variance associated
with a local time of a standard Brownian motion and the convergence rate
is

ffiffiffiffiffiffiffiffiffiffiffi
n1=2h
p

instead of the conventional rate
ffiffiffiffiffi
nh
p

. Furthermore, Cai (2008)
proposes two test procedures. The first one is similar to the testing approach
proposed in Sun, Cai, and Li (2008) when xt is integrated and the second
one is to use the generalized likelihood ratio type testing procedure as in Cai
et al. (2000) and the bootstrap. Finally, Cai (2008) applies the aforemen-
tioned estimation and testing procedures to consider the predictability of
some financial instruments. The tests find some strong evidences that the
predictability exists for the log dividend-price ratio, log earnings-price ratio,
the short rate, and the long-short yield spread.
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6. CONCLUSION

Over the last several years, nonparametric methods for both continuous and
discrete time have become an integral part of research in financial economics.
The literature is already vast and continues to grow swiftly, involving a full
spread of participants for both financial economists and statisticians and
engaging a wide sweep of academic journals. The field has left indelible mark
on almost all core areas in finance such as APT, consumption portfolio
selection, derivatives, and risk analysis. The popularity of this field is also
witnessed by the fact that the graduate students at both master and doctoral
levels in economics, finance, mathematics, and statistics are expected to take
courses in this discipline or alike and review the important research papers in
this area to search for their own research interests, particularly dissertation
topics for doctoral students. On the other hand, this area also has made
an impact in the financial industry, as the sophisticated nonparametric
techniques can be of practical assistance in the industry. We hope that this
selective review has provided the reader a perspective on this important field
in finance and statistics and some open research problems.

Finally, we would like to point out that the paper by Cai, Gu, and Li
(2009a) gives a comprehensive survey on some recent developments in non-
parametric econometrics, including nonparametric estimation and testing of
regression functions with mixed discrete and continuous covariates, nonpara-
metric estimation/testing with nonstationary data, nonparametric instrumen-
tal variable estimations, and nonparametric estimation of quantile regression
models, which can be applied to financial studies. Other two promising lines of
nonparametric finance are nonparametric volatility (conditional variance) and
ARCH- or GARCH-type models and nonparametric methods in volatility for
high-frequency data with/without microstructure noise. The reader interested
in these areas of research should consult with the recent works, to name just
a few, including Fan and Wang (2007), Long, Su, and Ullah (2009), and
Mishra, Su, and Ullah (2009), and the references therein. Unfortunately, these
topics are omitted in this paper due to too vast literature. However, we will
write a separate survey paper on this important financial area, which is
volatility models for both low-frequency and high-frequency data.

NOTES

1. Other theoretical models are studied by Brennan and Schwartz (1979),
Constantinides (1992), Courtadon (1982), Cox, Ingersoll, and Ross (1980),

ZONGWU CAI AND YONGMIAO HONG420



Dothan (1978), Duffie and Kan (1996), Longstaff and Schwartz (1992), Marsh and
Rosenfeld (1983), and Merton (1973). Heath, Jarrow, and Morton (1992) consider
another important class of term structure models which use the forward rate as the
underlying state variable.
2. Empirical studies on the short rate include Ait-Sahalia (1996a, 1996b),

Andersen and Lund (1997), Ang and Bekaert (2002a, 2002b), Brenner, Harjes, and
Kroner (1996), Brown and Dybvig (1986), Chan et al. (1992), Chapman and Pearson
(2000), Chapman, Long, and Pearson (1999), Conley et al. (1997), Gray (1996), and
Stanton (1997).
3. See, to name just a few, Pan (1997), Duffie and Pan (2001), Bollerslev and Zhou

(2002), Eraker, Johannes, and Polson (2003), Bates (2000), Duffie et al. (2000),
Johannes (2004), Liu et al. (2002), Zhou (2001), Singleton (2001), Perron (2001),
Chernov et al. (2003).
4. Sundaresan (2001) states that ‘‘perhaps the most significant development in the

continuous-time field during the last decade has been the innovations in econometric
theory and in the estimation techniques for models in continuous time.’’ For other
reviews of the recent literature, see Melino (1994), Tauchen (1997, 2001), and
Campbell et al. (1997).
5. A simple example is the Vasicek model, where if we vary the speed of mean

reversion and the scale of diffusion in the same proportion, the marginal density will
remain unchanged, but the transition density will be different.
6. One could simply ignore the data in the boundary regions and only use the data

in the interior region. Such a trimming procedure is simple, but in the present
context, it would lead to the loss of significant amount of information. If h ¼ sn�

1
5

where s2 ¼ Var(Xt), for example, then about 23, 20, and 10 of a uniformly distributed
sample will fall into the boundary regions when n ¼ 100, 500, and 5,000, respectively.
For financial time series, one may be particularly interested in the tail distribution of
the underlying process, which is exactly contained in (and only in) the boundary
regions.
Another solution is to use a kernel that adapts to the boundary regions and can

effectively eliminate the boundary bias. One example is the so-called jackknife
kernel, as used in Chapman and Pearson (2000). In the present context, the jackknife
kernel, however, has some undesired features in finite samples. For example, it may
generate negative density estimates in the boundary regions because the jackknife
kernel can be negative in these regions. It also induces a relatively large variance for
the kernel estimates in the boundary regions, adversely affecting the power of the test
in finite samples.
7. Chen, Gao, and Tang (2008) consider kernel-based simultaneous specification

testing for both mean and variance models in a discrete-time setup with dependent
observations. The empirical likelihood principle is used to construct the test statistic.
They apply the test to check adequacy of a discrete version of a continuous-time
diffusion model.
8. Wang (2003) takes Vt to be Zt in his empirical analysis.
9. See, for example, Fama and French (1988), Keim and Stambaugh (1986),

Campbell and Shiller (1988), Cutler, Poterba, and Summers (1991), Balvers,
Cosimano, and McDonald (1990), Schwert (1990), Fama (1990), and Kothari and
Shanken (1997).
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10. See, Christopherson, Ferson, and Glassman (1998), Ferson and Schadt (1996),
Ferson and Harvey (1991), Ghysels (1998), Ait-Sahalia and Brandt (2001), Barberis
(2000), Brandt (1999), Campbell and Viceira (1998), and Kandel and Stambaugh
(1996).
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Yatchew, A., & Härdle, W. (2006). Nonparametric state price density estimation using

constrained least squares and the bootstrap. Journal of Econometrics, 133, 579–599.

Xu, K., & Phillips, P. B. C. (2007). Tilted nonparametric estimation of volatility functions.

Cowles Foundation Discussion Paper no. 1612R. Department of Economics, Yale

University, New Haven, CT.

Zhou, H. (2001). Jump-diffusion term structure and Ito conditional moment generator. Working

Paper. Federal Reserve Board.

ZONGWU CAI AND YONGMIAO HONG432


	Some recent developments in nonparametric finance
	Introduction
	Nonparametric diffusion models
	Diffusion Models
	Nonparametric Estimation
	Time-Dependent Diffusion Models
	Jump-Diffusion Models
	Time-Dependent Jump-Diffusion Models

	Nonparametric inferences of parametric diffusion models
	Nonparametric Estimation
	Nonparametric Testing

	Nonparametric pricing kernel models
	Nonparametric Risk Neutral Density
	Nonparametric Derivative Pricing
	Nonparametric Asset Pricing

	Nonparametric predictive models for asset returns
	Conclusion
	Notes
	Acknowledgments
	References


