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60.1  Introduction 

This article provides a survey on term structure models designed for pricing 

fixed income securities and their derivatives. 1  The past several decades have 

witnessed a rapid development in the fixed-income markets. A number of new 

fixed-income instruments have been introduced successfully into the financial market. 

These include, to mention just a few, strips, debt warrants, put bonds, commercial 

mortgage-backed securities, payment-in-kind debentures, zero-coupon convertibles, 

interest rate futures and options, credit default swaps, and swaptions. The size of the 

fixed-income market has greatly expanded. The total value of the fixed-income assets 

is about two-thirds of the market value of all outstanding securities.2  From the 

investment perspective, it is important to understand how fixed-income securities are 

priced.   

The term structure of interest rates plays a key role in pricing fixed income 

securities. Not surprisingly, a vast literature has been devoted to understanding the 

stochastic behavior of term structure of interest rate, the pricing mechanism of 

fixed-income markets, and the spread between different fixed-income securities. Past 

research generally focuses on: (i) modeling the term structure of interest rates and 

yield spreads; (ii) providing empirical evidence; and (iii) applying the theory to the 

pricing of fixed-income instruments and risk management. As such, our review 

centers on alternative models of term structure of interest rates, their tractability, 

empirical performance, and applications.  
                                                        
1 For a survey on term structure models, see Dai and Singleton (2002b), Dai and Singleton (2003), and Maes 
(2004). 
2 See The 2008 Statistical Abstract, U.S. Census Bureau. 
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We begin with the basic definitions and notations in Section 1. We provide clear 

concepts of term structure of interest rates that are easily misunderstood. Section 2 

introduces bond pricing theory within the dynamic term structure model (DTSM) 

framework. This framework provides a general modeling structure in which most of 

the popular term structure models are nested. This discussion thus helps understand 

the primary ingredients to categorize different DTSMs, i.e., the risk-neutral 

distribution of the state variables and the mapping function between these state 

variables and instantaneous interest rate. 

Sections 3 provides a literature review of the studies on default free bonds. 

Several widely used continuous-time DTSMs are reviewed here, including affine, 

quadratic, regime switching, jump-diffusion and stochastic volatility models. We 

conclude this section with a discussion of empirical performance of these DTSMs, 

where we discuss some open issues, including the expectation puzzle, the linearity of 

state variables, the advantages of multifactor and nonlinear models, and their 

implications for pricing and risk management.  

The studies of defaultable bonds are explored in section 4. We review both 

structural and reduced-form models, with particular attention given to the later. 

Several important issues in reduced form models are addressed here, including the 

specification of recovery rates, default intensity, coupon payment, other factors such 

as liquidity and taxes, and correlated defaults. Since it is convenient to have a 

closed-form pricing formula, it is important to evaluate the tradeoff between 

analytical tractability and the model complexity. Major empirical issues are related to 
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uncovering the components of yield spreads and answering the question whether the 

factors are latent or observable. 

Section 5 reviews the studies on two popular interest rate derivatives: interest rate 

swap and credit default swap. Here we present the pricing formulas of interest rate 

swap and credit default swap based on risk-neutral pricing theory. Other risk factors, 

such as counterparty risk and liquidity risk are then introduced into the pricing 

formula. Following this, we review important empirical work on the determinants of 

interest rate swap spread and credit default swap spread.  

Section 6 concludes the paper by providing a summary of the literature and 

directions for future research. These include: (i) the economic significance of DTSM 

specification on pricing and risk management; (ii) the difference of interest rate 

dynamics in the risk neutral measure and physical measure; (iii) the decomposition of 

yield spreads; and (iv) the pricing of credit risk with correlated factors. 

60.2  Definitions and Notations 

60.2.1 Zero-coupon Bonds  

A default-free zero-coupon bond (or discount bond) with maturity date T and 

face value 1 is a claim which has a non-random payoff of 1 for sure at time T and no 

other payoff before maturity. The price of a zero-coupon bond with maturity date T at 

time 0 t T≤ ≤  is denoted by ( ),D t T .  

60.2.2 Term Structure of Interest Rates 

Consider a zero-coupon bond with a fixed maturity date T. The continuously 

compounded yield on this bond is  
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( ) ( )1, ln ,r t T D t T
T t

= −
−

                    (60.2.1) 

The zero-coupon yield curve or term structure of interest rates at time t is the 

function  

( ), :[0, )r t tτ τ→ + ∞ →ℜ                    (60.2.2) 

which maps time to maturity τ  into the yield of the zero-coupon bond with that 

maturity at time t. The price of the zero-coupon bond can be calculated from its yield 

by  

( ) ( ) ( ), exp ,D t T T t r t T= − −⎡ ⎤⎣ ⎦                (60.2.3) 

60.2.3 Instantaneous Interest Rate 

The instantaneous interest rate at time t, tr  is defined as: 

( )ln ,
limt T t

D t T
r

T t→

−
=

−
                (60.2.4) 

60.2.4 Forward Rate 

The forward rate at time t, 1 2T T
tf

→ , is the interest rate between two future time 

points 1T  and 2T  which is settled at time t.  Specifically,  

( ) ( )
1 2 1 2

2 1

ln , ln ,T T
t

D t T D t T
f

T T
→ −

−
＝                 (60.2.5) 

Remark: if 1T t= , ( )2
2,t T

tf r t T→ = . 

60.2.5 Instantaneous Forward Rate 

The instantaneous forward rate at time t with an effective date T, ( ),f t T  is 

defined as 

( ) ( ) ( ) ( )
2

2 2

2

2

ln , ln , ln ,
, lim limT T

tT T T T

D t T D t T D t T
f t T f

T T T
→

→ →

− ∂
= = = −

− ∂
    (60.2.6) 
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60.3  Bond Pricing in Dynamic Term Structure Model Framework 

60.3.1 Spot Rate Approach 

Let the instantaneous interest rate tr  be a deterministic function of state 

variables tY  and time t, where tY  is an 1K ×  vector, 

              ( ),t tr r Y t=                                (60.3.1) 

and the risk-neutral dynamics of tY  follow a diffusion process, 

               ( ) ( ), , Q
t t t tdY Y t dt Y t dWμ σ= +                    (60.3.2) 

where Q
tW  is a 1K ×  vector of standard and independent Brownian motions under 

the risk-neutral measure Q, ( ),Y tμ  (K x 1 vector) and ( ),Y tσ  (K x K matrix) are 

both deterministic functions of Y and t. 

By risk-neutral pricing theory,3 the price of a zero-coupon bond with maturity 

date T and face value 1 is given by 

                ( ) ( ), exp
TQ

t st
D t T E r ds⎡ ⎤= −⎢ ⎥⎣ ⎦∫                    (60.3.3) 

where Q
tE  represents the conditional expectation under risk-neutral measure Q. 

( ),D t T  is functionally related to K stochastic factors tY : 

( ) ( ), , , tD t T D t T Y=                        (60.3.4) 

By applying the discounted Feynman-Kac theorem4 to (60.3.3), it can be shown 

that ( ),D t T  must satisfy the partial differential equation (PDE),5 

( ) ( ) ( )
21, Trace , ,

2
T T

T

D D DY t Y t Y t rD
t Y Y Y

μ σ σ
⎡ ⎤∂ ∂ ∂

+ + =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
          (60.3.5) 

                                                        
3 The Fundamental Theorem of Finance states that under no arbitrage condition, there exists an equivalent 
martingale measure (risk-neutral) Q under which any security prices scaled by money market account are a 
martingale process. Such measure is unique if the market is both no arbitrage and complete. See Harrison and 
Kreps (1979), Duffie (1996), Cochrane (2001). 
4 For a detailed description of the discounted Feynman-Kac theorem, please refer to Shreve (2004). 
5 See also Dai and Singleton (2003).  
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with the boundary condition ( ), 1D T T =  for all Tr . The superscript T represents the 

transpose of a vector (or matrix). 

In order to solve the PDE in (60.3.5) with the boundary condition, we need to 

specify the diffusion process of state variables tY  in the risk-neutral measure and the 

functional form ( ),tr Y t  which determines the diffusion process of instantaneous 

interest rate in the risk-neutral measure. Models involved with such diffusion 

processes are called the dynamic term structure models (DTSMs). 

60.3.2 Forward Rate Approach 

If we know the initial forward rate curve ( ),f t T  for all values of 0 t T T≤ ≤ ≤ , 

we can recover ( ),D t T  by 

                 ( ) ( )( ), exp ,
T

t
D t T f t v dv= −∫                 (60.3.6) 

Heath, Jarrow and Morton (1992) propose the following forward rate process6  

               ( ) ( ) ( ), , , tdf t T t T dt t T dWα σ= +             (60.3.7) 

and find that under no arbitrage condition, 

(i) the forward rate evolves according to the following process 

      ( ) ( ) ( ) ( )*, , , , Q
tdf t T t T t T dt t T dWσ σ σ= +              (60.3.8) 

where ( ) ( )* , ,
T

t
t T t v dvσ σ= ∫ , and 

(ii) the zero coupon bond price evolves according to the following process 

      ( ) ( ) ( ) ( )*, , , , Q
t tdD t T r D t T dt t T D t T dWσ= −              (60.3.9) 

60.4  Dynamic Term Structure Models (DTSMs) 

In this section, we review the DTSMs commonly used in the pricing of 

                                                        
6 Shreve (2004) shows that every DTSM driven by Brownian motion is an HJM model. 
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default-free bonds. We begin with the affine DTSMs and then the nonlinear DTSMs.  

60.4.1 Affine DTSMs 

Affine DTSMs are characterized by the condition that the yield of zero-coupon 

bond is an affine (linear plus constant) function of the state variables, i.e., 

( ) ( ) ( ), T
tr t T A T t B T t Y= − + −               (60.4.1) 

60.4.1.1 One Factor Affine DTSMs 

If K = 1, the diffusion process for tr  is given by7  

( ) ( ), , Q
t t t tdr r t dt r t dWμ σ= +                 (60.4.2) 

which is the one-factor DTSM. Some of the popular one-factor affine models are 

summarized below. 

(1) Vasicek (1977) Model. In this model tr  follows the diffusion process with 

( ) ( ),t tr t rμ κ θ= − , and ( ),tr tσ σ= . In this case, ( ),D t T  is given by  

( ) ( ) ( )( ), exp tD t T A T t B T t r= − − − − , T t≥            (60.4.3) 

where ( ) ( ) ( )
2 2

2
22 4

A B Bσ στ θ τ τ τ
κ κ

⎛ ⎞
= − − +⎡ ⎤⎜ ⎟ ⎣ ⎦
⎝ ⎠

, and ( ) ( )1 exp
B

κτ
τ

κ
− −

= . 

   The instantaneous forward rate is given by  

( ) ( ) ( )( ) ( )( )
2 2

2, 1 1
2

T t T t T t
tf t T e r e eκ κ κσθ

κ
− − − − − −= + − − −           (60.4.4) 

and ( ) ( )( )
2

2, 1
2

T tv t T e κσ
κ

− −= −  is the conditional variance of Tr . 

(2) CIR (Cox, Ingersoll and Ross (1985)) Model. In this model, tr  follows the 

diffusion process with ( ) ( ),t tr t rμ κ θ= − , and ( ),t tr t rσ σ= . The zero-coupon 

                                                        
7 Throughout this paper, Q

tW  represents the standard Brownian motion under the risk-neutral measure Q and 

tW  stands for the standard Brownian motion under the physical measure. 
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bond price ( ),D t T  is given by 

( ) ( ) ( )( ), exp tD t T A T t B T t r= − − −                 (60.4.5) 

where ( )
( )

( )( )

22 /
/ 22
1 2

eA
e

κθ σ
κ γ τ

γτ

γτ
κ γ γ

+⎡ ⎤
= ⎢ ⎥

+ − +⎢ ⎥⎣ ⎦
, ( ) ( )

( )( )
2 1

1 2

e
B

e

γτ

γτ
τ

κ γ γ

−
=

+ − +
  

and 2 22γ κ σ= + . 

(3) Hull and White (1993) Model. The Hull and White (1993) model is a 

generalization of the Vasicek (1977) model that considers the time variant properties 

of κ , θ , and σ . In this model, tr  follows the diffusion process with 

( ) ( ) ( ),t tr t a t b t rμ = − , and ( ) ( ),tr t tσ σ= , where ( )a t , ( )b t  and ( )tσ  are 

non-random functions of t. ( ),D t T  is given by 

( ) ( ) ( )( ), exp , , tD t T A t T B t T r= − −                  (60.4.6) 

where ( ) ( ) ( ) ( ) ( )2 21, , ,
2

T

t
A t T a s B s T s B s T dsσ⎡ ⎤= −⎢ ⎥⎣ ⎦∫ , and 

( ) ( )( ), exp
T s

t t
B t T b u du ds= −∫ ∫                 (60.4.7) 

60.4.1.2 Multi-factor Affine DTSMs 

One can develop multi-factor affine DTSMs from the above one-factor examples 

by simply assuming that 0 1

K
t i iti

r Yδ δ
=

= +∑ , with each iY  following one of the 

preceding one-factor affine DTSMs.8 In the following, we first illustrate this type of 

model by the two-factor model and then generalize it to the multi-factor model. 

(1) Canonical Two-Factor Vasicek Model9  

                                                        
8 See Stambaugh (1988), Longstaff and Schwartz (1992), Chen and Scott (1993), Pearson and Sun (1994), Duffie 
and Singleton (1997) for the multi-factor version of CIR model. 
9 Please refer to Shreve (2004) for a description of the generalized two-factor Vasicek model. 
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1 1 1 1

2 21 1 2 2 2

0 1 1 2 2

Q
t t t

Q
t t t t

t t t

dY Y dt dW

dY Y dt Y dt dW
r Y Y

λ

λ λ
δ δ δ

⎧ = − +
⎪

= − − +⎨
⎪ = + +⎩

                (60.4.8) 

where 1
Q
tW  and 2

Q
tW  are independent standard Brownian motions under the 

risk-neutral measure. Given the stochastic processes of the factors, the price of 

zero-coupon bond ( ),D t T  is given by 

( ) ( ) ( ) ( )( )1 1 2 2, exp t tD t T A T t B T t Y B T t Y= − − − − − −           (60.4.9) 

where ( )1B τ , ( )2B τ  and ( )A τ  satisfy the following ordinary differential 

equations (ODEs), 

     

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

'
1 1 1 21 2 1

'
2 2 2 2

2 2
1 2 0

1 1'
2 2

B B B

B B

A B B

τ λ τ λ τ δ

τ λ τ δ

τ τ τ δ

⎧
= − − +⎪

⎪
= − +⎨

⎪
⎪ = − − +
⎩

               (60.4.10)  

with the boundary conditions ( ) ( ) ( )1 20 0 0 0B B A= = = . 

(2) Canonical Two-Factor CIR Model 

( )
( )

1 1 11 1 12 2 1 1

2 2 21 1 22 2 2 2

0 1 1 2 2

Q
t t t t t

Q
t t t t t

t t t

dY Y Y dt Y dW

dY Y Y dt Y dW
r Y Y

μ λ λ

μ λ λ
δ δ δ

⎧ = − − +
⎪⎪ = − − +⎨
⎪ = + +⎪⎩

           (60.4.11) 

Under some regularity conditions,  

( ) ( ) ( ) ( )( )1 1 2 2, exp t tD t T A T t B T t Y B T t Y= − − − − − −        (60.4.12) 

where ( )A τ , ( )1B τ , and ( )2B τ  satisfy the following ODEs,  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 11 1 21 2 1 1

2
2 12 1 22 2 2 2

1 1 2 2 0

1'
2
1'
2

'

B B B B

B B B B

A B B

τ λ τ λ τ τ δ

τ λ τ λ τ τ δ

τ μ τ μ τ δ

⎧ = − − − +⎪
⎪
⎪ = − − − +⎨
⎪
⎪ = + +
⎪⎩

        (60.4.13) 
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and the boundary conditions ( )0 0A = , ( )1 0 0B = , and ( )2 0 0B = . The superscript ′ 

denotes the first-order derivative. 

(3) Two-Factor Mixed Model 

( )1 1 1 1 1

2 2 2 21 1 1 1 2

0 1 1 2 2

Q
t t t t

Q Q
t t t t t t

t t t

dY Y dt Y dW

dY Y dt Y dW Y dW
r Y Y

μ λ

λ σ α β
δ δ δ

⎧ = − +
⎪⎪ = − + + +⎨
⎪ = + +⎪⎩

          (60.4.14) 

Then,  

( ) ( ) ( ) ( )( )1 1 2 2, exp t tD t T A T t B T t Y B T t Y= − − − − − −        (60.4.15) 

where ( )A τ , ( )1B τ , and ( )2B τ  satisfy the following ODEs,  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2 2
1 1 1 1 21 1 2 2 1

2 2 2 2

2
1 2 0

1' 1
2

'
1'
2

B B B B B B

B B

A B B

τ λ τ τ σ τ τ β τ δ

τ λ τ δ

τ μ τ α τ δ

⎧ = − − − − + +⎪
⎪

= − +⎨
⎪
⎪ = − +
⎩

  (60.4.16) 

and the boundary conditions ( )0 0A = , ( )1 0 0B = , and ( )2 0 0B = . 

(4) Dai and Singleton (2000) examine the multi-factor affine DTSMs with the 

following structure: 

( )
( ) 0,

Q
t t t t

T
t t

dY Y dt S dW

r Y t Yδ δ

⎧ = Κ Θ− +Σ⎪
⎨

= +⎪⎩
              (60.4.17) 

where tS  is a diagonal matrix with [ ] T
t ii i t iS Yα β= + . Let B  be the K x K matrix 

with the ith column given by iβ . By restricting the parameter vector 

( )0 , , , , , ,δ δ αΚ Θ Σ B , they construct admissible affine models that give a unique, 

well-defined solution for ( ),D t T  which is equal to ( ) ( )( )exp T
tA T t B T t Y− − −  by 

the following system of ODEs: 
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( ) ( ) ( )

( ) ( ) ( )

2

0
1

2

1

1'
2

1'
2

K
T T T

ii
i

K
T T

ii
i

A B B

B B B

τ τ τ α δ

τ τ τ β δ

=

=

⎧ ⎡ ⎤= −Θ Κ + Σ −⎪ ⎣ ⎦⎪
⎨
⎪ ⎡ ⎤= −Κ − Σ +⎣ ⎦⎪⎩

∑

∑
        (60.4.18) 

with the initial conditions that ( )0 0A =  and ( ) 10 0KB ×= . 

(5) Duffie and Kan (1996) provide sufficient conditions for affine DTSMs that 

could handle the general correlated affine diffusions:10 

 (i) ( ),Y tμ  is an affine function of tY : ( ), tY t a bYμ = + , where a is a K x 1 

vector and b is a K x K matrix. 

 (ii) ( ) ( ), , TY t Y tσ σ  is an affine function of tY :  

( ) ( ) 0 11
, , KT j

jtj
Y t Y t h h Yσ σ

=
= +∑                   (60.4.19) 

where 0h  and 1
jh , 1,2,...,j K=  are K x K matrices. 

60.4.2 Quadratic DTSMs 

Ahn, Dittmar and Gallant (2002) provide a general specification of quadratic 

DTSMs. The state variables tY  are assumed to follow the multivariate Gaussian 

processes with mean-reverting properties in the risk-neutral measure:  

[ ] ( ), Q
t t tdY Y dt Y t dWμ κ σ= − +                (60.4.20) 

where μ  is a K x 1 vector, κ  and σ are K x K matrices, and Q
tW  is a 

K-dimensional vector of the standard Brownian motions that are mutually 

independent under the risk-neutral measure Q. 

The instantaneous interest rate tr  is a quadratic function of the state variables, 

( ) 0, T T
t t tr Y t Y Y Yδ δ= + + Ψ                  (60.4.21) 

where 0δ  is a constant, δ  is a K x 1 vector, Ψ  is a K x K positive semi-definite 

                                                        
10 See Duffie, Filipovi and Schachermayer (2003) for sufficient and necessary conditions. 
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matrix, and 1
0 1

1 0
4

T
Kδ δ δ− ×− Ψ ≥ . 

Applying the discounted Feynman-Kac theorem to bond pricing, we obtain: 

( ) ( ) ( ) ( )( ), exp T T
t t tD t T A T t B T t Y Y C T t Y= − + − + −        (60.4.22) 

where ( )A τ , ( )B τ , and ( )C τ  satisfy the ODEs, 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 0

' 2

' 2 2
1' Trace
2

T T

T T

T TT T

C C C C C

B C B B C

A C B B B

τ τ σσ τ τ κ κ τ

τ τ σσ τ κ τ τ μ δ

τ σσ τ τ σσ τ τ μ δ

⎧
= − + −Ψ⎪

⎪
= − + −⎨

⎪
⎪ ⎡ ⎤= + + −⎣ ⎦⎩

      (60.4.23) 

with the initial conditions that ( )0 0A = , ( ) 10 0KB ×= , and ( )0 0K KC ×= .  

The yield of zero-coupon bond is a quadratic function of the state variables, 

( ) ( ) ( ) ( ),
T T

t t tA T t B T t Y Y C T t Y
r t T

T t
− + − + −

= −
−

         (60.4.24) 

The above is an example of the nonlinear model. Other examples of quadratic DTSMs 

include: 

(1) Beaglehole and Tenney (1991) Model: 0 0δ = , 10Kδ ×= ,Ψ , κ , and σ  are 

diagonal matrix. 

(2) Longstaff (1989) Model: 0 0δ = , 10Kδ ×= , Ψ , σ  are diagonal matrix, 

10Kκ ×= , and 10Kμ ×≠ . The key feature of this model is that the state variables are not 

mean reverting. 

(3) Constantinides (1992) Model: 10Kδ ×= , K KI ×Ψ = , σ  and κ  are diagonal 

matrices. 

60.4.3 DTSMs with Jumps 

The public announcement of important economic news and the sudden change of 

monetary policy typically have a jump impact on the interest rates. A number of 
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researchers (see, for example, Das (2002), and Johannes (2004)) find that most 

classical diffusion processes fail to explain the leptokurtosis of interest rate and 

suggest the use of jump in DTSMs. 

Suppose that ( ),t tr r Y t=  is a function of a jump-diffusion process Y with the 

risk-neutral dynamics 

( ) ( ), , Q
t t t t t tdY Y t dt Y t dW J dZμ σ= + + Δ             (60.4.25) 

where tZ  is a Poisson process with risk-neutral intensity tλ , and the jump size tJΔ  

follows the distribution ( ) ( ); ,t tv x v x Y t≡ . 

Bas and Das (1996) extend the Vasicek (1977) model to consider the jump 

behavior of interest rate.  Ahn and Thompson (1988) extend the CIR model to the 

case of state variables following a square-root process with jumps. Duffie, Pan and 

Singleton (2000) obtain the analytic expressions for ( ),D t T  with the affine 

jump-diffusion process. Piazzesi (2001) develops a class of affine-quadratic 

jump-diffusion models and links the jumps to the resetting of target interest rates by 

the Federal Reserve Bank. 

60.4.4 DTSMs with a Regime Switching 

The processes that govern the DTSMs are very likely to change over economic 

cycles. There is an extensive empirical literature that suggests the regime switching 

model for DTSMs (see, for example, Sanders and Unal (1988), Gray (1996), Garcia 

and Perron (1996), Ang and Bekaert (2002)).  Suppose that there are (S+1) possible 

states (regimes) evolved by a conditional Markov chain ts : { }0,1,...,SΩ→  with a 

( ) ( )1 1S S+ × + transition probability matrix tP  with the property that all rows are 
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sum to one. ij
tP dt  is the probability of moving from regime i to j over the next 

interval dt . 

The state variables tY  in the risk-neutral measure follow the following process 

( ) ( ), ,j j Q
t t t tdY Y t dt Y t dWμ σ= +              (60.4.26) 

where j indexes regime j. Let 1 , 0,1,...,
t

j
t s jz j S== =  be the regime indicator 

functions. Then ( ) ( )0
; , ,S j j

t t t tj
s Y t z Y tμ μ

=
=∑ , ( ) ( )0

; , ,S j j
t t t tj

s Y t z Y tσ σ
=

=∑  and 

( ) ( )0
, ,S j j

tj
D t T z D t T

=
=∑ , where ( ) ( ), ; , ,j

t tD t T D s j Y t T= = . 

Bansal and Zhou (2002) develop a discrete-time regime-switching model where 

the short interest rate and the market price of risks are subject to discrete regime shifts. 

Dai and Singleton (2003) propose a DTSM with regime switching that has a 

closed-form solution for the zero-coupon bond price. The dynamics for each regime i 

in risk-neutral measure is given by  

( )
( ) ( )
( ) ( )

0

1,2,...,

; ,

; ,

; ,

i i T
t t t Y t

i i
t t t t

i i T
t t t k k t k K

r r s i Y t Y

s i Y t Y

s i Y t diag Y

δ δ

μ μ κ θ

σ σ α β
=

⎧ ≡ = = +⎪
⎪ ≡ = = −⎨
⎪

≡ = = +⎪⎩

          (60.4.27) 

where 0
iδ  and i

kα  are constants, κ  is a constant K x K matrix, and Yδ , iθ  and 

kβ  are constant K x 1 vectors. With the additional assumption that tP  is state 

independent, they show that 

( ) ( ) ( )( ), exp Ti i
tD t T A T t B T t Y= − − − − , 0 i S≤ ≤          (60.4.28) 

where ( )iA τ  and ( )B τ  satisfy a set of ODEs. 

A characteristic of this model is that regime dependence under the risk-neutral 

measure enters only through the intercept term ( )iA T t− . The derivative of 

zero-coupon bond yields with respect to Y does not depend on the regime. 
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In a recent paper, Dai, Singleton and Yang (2007) develop a discrete-time 

multi-factor DTSM with regime switching that yields a closed-form solution for bond 

price with the following characteristics: (i) there are two regimes characterized by low 

(L) and high (H) volatility; (ii) the regime shift probabilities ( ), ,ij
tP i j H L=  under 

the physical  measure depend on the underlying change of state variables; and (iii) 

regime-shift risks are priced. 

60.4.5 DTSMs with Stochastic Volatility (SV) 

The stochastic volatility model introduces an additional factor, i.e., the volatility 

of tr , in an attempt to explain the instantaneous interest rate dynamics. Examples in 

this category are: 

(1) Longstaff and Schwartz (1992) SV model: 

( ) ( )
( )

( ) ( )

1 2

2 2

2 2
1 2

       +

       +

t t t

t t t t
t t

t t t

t t t t
t t

dr r V dt

r V V rdW dW

dV r V dt

r V V rdW dW

βδ αξ ξ δαγ βη
β α β α

β αα β
α β α β β α

αβ δ ξ βξ αδα γ β η
β α β α

β αα β
α β α β β α

⎧ ⎡ ⎤− −
= + − −⎪ ⎢ ⎥− −⎣ ⎦⎪

⎪ − −⎪ +
− −⎪⎪

⎨
−⎡ ⎤−⎪ = + − −⎢ ⎥⎪ − −⎣ ⎦⎪

⎪ − −
+⎪ − −⎪⎩

            (60.4.29)  

where α , β , γ , η , δ  and ξ  are positive constants and tV  is the instantaneous 

variance of changes in tr . 

(2) Andersen and Lund (1997), and Ball and Torous (1999) SV models: 

( )
( )

1 1

2 2
2 2

,  0

log log
t t t t t

t t t

dr r dt r dW

d dt dW

ρκ μ σ ρ

σ κ α σ η

⎧ = − + >⎪
⎨

= − +⎪⎩
       (60.4.30) 

(3) Bali (2000) SV model:  
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( )
( )
( )

1 1

2 2
2 2

3 3

t t t t t

t t t

t t t

dr r dt r dW

d dt dW

d dt dW

ρκ μ σ

σ κ φ σ η

σ κ ϕ σ ι

⎧ = − +
⎪⎪ = − +⎨
⎪

= − +⎪⎩

            (60.4.31) 

 (4) Collin-Dufresne and Goldstein (2002) SV model:11 

( )
( ) ( ) ( )

( ) ( ) ( )

1

2
1 2 3

2
1 2 3

        

        

Q
t v v t v t t

t t r r t v v t

Q Q Q
v t t r r t t t t

t r r t r t rv v t

Q Q Q
rv t t r t t r t t

dv k v dt v dW

d k k r k v dt

v dW v dW v dW

dr k k k v dt

v dW v dW v dW

θ θ θ θ

θ θ θ

θ θ

θ θ

μ σ

θ μ θ μ μ

σ σ α σ β

μ θ μ θ μ

σ α σ σ β

⎧ = − +
⎪

= − + − + −⎡ ⎤⎪ ⎣ ⎦
⎪⎪ + + + + +⎨
⎪

= − + − + −⎡ ⎤⎪ ⎣ ⎦
⎪

+ + + + +⎪⎩

        (60.4.32) 

60.4.6 Other non-affine DTSMs  

Besides the quadratic DTSMs, DTSMs with jumps, regime switching, and 

stochastic volatilities, there are other non-affine DTSMs with ( ),tY tμ  or ( ),tY tσ  

not satisfying the conditions of affine DTSMs suggested by Duffie and Kan (1996) 

and Duffie, Filipovi and Schachermayer (2003). Examples are: 

(1) Ahn and Gao (1999) nonlinear model: 

( )2 3
1 2 3 4 5 6t t t t t tdr r r dt r r dWα α α α α α= + + + + +       (60.4.33) 

(2) Ait-Sahalia (1996) nonlinear model: 

( )1 2
1 0 1 2t t t t t tdr r r r dt r dWρα α α α σ−
−= + + + +        (60.4.34) 

(3) Black, Derman and Toy (1990), and Black and Karasinski (1991) nonlinear 

model:12 

( )log log Q
t t t t t td r r dt dWμ κ σ= − +           (60.4.35) 

The other related but different classes of DTSMs include two categories. The 

                                                        
11 It should be noted that Longstaff and Schwartz (1992) and Collin-Dufresne and Goldstein (2002) SV model are 
also nested in affine DTSMs since their yields of zero-coupon bonds are also affine to state variables. 
12 Peterson, Stapleton and Subrahmanyam (1998) extend the lognormal model to two factor case. 
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first class of these models describes the DTSMs with a selection of macroeconomic 

variables. As Maes (2004) points out, there is a great incentive to investigate the 

relationship between the dynamics of macroeconomic variables and the term structure 

since there is strong evidence that term structure predicts movement on 

macroeconomic activities (see, for example, Estrella and Hardouvelis (1991), Estrella 

and Mishkin (1996, 1997, 1998)).  One important issue involved in these models is 

to interpret the economic meanings underlying the latent factors in terms of observed 

and unobserved macroeconomic variables such as inflation and output gaps. 

Dewachter, Lyrio and Maes (2006) study a continuous-time joint model of 

macroeconomy and the term structure of interest rates. Ang and Piazzesi (2003), and 

Dewachter and Lyrio (2006) find that macroeconomic factors clearly affect the short 

end of term structure. Kozicki and Tinsley (2001, 2002) find that missing factors may 

be related to the long-run inflation expectation of agents. Dewachter and Lyrio (2006) 

provide a macroeconomic interpretation for the latent factors in DTSMs: the “level” 

factor represents the long-run inflation expectation of agents; the “slope” factor 

captures the temporary business cycle conditions; and the “curvature” factor 

represents a clear independent monetary policy factor. Moreover, Wu (2006) develops 

a general equilibrium model of term structure with macroconomic factors. 

The second class views the whole term structure as state variables and models 

their dynamics accordingly.  Such high dimensional models are developed by 

Kennedy (1994) as “Brownian sheets”, Goldstein (2000) as “random fields” and 

Santa-Clara and Sornette (2001) as “stochastic string shocks”. 
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60.4.7 Empirical Performance  

Because bond pricing is an important issue and there are so many DTSMs, a 

large number of studies have evaluated different DTSMs and compared their 

empirical performance in search for a best model.  In the following, we summarize 

major results of empirical term structure studies. 

60.4.7.1 Explanation of Expectation Puzzle 

The expectation puzzle was documented by Fama (1984), Fama and Bliss (1987), 

Froot (1989), Campbell and Shiller (1991), and Bekaert, Hodrick and Marshall (1997), 

which has long posed a challenge for DTSMs.13 Campbell (1986) introduces a 

constant risk premium hypothesis to explain the expectations hypothesis. Campbell 

and Shiller (1991) attribute the expectation puzzle to the time-varying liquidity 

premium. Backus, Gregory and Zin (1989) show that a model assuming power utility 

preferences and time-varying expected consumption growth cannot account for this 

puzzle. Longstaff (2000) tests the expectations hypothesis at the extreme short end of 

the term structures and finds evidence supporting the hypothesis. Dai and Singleton 

(2002a) show that a statistical model of stochastic discount factor (SDF) can explain 

the puzzle. By altering the dependence of risk premia on factors, one can find 

parameter values for the three factor affine DTSMs that are consistent with the risk 

premium regressions in Fama and Bliss (1987) and Campbell and Shiller (1991). 

Using the framework of Campbell and Cochrane (1999), Wachter (2006) proposes a 

consumption-based model that accounts for many features of the nominal term 

                                                        
13 Campbell and Shiller (1991) run the regressions r(t+1,n-1)-r(t,n)=α+(1/n-1)βn(r(t,n)-r(t,1))+et, where r(t,n) is the 
yield of zero-coupon bond with maturity n at time t. Under the expectation hypothesis, βn=1 for all n. However, 
Campbell and Shiller (1991) show that βn is negative and increasing with n.  
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structure of interest rates. Bekaert and Hodrick (2001) argue that the past use of the 

large-sample critical regions instead of the small sample counterparts may have 

overstated the evidence against the expectations hypothesis. Backus, Foresi, 

Mozumdar and Wu (2001) find that it is unlikely to explain the expectation puzzle 

using a one-factor affine DTSM. 

60.4.7.2 Linear or Nonlinear Drift of State Variables? 

Most of the DTSMs assume that the drifts of state variables are linear (mean 

reverting). However, empirical findings are inconclusive. Ait-Sahalia (1996) 

constructs a specification test of DTSMs and rejects the linear drift specification. 

Stanton (1997) obtains similar results as Ait-Sahalia (1996). Conley, Hansen, Luttmer 

and Scheinkman (1997) examine the linearity of drift and find that mean reverting is 

stronger only for large values of interest rate. Ahn and Gao (1999) find nonlinearity in 

term structure dynamics. Chapman and Pearson (2000) conduct a Monte Carlo 

simulation of DTSMs with a linear drift and then apply the estimators of Ait-Sahalia 

(1996) and Stanton (1997) to the simulated data. They find strong mean reversions 

when interest rate is high. Elerian, Chib and Shephard (2001) and Jones (2003) use a 

Bayesian approach to show that stronger mean reversion in the extreme levels of 

interest rate depends critically on the prior distribution. In a survey paper, Chapman 

and Pearson (2001) examine the interest rate data and find that mean reversion is 

weak with a wide range of interest rates. The short rate series seems to be a 

“persistent” time series, i.e., it lingers over long consecutive periods above and below 

the unconditional long-run mean. Boudoukh, Richardson, Stanton and Whitelaw 
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(1998) and Balduzzi and Eom (2000) use the nonparametric analysis and find that the 

drifts in both two- and three-factor DTSMs are nonlinear. Dai and Singleton (2000) 

empirically test the affine DTSMs and find relatively promising performance of affine 

DTSMs. But as Ahn, Dittmar and Gallant (2002) point out, the results also suggest 

that there may be some omitted nonlinearity in the affine DTSMs since the pricing 

errors of affine DTSMs are sensitive to the magnitude of the slope of the yield curve 

and highly persistent. 

However, there are other empirical studies that support the linear drift. Durham 

(2003) applies the simulated maximum-likelihood estimator of Durham and Gallant 

(2002) to compare different DTSMs. The results suggest that simpler drift 

specifications are preferable to more flexible forms and that the drift function appears 

to be constant. Li, Pearson and Poteshman (2001) implement a moment-based 

estimator that accounts for the bias described by Chapman and Pearson (2000) and 

find no evidence of a nonlinear drift.  

In summary, the exact nature of drift for instantaneous interest rate is still 

inconclusive. Some evidence suggests that mean reversion is stronger in extreme 

levels of interest rates, while others fail to find strong evidence of nonlinearity. 

60.4.7.3 One Factor or Multiple Factors? 

While many studies employ single-factor models to describe the interest rate 

behavior, others suggest using multi-factor models. In a single-factor DTSM, the 

whole term structure may be inferred from the level of one factor, which is 

traditionally taken to be the instantaneous interest rate. There are some intuitive 
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reasons to criticize the single-factor DTSMs.14 First, it implies that changes in term 

structure and hence bond returns are perfectly correlated across maturities, which can 

be easily rejected by empirical evidence. Second, it can only accommodate term 

structures that are monotonically increasing, decreasing or normally humped. An 

inversely humped or any other shape cannot be generated by single-factor DTSMs. 

Third, Dewachter and Maes (2000) compare single-factor versus multi-factor DTSMs 

and find that one factor time-variant parameter models provide a relatively poor fit to 

the actual term structure observed in the market. Empirically, Brown and Dybvig 

(1986) find that single-factor DTSMs understate the volatility of long-term yields. 

Brown and Schaefer (1994) show that the mean reversion coefficient required to 

explain the cross-maturity patterns at one time is inconsistent with the best fit 

coefficient.  

Empirical research of the term structure models generally suggests that 

multi-factor DTSMs perform much better than single-factor DTSMs. Dai and 

Singleton (2000) show a substantial improvement in data fit offered by multi-factor 

DTSMs. Specifically, the changes in instantaneous interest rate may not only depend 

on the current level, but also on other factors which may be unobservable or 

observable. Dai and Singleton (2003) compare different DTSMs and find that: (i) the 

conditional volatilities of one-factor affine and quadratic DTSMs are affine and these 

models fail to capture the change of volatility, which suggest the need to use 

multi-factor DTSMs; (ii) In multi-factor DTSMs, the hump and inverted-hump of 

                                                        
14 See also Maes (2004). 
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volatility could be realized by the negative correlation between state variables or the 

negative correlation between state variables and interest rate; and (iii) the two-factor 

model performs the best. 

 A number of studies have attempted to provide economic meanings for the 

factors included in the multi-factor models.  These include Brennan and Schwartz 

(1979), Richard (1978), Longstaff and Schwartz (1992), Schaefer and Schwartz 

(1984), Andersen and Lund (1997), Balduzzi, Das, Foresi and Sundaram (1996), and 

Dewachter, Lyrio and Maes (2006). 

60.4.7.4 Affine or Nonlinear DTSMs? 

The academic literature has focused on the affine DTSMs which are mainly due 

to the fact that this class of models yields closed-form bond pricing formulas and can 

easily handle the cases with multiple factors. However, as Dai and Singleton (2000) 

and Maes (2004) point out, the affine DTSMs are not able to ensure the positivity of 

interest rates without having to impose parameter restrictions and without loosing 

flexibility on the unconditional correlation structure among the state variables. 

Moreover, the affine DTSMs fail to capture the nonlinearities in the dynamics of 

interest rates, which are documented by Ait-Sahalia (1999), Boudoukh, Richardson, 

Stanton and Whitelaw (1998) and Balduzzi and Eom (2000). 

Chan, Karolyi, Longstaff and Sanders (1992) compare different DTSMs using 

GMM. The results show that the models with volatility dependent on risk perform the 

best. Johannes (2004) examines some classical DTSMs and finds that these models 

fail to produce the distribution consistent with historical data. He then proposes the 
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jump factor in the DTSM. Hong and Li (2005) propose a nonparametric specification 

method to test DTSMs. The results show that although significant improvements are 

achieved by introducing jumps and regime switching into the term structure of interest 

rate, all models are still rejected, implying that specification errors remain in these 

DTSMs. Duffee (2002) tests the affine DTSMs and finds that affine DTSMs forecast 

future yield changes poorly. Affine DTSMs cannot simultaneously match term 

structure movements and bond return premiums without modifying the dependence of 

the market price of interest rate risk on interest rate volatility. 

60.4.7.5 What do we really care about? 

Perhaps there are two more fundamental questions than “how much we know the 

dynamics of short rates”. The first is do we really care the differences among these 

models? This question depends on whether different DTSMs have significantly 

different implications for their applications, such as pricing and risk management (for 

example the calculation of value-at-risk). Although more complicated models could 

capture some specific characteristics of underlying variables, the improvement for 

pricing and hedge may be limited.15 

Second, we should bear in mind that only the DTSMs in the risk-neutral measure 

matter for pricing. The dynamics of instantaneous interest rate in the risk-neutral 

measure is different from that in the physical measure. For example, nonlinearity in 

the drift based on the physical measure need not imply the nonlinearity in the 

risk-neutral measure. It is the market price of risk for interest rate that connects the 

                                                        
15 Bakshi, Cao and Chen (1997) compare different option pricing models and find that the improvement by some 
complicated models may be limited. 
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DTSMs in different measures (see, for example, Dai and Singleton (2000), Duffee 

(2002), Duarte (2004), Ahn and Gao (1999), Cheridito, Filipovi and Kimmel (2007) 

for different specifications of the market price of risk for interest rate). Therefore, we 

should be cautious when we attempt to infer the risk-neutral parameter values from 

the variables in the physical measure. As Dai and Singleton (2003) argue, it seems 

that having multiple factors in linear models is more important than introducing the 

nonlinearity into models with a smaller number of factors. Moreover, because of the 

computational demand of pricing in the presence of nonlinear drifts, attention now 

continues to focus primarily on DTSMs with a linear drift for state variables. 

60.5  Models of Defaultable Bonds 

Defaultable bonds are bonds whose payoff depends on the occurrence of default 

event (credit risk). Therefore, modeling the default probability (credit risk) is the key 

issue for pricing the defaultable bonds. Basically, there are two approaches to model 

the default: structural and reduced-form approaches. 

60.5.1  Structural Models 

Structural models are pioneered by Black and Scholes (1973) and Merton (1974) 

that regard the corporate bond as the derivative of firm value. In these models, default 

occurs at the maturity date of debt provided that the asset value is less than the face 

value of maturing debt. Default before maturity is not considered in both studies. 

Black and Cox (1976) propose the first passage time model that defines the default 

time as the first time the asset value falls below a boundary. Within this framework, 

default can occur before the maturity of debt. Geske (1977) introduces the coupon 



25 
 

payment in the structural model and treats it as a compound option. On each coupon 

date, if shareholders decide to pay the coupon by selling new equity, the firm stays 

alive; otherwise, default occurs and bondholders seize firm assets. Leland and Toft 

(1996) consider the case that the firm continuously issues a constant amount of debt 

with a fixed maturity that pays continuous coupons. Similar to Geske (1977), the 

default boundary is endogenous since equity holders can decide whether or not to 

issue new equity to pay for the debt in case that the firm’s payout is not large enough 

to cover the debt service requirements. Longstaff and Schwartz (1995) introduce 

interest rate risk described by the Vasicek (1977) model and provide a pricing formula 

for fixed coupon and floating coupon bonds. Collin-Dufresne and Goldstein (2001) 

extend the Longstaff and Schwartz (1995) model to account for a stationary leverage 

ratio. Zhou (1997) extends Merton’s approach by modeling the firm’s value process as 

a geometric jump-diffusion process. Anderson and Sundaresan (1996) and 

Mella-Barral and Perraudin (1997) introduce simplified bargaining games to obtain 

analytical expressions for the default boundaries in structural models. Duffie and 

Lando (2001) consider incomplete accounting information in structural models. 

Related structural models are also studied by Ho and Singer (1982), Titman and 

Torous (1989), Kim, Ramaswamy and Sundaresan (1993), Leland (1994), Fama and 

French (1996), Briys and de Varenne (1997), Cathcart and El-Jahel (1998), Goldstein, 

Ju and Leland (2001), Nielsen, Saá-Requejo and Santa-Clara (2001), Acharya and 

Carpenter (2002), and Vassalou and Xing (2004). 

60.5.2 Reduced-form Models 
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Reduced-form models treat default time as the arrival time of a counting process 

with the associated intensity process. Jarrow and Turnbull (1995) model the default 

time as a Poisson process with constant intensity λ , i.e., the number of events 

occurring at any time interval tΔ  follows the Poisson distribution with intensity tλΔ , 

( ) ( ){ } ( ) , 0,1..., , 0
!

n
tt

P N t t N t n e n s t
n

λλ − ΔΔ
+ Δ − = = = Δ ≥        (60.5.1) 

where N(t) is the number of events until t.  

Duffie and Huang (1996), Jarrow, Lando and Turnbull (1997), Lando (1998), and 

Madan and Unal (1998) introduce the doubly stochastic and state dependent default 

intensity into the Jarrow-Turnbull model, which then becomes the benchmark 

specification for reduce-form models. The model is formalized as the following. 

Define the default time τ  as a random variable between [0,T], and the probability of 

no default until time t (survival probability), 0 t T≤ ≤ , is ( )tS P tτ= ≥ . The 

unconditional default probability between t and t t+ Δ  is 

( ) t t tP t t t S Sτ +Δ< ≤ + Δ = − . The conditional default probability between t and t t+ Δ  

conditional on no default until t is 

( )| t t t

t

S SP t t t t
S

τ τ +Δ−
< ≤ + Δ ≥ =               (60.5.2) 

The conditional default probability in unit time is defined as 

( )| t t t

t

P t t t t S S
t S t

τ τ +Δ< ≤ + Δ ≥ −
=

Δ Δ
            (60.5.3) 

The instantaneous conditional default probability (default intensity) tλ  is defined as 

( ) '

0

|
lim t

t t
t

P t t t t S
t S

τ τ
λ

Δ →

< ≤ + Δ ≥
= = −

Δ
           (60.5.4) 
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with the initial condition that S0 = 1, 

( )0
exp

t

t sS dsλ= −∫                      (60.5.5) 

Then the price of a zero-coupon defaultable bond with face value 1 is given by 

( ) ( ) { } ( ) { }, exp 1 exp 1
TQ Q

t u t uT Tt t
B t T E r du E r du

τ

τ τ τω ≤ >
⎡ ⎤ ⎡ ⎤= − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫         (60.5.6) 

where ( ) { }exp 1Q
t u Tt

E r du
τ

τ τω ≤
⎡ ⎤−⎢ ⎥⎣ ⎦∫  is the present value of the recovery upon default 

( ),Yτ τω ω τ=  at the default arrival time τ  whenever Tτ ≤ , and 

( )( ) { }exp 1
TQ

t Tt
E r u du τ >

⎡ ⎤−⎢ ⎥⎣ ⎦∫  is the present value of face value conditional on no 

default before maturity. Simplifying the pricing formula (see, e.g., Lando (1998)) 

gives the following result 

( ) ( )( ) ( )( ), exp exp
T s TQ Q

t s s u u t s st t t
B t T E r du ds E r dsλ ω λ λ⎡ ⎤ ⎡ ⎤= − + + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ ∫  (60.5.7) 

The pricing formula of defaultable bonds depends on three variables: recovery 

rate, default-free interest rates and the default intensity. Differences in the treatment of 

three factors differentiate each reduced-form model.  

60.5.2.1  Recovery Rate 

(1) Fractional Recovery of Par, Payable at Maturity 

This recovery formulation refers to the case that in the event of default, a fraction 

ω  of the face value is recovered but the payment is postponed until the maturity of 

defaultable bond. This in fact results in the following specification: 

( ),D Tτω ω τ=                              (60.5.8) 

If ω  is constant and state-independent,  
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( ) ( ) ( )( ), exp exp
T T s TQ Q

t s u u t s st t t t
B t T E r du du ds E r dsω λ λ λ⎡ ⎤ ⎡ ⎤= − − + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ ∫ ∫ (60.5.9) 

which becomes 

( ) ( ) ( )( )
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⎡ ⎤⎡ ⎤= − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤+ − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫ ∫

∫ ∫
       (60.5.10) 

if tr  and tλ  are independent. The Jarrow, Lando and Turnbull (1997) model is a 

special case of this class. 

    (2) Fractional Recovery of Par, Payment at Default 

If a constant and state-independent fraction ω  of the face value is recovered and 

paid at the time of default,  

( ) ( )( ) ( )( ), exp exp
T s TQ Q

t s u u t s st t t
B t T E r du ds E r dsω λ λ λ⎡ ⎤ ⎡ ⎤= − + + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ ∫  (60.5.11) 

which becomes 

( ) ( ) ( )( )
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T s sQ Q
t s u t ut t t

T TQ Q
t s t st t

B t T E du E r du ds
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⎡ ⎤⎡ ⎤= − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤+ − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫ ∫

∫ ∫
       (60.5.12) 

if tr  and tλ  are independent. Examples of this class of models are Duffie (1998a), 

Duffie and Singleton (1999a), Longstaff, Mithal and Neis (2005), and Liu, Shi, Wang 

and Wu (2007).16 

Due to the identification problem in obtaining separate estimates for the recovery 

rate and the default intensity, most empirical studies try to estimate the default 

intensity process from defaultable bond data using an exogenously given recovery 

rate. Houweling and Vorst (2005) find that under some specification of λ  and r, the 

                                                        
16 There is another class of models that specify the recovery as a fraction of market value, see, Lando (1998), and 
Li (2000b). 
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value of recovery rate does not substantially affect the results if it lies within a logical 

interval. 

60.5.2.2 Dynamics of Interest Rate and Default Intensity 

Although many complicated DTSMs (for example, DTSMs with jump, and 

regime switching) are applicable to model the dynamics of interest rate and default 

intensity in the pricing of defaultable bonds, affine models are still the most favored 

framework due to the analytical tractability of these models. Consider the state vector 

Y  that follows an affine-jump diffusion process 

( ) Q
jt j j jt j jt jt jt jtdY Y dt Y dW J dZκ μ σ= − + + Δ , j = 1,…, K     (60.5.13) 

where Q
jtW , j = 1,…, K are independent standard Brownian motions under the 

risk-neutral measure. tr  and tλ  are typically modeled by making them dependent 

on a set of common stochastic factors Y , which introduces stochasticity and 

correlation in the process of tr  and tλ .  For example, 

( ) ( ) ( )
( ) ( ) ( )

0 1
1

0 1
1

...

...

K
t r r t r Kt

K
t t Kt

r a t a t Y a t Y

a t a t Y a t Yλ λ λλ

⎧ = + + +⎪
⎨

= + + +⎪⎩
           (60.5.14) 

Duffie and Singleton (2003) formulate an intensity process as a mean-reverting 

process with jumps. The default intensity between jump events is given by: 

( )t
t

d
dt
λ κ γ λ= −                         (60.5.15) 

Thus, at any time t between two jumps, 

( ) ( )t T
t Te κλ γ λ γ− −= + −                  (60.5.16) 

where T  is the time of last jump and Tλ  is the jump intensity at time T. 

Suppose that jumps occur at Poisson arrival time with an intensity c and that jump 

sizes are exponentially distributed with mean J, Duffie and Singleton (2003) show 
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that the conditional survival probability from t to s is: 

( ) ( ) ( )| ts t s tP s t eα β λτ τ − + −> ≥ =            (60.5.17) 

where 

( )

( )

1

1 1ln 1

e

e c eJt J
J

κτ

κτ κτ

β τ
κ

α τ γ τ
κ κ κ

−

− −

⎧ −
= −⎪

⎪
⎨ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎪ = − − − − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ +⎝ ⎠ ⎝ ⎠⎣ ⎦⎩

    (60.5.18) 

Duffie and Singleton (1999a) model tr  and tλ  as 

0 0 1 2

0 3

t t t t

t t t

r Y Y Y

bY Y

ρ

λ

⎧ = − + +⎪
⎨

= +⎪⎩
                        (60.5.19) 

where 0tY , 1tY , 2tY  and 3tY  are independent CIR (square-root) processes under the 

risk-neutral measure, and 0ρ  and b are constants. The degree of negative 

correlations between tr  and tλ  is controlled by the choice of b.17 

Liu, Shi, Wang and Wu (2007) model tr  and tλ  as: 

( )
( )
( )

*

1

* * *
2

t t t

Q
t r r t r t t

Q
t t t t

r r

dr r dt r dW

d dt dWλ λ λ

λ λ β

κ μ σ

λ κ μ λ σ λ

⎧ = + −
⎪⎪ = − +⎨
⎪

= − +⎪⎩

              (60.5.20) 

where 1
Q
tW , 2

Q
tW  are two independent standard Brownian motions under the 

risk-neutral measure. The degree of negative correlations between tr  and tλ  is 

controlled by the choice of β . On the other hand, Duffie (1998b), Bielecki and 

Rutkowski (2000, 2004) apply the spread forward rate and price the zero-coupon 

defautable bond as 

( ) ( ) ( )( )( ), exp , ,
T

t
B t T f t v s t v dv= − +∫           (60.5.21) 

where ( ),f t v  is the default-free forward rate, and ( ),s t v  is the spread forward 

                                                        
17 Chen, Cheng, Fabozzi and Liu (2006) also propose a pricing model with correlated factors.  
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rate. 

60.5.2.3 Coupon 

It is quite natural to extend the pricing of zero-coupon defautable bonds to 

coupon bonds. Assuming that the coupon C is paid continuously and the recovery is a 

fraction of the par value which is paid at default time, the price of coupon defaultable 

bond is given by 

( ) ( )( )( ) ( )( )
( )( )

, , exp exp

                   + exp

T s TQ Q
t u u t s st t t

T sQ
t s u ut t

B C t T E C r du ds E r ds

E r du ds

λ λ

ω λ λ

⎡ ⎤= − + + − +⎢ ⎥⎣ ⎦
⎡ ⎤− +⎢ ⎥⎣ ⎦

∫ ∫ ∫

∫ ∫
 (60.5.22)  

If tr  and tλ  are assumed to be independent, it can be further simplified to 

( ) ( ) ( )
( ) ( )

( ) ( )

, , exp exp

                  exp exp

                   + exp exp

T s sQ Q
t u t ut t t

T TQ Q
t s t st t

T s sQ Q
t u t s ut t t

B C t T C E r du E du ds

E r ds E ds

E r du E du ds

λ

λ

ω λ λ

⎛ ⎞⎡ ⎤ ⎡ ⎤= − −⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
⎡ ⎤ ⎡ ⎤+ − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤− −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

    (60.5.23) 

The case of discrete coupon payments and the fractional recovery of par value paid at 

maturity can be derived in a similar way. 

60.5.2.4 Liquidity and Taxes 

Standard term structure models of default risk assume that yield spreads between 

corporate (defaultable) bonds and government (default-free) bonds are determined by 

two factors: default risk ( tλ ) and the expected loss (1 ω− ) in the event of default. 

However, recent studies have shown that other factors, such as liquidity and taxes can 

significantly affect corporate bond yield spreads.18  

                                                        
18 See Elton, Gruber, Agrawal and Mann (2001), Longstaff, Mithal and Neis (2005), and Liu, Shi, Wang and Wu 
(2007). 
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Using a reduced-from approach, Longstaff, Mithal and Neis (2005) introduce the 

liquidity factor into the defaultable bond pricing formula and obtain a closed-form 

solution for corporate bond price with default and liquidity, 

( ) ( )( )
( )( )

( )( )

, , exp

                   + exp

                   + exp

T sQ
t u u ut t

TQ
t s s st

T sQ
t s u u ut t

B C t T E C r l du ds

E r l ds

E r l du ds

λ

λ

ω λ λ

⎡ ⎤= − + +⎢ ⎥⎣ ⎦
⎡ ⎤− + +⎢ ⎥⎣ ⎦
⎡ ⎤− + +⎢ ⎥⎣ ⎦

∫ ∫

∫

∫ ∫

    (60.5.24) 

where tr , tλ  and tl  denote the default free interest rate, default intensity and 

liquidity intensity at time t, respectively. Their dynamics follow 

( ) 1

2

Q
t t t t

Q
t l t

d dt dW

dl dW
λ λ λλ κ μ λ σ λ

σ

⎧ = − +⎪
⎨

=⎪⎩
            (60.5.25) 

where 1
Q
tW  and 2

Q
tW  are independent standard Brownian motions under the 

risk-neutral measure. 

The tax effect, on the other hand, is much more complicated due to changes in tax 

rate and differential tax treatments of capital gain (loss) in discount (premium) bonds. 

For example, for the discount bonds, when there is no default, the difference between 

the face value and the price is regarded as the capital gain and should be taxed by 

capital gain tax rate. When there is a default before maturity, the investor expects a 

capital loss and receives a tax rebate from the government. Moreover, the premium 

and discount of corporate bonds must be amortized, which makes the pricing more 

complicated. Liu, Shi, Wang and Wu (2007) deal with these issues by assuming a 

buy-and-hold strategy of bond and obtain the pricing formula for corporate bond with 

taxes. The price of discount defaultable coupon bond without amortization is given 
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by.19 

( ) ( ) ( )( )
( )( )( ) ( )( )
( )( )( ) ( )( )
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∑ ∫

∫

∫ ∫

   (60.5.26) 

where iτ  is the income tax rate, gτ  is the capital tax rate, it , 1,...,i M=  is the 

discrete time of coupon payment. After a simple transformation, 

( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )

1

1, 1 exp
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               + 1 exp
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=
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⎡ ⎤− − +⎢ ⎥⎣ ⎦

∑ ∫

∫

∫ ∫

       (60.5.27) 

and ( )( ) ( )( ){ }1 exp expM Mt t sQ
g t s s s u ut t t

Z E r ds r du dsτ λ λ λ⎡ ⎤ ⎡ ⎤= − − + + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ ∫  

   In a recent paper, Lin, Liu and Wu (2007) propose a generalized defaultable bond 

pricing model with default, liquidity and tax. The price of discount defaultable coupon 

bond without amortization is given by 

( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )

1

1, 1 exp
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               + 1 exp

m
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t g s u u ut t

B t t E C r l ds
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τ λ
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=

⎡ ⎤= − − + +⎢ ⎥⎣ ⎦
⎡ ⎤− − + +⎢ ⎥⎣ ⎦
⎡ ⎤− − + +⎢ ⎥⎣ ⎦

∑ ∫

∫

∫ ∫

      (60.5.28) 

and 

( )( ) ( )( ){ }1 exp expM Mt t sQ
g t s s s s u u ut t t

Z E r l ds r l du dsτ λ λ λ⎡ ⎤ ⎡ ⎤= − − + + + − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ ∫ .    

Under the similar assumptions of tr , tλ  and tl  as in Longstaff, Mithal and Neis 

                                                        
19 For the case of premium bond and amortization, see Liu, Shi, Wang and Wu (2007). 
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(2005), Lin, Liu and Wu (2007) derive a closed-form solution for defaultable coupon 

bond with default, liquidity and tax. 

60.5.2.5 Correlated Default 

Default correlation is an important issue when dealing with the default or survival 

probability of more than one firm. Schonbucher (2003) lays out some basic properties 

to model the correlated defaults. First, the model must be able to produce default 

correlations of a realistic magnitude. Second, it must keep the number of parameters 

used to describe the dependence structure under control, without growing 

dramatically with the number of firms. Third, it should be a dynamic model, capable 

of modeling the number of defaults as well as the timing of default. Fourth, it should 

be able to reproduce the periods with default clustering. Finally, the easier calibration 

and implementation of the model, the better. 

Consider two firms A and B that have not defaulted before time t ( 0 t T≤ ≤ ), 

whose default probabilities before T are given by Ap  and Bp . Then the linear 

correlation coefficient20 between the default indicator random variables { }1 1
AA Tτ ≤=  

and { }1 1
BB Tτ ≤=  is given by21 

( )
( ) ( )

1 ,1
1 1

AB A B
A B

A A B B

p p p
p p p p

ρ −
=

− −
              (60.5.29) 

There are three different approaches to model default correlation in the literature.22 

We describe these approaches below. 

                                                        
20 This correlation is based on risk-neutral measure which is different from physical measure used to compute the 
correlation from empirical default events. Jarrow, Lando and Yu (2005), Yu (2002, 2003) provide a procedure for 
calculating physical default correlation through risk-neutral densities. 
21 Another measure of default dependence between firms is the linear correlation between default time, ( ),A Bρ τ τ . 
22 See also Elizalde (2003). 
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(1) Conditionally Independent Default (CID) Models 

The conditionally independent default approach introduces correlation by making 

them dependent on a set of common variables Y  and on a firm-specific factor *
itλ . 

Suppose there are I firms, and the default intensity for firm i, i = 1,…, I, is 

0 1 *
1 ...

i i i

i K
t t Kt ita a Y a Yλ λ λλ λ= + + + +              (60.5.30) 

where the firm-specific default factor *
itλ  is independent across firms. 

For example, Duffee (1999) considers a CID model as follows: 

( ) ( )
( )

0
1 2

0 1 2 *
1 1 2 2

* * *

i i i

t r t t

i
t t t t t it

it i i it i it it

r a Y Y

a a Y Y a Y Y

d dt dW

λ λ λλ λ

λ κ μ λ σ λ

⎧ = + +⎪
⎪ = + − + − +⎨
⎪

= − +⎪⎩

         (60.5.31) 

In this model, iλ  captures the stochasticity of intensities and the coefficients 1
i

aλ  

and 2
i

aλ , 1,...,i I= , capture the correlation between intensities themselves, and 

between intensities and interest rates. 

The main drawback of the CID models is that they fail to generate high default 

correlation. However, Yu (2003) argues that it is not a problem of the CID approach 

itself but a problem of the choice of state variables. Driessen (2005) introduces two 

more common factors for Duffee's (1999) model and finds that they elevate the 

default correlation.23 The risk-neutral default density of firm i, i=1, 2, …, I is a 

function of K common factors, a firm-specific factor and two more factors that 

determine the risk free rates, 

                                                        
23 There are two possible ways to deal with the high default correlation issue. One way is to introduce joint jumps 
in the default intensities (Duffie and Singleton (1999b)). The other way is to consider the default-event triggers 
that cause joint defaults (Duffie and Singleton (1999b), Kijima (2000), and Kijima and Muromachi (2000)). 
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∑  (60.5.32) 

where jtY , j=1, 2, …, K and *
itλ  follow the independent square-root process, and the 

two additional terms 1tX  and 2tX  follow a bivariate process, 

11 1 1 111

21 222 2 21

00

0 1
tt t t

t t tt

XdX X dW
dt

dX X dWX

θκ
κ κ β

⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ − +⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

      (60.5.33) 

where  1tW  and 2tW  are independent standard Brownian motions under the 

physical measure. The introduction of two more terms could allow for the correlation 

between spreads and risk free rates. 

(2) Contagion Model 

Contagion models account for two more empirical facts: (i) the default of one 

firm can trigger the default of other related firms; (ii) the default times tend to 

concentrate in certain periods of time. It includes the propensity model proposed by 

Jarrow and Yu (2001) and infectious defaults in Davis and Lo (2001). 

Jarrow and Yu (2001) extend the CID model to account for counterparty risk, i.e., 

the risk that the default of one firm may increase the default probability of other 

related firms. They differentiate the total I firms into primary firms (1,…,K) and 

secondary firms (K+1,…,I). The default intensities of the primary firms are modeled 

using CID and do not depend on the default status of any other firm. The default of a 

primary firm increases the default intensities of secondary firms, but not the converse 

(asymmetric dependence). Thus, the secondary firms’ default intensities are given 

by 
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1
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i i j
t t i t t

j
a

τ
λ λ

≤
=

= +∑                      (60.5.34) 

for 1,...,i K I= +  and 1,...,j K= . 

Davis and Lo (2001) assume that each firm has an initial i
tλ  for 1,...,i I= . 

When a default occurs, the default intensity of all remaining firms is increased by a 

factor 1a > , called the enhancement factor, to i
taλ . 

(3) Copula 

The copula approach takes the marginal probabilities as input and introduces the 

dependence structure to generate joint probabilities. Specifically, if we want to model 

the default time, the joint default probabilities are given by 

( ) [ ] ( ) ( )( )1 1 1 1 1,..., ,..., ,...,I I I I It t t t F t F tτ τ= ≤ ≤ = dF P C         (60.5.35) 

If we want to model the survival times,  

( ) [ ] ( ) ( )( )1 1 1 1 1,..., ,..., ,...,I I I I It t t t s t s tτ τ= > > = sS P C       (60.5.36) 

where dC  and sC  are two different copulas24. 

Examples of copulas are: 

(i) Independent Copula. The I-dimensional independent copula is given by  

( )1 1
,..., I

I ii
C u u u

=
=∏                  (60.5.37) 

(ii) Perfect Correlation Copula. The I-dimensional perfect correlation copula is 

given by 

( ) ( )1 1,..., min ,...,I IC u u u u=                (60.5.38) 

(iii) Normal Copula. The I-dimensional normal copula with correlation matrix 

Σ  is given by 
                                                        
24 For a more detailed description of the copula theory, please refer to Joe (1997), Frees and Valdez (1998), 
Costinot, Roncalli and Teiletche (2000), and Embrechts, Lindskog and McNeil (2001). 
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( ) ( ) ( )( )1 1
1 1,..., ,...,I

I Iu u u u− −
Σ= Φ Φ ΦC               (60.5.39) 

where I
ΣΦ  represents an I-dimensional normal distribution function with a 

covariance matrix Σ , and 1−Φ  denotes the inverse of the univariate standard normal 

distribution function. 

(iv) t Copula. Let X be an random vector distributed as an I-dimensional 

multivariate t-student with v degrees of freedom, mean vector μ  (for v>1) and 

covariance matrix 
2

v
v

Σ
−

 (for v > 2). We could then express X as 

vX Z
S

μ= +                            (60.5.40) 

where S is a random variable distributed as a 2χ  with v degrees of freedom and Z is 

an I-dimensional normal random vector that is independent of S with zero mean and 

linear correlation matrix Σ . The I-dimensional t-copula of X could be expressed as 

( ) ( ) ( )( )1 1
1 , 1,..., ,...,I

I v R v v Iu u t t u t u− −=C                   (60.5.41) 

where ,
I
v Rt  represents the distribution function of v Z

S
, Z is an I-dimensional 

normal random vector which is independent of S with mean zero and covariance 

matrix R. 1
vt
−  denotes the inverse of the univariate t-student distribution function 

with v degrees of freedom and ij
ij

ii jj

R
Σ

=
Σ Σ

. 

(v) Archimedean Copulas. An I-dimensional Archimedean copula function is 

represented by 

( ) ( ) ( )( )1
1 1,..., ...I Iu u u uφ φ φ−= + +C                 (60.5.42) 

where the function [ ]: 0,1 Rφ +→ , called the generator of the copula, is invertible and 

satisfies the conditions that ( )' 0uφ < , ( )'' 0uφ > , ( )1 0φ = , and ( )0φ = ∞ . 
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Examples of generator functions are: 

Clayton: ( ) 1uu
θ

φ
θ

− −
= , for 0θ ≥  

Frank: ( ) 1ln
1

ueu
e

θ

θφ
−

−

−
= −

−
, for { }\ 0Rθ ∈  

Gumbel: ( ) ( )lnu u θφ = − , for 1θ ≥  

Product: ( ) lnu uφ = −  

Studies incorporating copulas into the reduced-form approach to account for default 

dependence include Li (2000a), Schonbucher and Schubert (2001), and Frey and 

McNeil (2001). 

60.5.3 Empirical Issues 

60.5.3.1 The Components of Yield Spread 

Understanding the determinants of corporate bond spreads is important for both 

academics and practitioners. For academics, valuation of corporate bonds requires a 

pricing model that incorporates all relevant factors. From the investment perspective, 

investors need to know the required premia of default, liquidity, and taxes in order to 

be compensated properly for the risk and tax burden of holding corporate bonds. 

Furthermore, from the corporate finance perspective, understanding the components 

of the corporate yield spread aids in capital structure decisions as well as 

determination of timing and maturity of debt and equity issuances. 

A vast literature has been devoted to studies of determinants of corporate bond 

spreads. This includes, among others, Jones, Mason and Rosenfeld (1984), Duffee 

(1999), Duffie and Singleton (1999a), Elton, Gruber, Agrawal and Mann (2001), 
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Collin-Dufresne, Goldstein and Martin (2001), Huang and Huang (2003), Eom, 

Helwege and Huang (2004), De Jong and Driessen (2004), and Ericsson and Renault 

(2006). These studies reported mixed results for the component of corporate bond 

yield spreads. Jones, Mason and Rosenfeld (1984) apply Merton model to a sample of 

firms with simple capital structures and secondary market prices during 1977-1981 

period and find that the predicted prices (yields) from the model are too high (low). 

Ogden (1987) finds that the Merton model underpredicts spreads by 104 basis points 

on average. Lyden and Saraniti (2000) compare the Merton model and the Lonstaff 

and Schwartz (1995) model and find that both models underestimate the yield spreads. 

Huang and Huang (2003) evaluate the performance of most popular term structure 

models and report estimates of default risk premia substantially below the corporate 

bond spread. Collin-Dufresne, Goldstein and Martin (2001) analyze the effect of key 

financial variables suggested by structural models on corporate bond spreads and find 

that these variables explain only a small portion of variations in spreads. Sarig and 

Warga (1989), Helwege and Turner (1999) examine the shape of credit term structure, 

while Duffee (1999) and Brown (2001) test the correlation between interest rates and 

spreads. Most of these empirical studies conclude that term structure models 

underpredict yield spreads. 

On the other hand, Eom, Helwege and Huang (2004) empirically test five 

structural models, i.e., the Merton model, Geske (1977) model, Longstaff and 

Schwartz (1995) model, Leland and Toft (1996) model and Collin-Dufresne, 

Goldstein and Martin (2001) model. The results show that term structure models can 
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over or under estimate corporate bond spreads and prediction errors are high. 

Besides default risk, liquidity and tax are two additional factors that affect 

corporate bond yield spreads. One of the biggest challenges in term structure models 

is to estimate the liquidity premium of corporate bond spreads. Empirical estimation 

of liquidity premium is difficult because liquidity is unobservable and bond prices 

only reflect the combined effects of liquidity and default risk. Thus, the liquidity and 

default premia cannot be separately identified from the data on term structure of 

corporate bond prices alone. Longstaff, Mithal and Neis (2005) overcome this 

identification problem by using additional information from the credit default swap. 

They find that the majority of the corporate bond spread is due to default risk and the 

nondefault component is time varying and strongly related to the measures of 

bond-specific illiquidity as well as macroeconomic measures of bond market liquidity. 

Specifically, when the Treasury curve is used as the default free discount function, the 

average size of default component is 51% for AAA/AA bonds, 56% for A bonds, 71% 

for BBB bonds and 83% for BB bonds.  

Yawitz, Maloney and Ederington (1985) estimate nonlinear models of corporate 

and municipal bonds with default risk and taxes. Elton, Gruber, Agrawal and Mann 

(2001), Liu, Shi, Wang and Wu (2007) show that the tax premium accounts for a 

significant portion of corporate bond spreads. Elton, Gruber, Agrawal and Mann 

(2001) assume a tax rate equal to the typical statutory state income tax. Liu, Shi, 

Wang and Wu (2007) propose a pricing model that accounts for stochastic default 

probability and differential tax treatments for discount and premium bonds. By 
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estimating parameters directly from bond data, they obtain a significantly positive 

income tax rate of marginal investor after 1986. Empirical evidence shows that taxes 

explain a substantial portion of observed spreads. Taxes on average account for 60%, 

50% and 37% of the observed corporate-Treasury yield spreads for AA, A and BBB 

bonds, respectively. 

Lin, Liu and Wu (2007) further account for stochastic default probability, 

liquidity, and differential tax treatments for discount and premium bonds in the 

pricing model. The model provides more precise estimates of the tax and liquidity 

components of spreads.  They find that a substantial portion of the corporate yield 

spread is due to taxes and liquidity. The liquidity component in the spread is highly 

correlated with bond-specific and market-wide liquidity measures whereas the tax 

component is insensitive to these liquidity measures. On average, 51% of corporate 

yield spread is attributable to the default component, 32% to the tax component, and 

17% to the liquidity component. The default component represents 39% of the spread 

for AAA/AA bonds, 46% for A bonds, 60% for BBB bonds and 73% for BB bonds.  

The tax component explains 39% of the spread for AAA/AA bonds, 36% for A bonds, 

25% for BBB bonds and 16% for BB bonds.  The liquidity component accounts for 

21% of the spread for AAA/AA bonds, 18% for A bonds, 15% for BBB bonds and 

11% for BB bonds. 

Berndt, Lookman and Obreja (2006) investigate the source for common variation 

in U.S. credit markets that is not related to changes in riskfree rates or expected 

default losses. They extract a latent common component from firm-specific changes 
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in default risk premium, named as “default risk premium (DRP) factor”, and find that 

its change is priced in the corporate bond market. The DRP factor could explain a 

maximum 35% of the credit market returns. Moreover, the DRP factor also captures 

the jump-to-default risk associated with market-wide credit events.  

60.5.3.2 State Variables: Latent or Observable 

Standard term structure models specify the default intensity as the function of 

latent variables which are unobservable and follow some diffusion processes.  By 

contrast, some empirical studies specify the default intensity as the function of 

observable state variables in the reduced-form models. For example, Bakshi, Madan 

and Zhang (2006) model the aggregate defaultable discount rate ( )1t t tR r ω λ= + −  

as: 

0t r t Y tR r Y= Λ +Λ +Λ                     (60.6.1) 

where  tY  denotes the firm-specific distress index. Bakshi, Madan and Zhang (2006) 

consider leverage, book-to-market, profitability, equity-volatility, and 

distance-to-default to be the firm specific distress variables and show that interest rate 

risk is of the first-order importance for explaining variations in single-name 

defaultable bond yields. When applying to low-grade bonds, a credit risk model that 

takes leverage into consideration reduces absolute yield mispricing by as much as 

30%. 

    Janosi, Jarrow and Yildirim (2002) assume that 

0 1 2t t tR a a r a Z= + +                          (60.6.2) 

where Zt is a standard Brownian motion driving the S&P500 index.  



44 
 

Chava and Jarrow (2004) estimate a reduced-form model with accounting and 

market variables using historical bankruptcy data. In their model, the default 

correlation can be computed directly from physical intensity rather than those 

transformed from the risk-neutral intensity estimated from credit spreads. Using this 

model, one can also estimate an affine model with latent variables from bankruptcy, 

which better captures the common variations in default rates and may lead to more 

accurate default correlation estimates. 

60.6  Interest Rate and Credit Default Swaps 

60.6.1  Valuation of Interest Rate Swap 

An interest rate swap is an agreement between two parties (known as 

counterparties) where one stream of future interest payments is exchanged for another 

based on a specified principal amount. Interest rate swaps often exchange a fixed 

payment for a floating payment that is linked to an interest rate (most often the 

LIBOR). With the interest rate swap, a company agrees to pay cash flows equal to 

interest at a predetermined fixed rate on a notional principal for a number of years. In 

return, it receives interest at a floating rate on the same notional principal for the same 

period of time. Interest rate swaps are simply the exchange of one set of cash flows 

(based on interest rate specifications) for another.  Swaps are contracts set up 

between two or more parties, and can be customized in many different ways. 

When an interest rate swap is first initiated, it is generally a plain vanilla and its 

value is zero. However, it could be positive or negative after time goes on. Similar to 

the pricing of corporate bonds, there are two approaches to value the interest rate 
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swap: the structural approach and the reduced-form approach.25 Structural models 

such as Cooper and Mello (1991) and Li (1998) uses Merton's (1974) approach to 

price the interest rate swap. Models developed more recently adopt the reduced-form 

approach, which regards the swap as the difference between two bonds and focuses on 

the rate used to discount the future cash flows of the interest rate swap. Studies using 

the reduced-form models of interest rate swaps include, among others, Duffie and 

Huang (1996), Duffie and Singleton (1997), Gupta and Subrahmanyam (2000), 

Collin-Dufresne and Solnik (2001), Grinblatt (2001), Liu, Longstaff and Mandell 

(2004), and Li (2006).  In what follows, we focus on the literature on the 

reduced-form approach. 

 Consider a plain vanilla fixed-for-floating swap with maturityτ and the nominal 

principal equal to 1. The floating side is reset semi-annually to the six-month LIBOR 

rate from six months prior. The fixed side pays a coupon rate c  at the reset dates. Let 

L
tr  be the LIBOR rate set at date t for loans maturing six months later. From the 

standpoint of the floating-rate payer, an interest rate swap could be regarded as a long 

position in a fixed rate bond and a short position in a floating-rate bond. The 

fixed-side coupon rate c  is set at initial date t so that the present value of expected 

net cash flows from the long and short positions is zero at the initial date, that is, 

( ) ( )( )
2 0.5

0.5 1
1

0 exp
t jQ L

t s t jt
j

E R ds c r
τ +

+ −
=

⎡ ⎤= − −⎢ ⎥⎣ ⎦∑ ∫            (60.6.3) 

Then 

                                                        
25 In practice, there is another approach for valuing the interest rate swap as a series of forward rate agreement 
(FRAs), see Hull (2006). 
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( ) ( )

( )

2 0.5

0.5 1
1

2 0.5

1

exp

exp

t jQ L
t s t jt

j

t jQ
t st tj

E R ds r
c

E R ds

τ

τ

+

+ −
=

+

=

⎡ ⎤−⎢ ⎥⎣ ⎦
=

⎡ ⎤−⎢ ⎥⎣ ⎦

∑ ∫

∑ ∫
                (60.6.4) 

where sR  are the discount rates of the cash flows. With the assumption that risky 

zero-coupon bonds are priced at the appropriate LIBOR rate in the interbank lending 

market, Duffie and Singleton (1997) show that 

2 0.5
1

1 t
j

tj

Bc
B

τ

τ

=

−
=
∑

                        (60.6.5) 

with 

( )exp
t mm Q

t t st
B E R ds

+⎡ ⎤= −⎢ ⎥⎣ ⎦∫                   (60.6.6) 

Here m
tB  means the present value of 1 dollar payable at time t+m. For the floating 

rate payer, the floating rate swap with a face value of 1 at time t τ+  is equivalent to 

a floating rate bond which has the value at par at the initial date. Thus, the value of the 

floating side of the swap is 1 minus the present value of 1 dollar payable at time 

t+τ , tBτ . 

    Duffie and Singleton (1997) suggest that tR  could also be interpreted as a 

default-adjusted discount rate. If the recovery rate is tω  and the default intensity is 

tλ , then  

( )1t t t tR r ω λ= + −                         (60.6.7) 

If the relative liquidities of interest rate swap and Treasury market are also considered, 

( )1t t t t tR r lω λ= + − −                       (60.6.8) 

where tl  is a convenience yield that accounts for the effect of differences in liquidity 
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and repo specialness between the Treasury and the swap market.26 

Duffie and Huang (1996) change tR  to account for the counterparties’ 

asymmetric default risks. The economic intuition is clear. Suppose at any given time t, 

the current market value of the swap with no default is tV  for party A, which could 

be positive or negative. On the other hand, the value is tV−  for party B. If 0tV > , 

then party A is at risk to the default of party B between t and t+1. Thus, under the 

risk-neutral measure, tV  equals the default probability of party B between t and t+1 

multiplied by the recovery value, plus the survival probability of party B between t 

and t+1, multiplied by the market value given no default, which is the risk-neutral 

expected present value of receiving 1tV +  at t+1, plus any interest paid to A by B 

between t and t+1. If 0tV < , this recursive method is the same, except for the fact 

that now B is at risk to default of A, so the default probability and recovery rate are 

those of A. This could be given mathematically by 

{ } { }, 0 01 1A B
v t t t tv vR r s s< ≥= + +                      (60.6.9) 

with  

( )1i i i
t t ts ω λ= −                           (60.6.10) 

Liu, Longstaff and Mandell (2004) use a five-factor affine framework to model 

the swap spread: 

0 1 2 3

2 5

1 4

t t t t

t t t

t t

r Y Y Y

r Y

l Y

δ

λ δ γ

δ

⎧ = + + +
⎪

= + +⎨
⎪ = +⎩

                      (60.6.11) 

where 0δ , 1δ , 2δ  and γ  are constants, 2 3 4 51, , , ,Y Y Y Y Y⎡ ⎤⎣ ⎦  are five state variables 

                                                        
26 See, for example Grinblatt (2001). 
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with dynamics in risk-neutral measures following 

Q
t t tdY Y dt dWβ= − +Σ                       (60.6.12) 

Li (2006) proposes a similar reduced form model of interest rate swaps: 

( )
( )

0 1 2 3

1 4

2 5

5 5 5 5 5 5

,  1,2,3,4

t t t t

t t t

t t t

Q
it i i it i it it

Q
t t t

r Y Y Y

r Y

l r Y

dY Y dt Y dW i

dY Y dt dW

δ

λ δ

δ

κ μ σ

κ μ σ

⎧ = + + +⎪
⎪ = +
⎪⎪ = +⎨
⎪

= − + =⎪
⎪

= − +⎪⎩

        (60.6.13) 

where Q
itW  are independent standard Brownian motions under the risk-neutral 

measure. 

60.6.2  Valuation of Credit Default Swaps 

Credit derivatives have emerged as a remarkable and rapidly growing area in 

global derivatives and risk management practice which have been perhaps the most 

significant and successful financial innovation of the last decade. The growth of the 

global credit derivatives market continues to exceed expectations. According to BBA 

(British Bankers’ Association) Credit Derivatives Report 2006, the outstanding 

notional amount of the market will reach $33 trillion at the end of 2008. Single-name 

credit default swaps (CDS) represent a substantial proportion of the market. CDS are 

the most liquid products among the credit derivatives currently traded which make up 

the bulk of trading volume in credit derivatives markets. Moreover, CDS along with 

total return swaps and credit spread options are the basic building blocks for more 

complex structured credit products. The CDS market has supplanted the bond market 

as the industry gauge for a borrower's credit quality.  
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Credit default swaps are structured as instruments which make an agreed payoff 

upon the occurrence of a credit event. That is, in a CDS, the protection seller and the 

protection buyer enter a contract which requires that the protection seller compensates 

the protection buyer if a default event occurs before maturity of the contract. If there 

is no default event before maturity, the protection seller pays nothing. In return, the 

protection buyer typically pays a constant quarterly fee to the protection seller until 

default or maturity, whichever comes first. This quarterly payment, usually expressed 

as a percentage of its notional principal value, is the CDS spread or premium.  

60.6.2.1 Credit Event in CDS 

As with all other financial markets, the liquidity and efficiency of aligning 

buyers and sellers depend on consistent, reliable and understandable legal 

documentation. The International Swaps and Derivatives Association (ISDA) has 

been a strong force in maintaining the uniformity of documentation of CDS products 

through the assistance and support of its members, primarily the dealer community. 

The credit definitions by ISDA allow specification of the following credit events: 

(i) Bankruptcy,  

(ii) Failure to pay above a nominated threshold (say in excess of US$1 million) 

after expiration of a specific grace period (say, 2 to 5 business days), 

(iii)Obligation default or obligation acceleration, 

(iv) Repudiation or moratorium (for sovereign entities), and 

(v) Restructuring. 

There are significant issues in defining the credit events. This reflects the 



50 
 

heterogeneous nature of credit obligations. In general, items 1, 2 and 5 are commonly 

used as credit events in CDS for firms. Four types of restructuring have been given by 

ISDA: full restructuring; modified restructuring (only bonds with maturity shorter 

than 30 months can be delivered); modified-modified restructuring (restructured 

obligations with maturity shorter than 60 months and other obligations with maturity 

shorter than 30 months can be delivered); and no restructuring. 

The payment following the occurrence of a credit event is either repayment at 

par against physical delivery of a reference obligation (physical settlement) or the 

notional principal minus the post default market value of the reference obligation 

(cash settlement). In practice, physical settlement is the dominant settlement 

mechanism, though the proportion has dropped a lot (according to BBA Credit 

Derivative Report 2006). The delivery of obligations in case of physical settlement 

can be restricted to a specific instrument, though usually the buyer may choose from a 

list of qualifying obligations, irrespective of currency and maturity as long as they 

rank pari passu with (have the same seniority as) the reference obligation. This latter 

feature is commonly referred to as the cheapest-to-deliver option. Theoretically, all 

deliverable obligations should have the same price at default and the delivery option 

would be worthless. However, in some credit events, e.g., a restructuring, this option 

is favorable to the buyer, since he can deliver the cheapest bonds to the seller. 

Counterparties can limit the value of the cheapest-to-deliver option by restricting the 

range of deliverable obligations, e.g., to non-contingent, interest-paying bonds. 
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60.6.2.2 Valuation of Credit Default Swap without Liquidity Effect 

Let ρ be the premium paid by the buyer of default protection.  Assuming that 

the premium is paid continuously, the present value of the premium leg of a 

credit-default swap can be written as  

( )exp
T s

Q
t u u

t t

E r du dsρ λ
⎧ ⎫⎡ ⎤⎪ ⎪− +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭
∫ ∫                  (60.6.14) 

If the bond defaults, a bondholder recovers a fraction ω  of the par value and 

the seller of default protection pays 1 ω−  of the par value to the buyer.  The value 

of the protection leg of the credit default swap is given by 

( ) ( )1 exp
T s

Q
t s u u

t t

E r du dsω λ λ
⎧ ⎫⎡ ⎤⎪ ⎪− − +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭
∫ ∫               (60.6.15) 

Equating the premium leg to the protection leg, we can solve for the CDS 

premium: 

( ) ( )

( )

1 exp

exp

T s
Q
t s u u

t t

T s
Q
t u u

t t

E r du ds

E r du ds

ω λ λ
ρ

λ

⎧ ⎫⎡ ⎤⎪ ⎪− − +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭=

⎧ ⎫⎡ ⎤⎪ ⎪− +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫

∫ ∫
             (60.6.16) 

   An analytical solution could be obtained if we assume tr  and tλ  follow the 

affine class of diffusion in the risk-neutral measure. For example, Longstaff, 

Mithal and Neis (2005) assume a CIR processes for tλ : 

( ) Q
t t t td dt dWλ λ λλ κ μ λ σ λ= − +                   (60.6.17) 

where Q
tW  is a standard Brownian motion under the risk-neutral measure. Other 

related studies include Duffie (1999), Hull and White (2000, 2001), and 

Houweling and Vorst (2005). 
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60.6.2.3  Valuation of Credit Default Swap with Liquidity 

The liquidity effect on the CDS is asymmetric since the premium leg and the 

protection leg are subject to different liquidity risks. The premium leg should be 

discounted with CDS-specific liquidity factor since it depends on the liquidity of CDS 

market, while the protection leg has no liquidity problem.27 The CDS premium is 

then given by  

( ) ( )

( )

1 exp

exp

T s
Q
t s u u

t t

T s
Q
t u u u

t t

E r du ds

E r l du ds

ω λ λ
ρ

λ

⎧ ⎫⎡ ⎤⎪ ⎪− − +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭=
⎧ ⎫⎡ ⎤⎪ ⎪− + +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫

∫ ∫
           (60.6.18) 

60.6.3 Empirical Issues  

Due to the rapid growing swap markets, a number of empirical studies have 

attempted to identify the possible determinants of swap spreads and related issues on 

pricing mechanism, market efficiency, and information spillovers among different 

markets. 

60.6.3.1 Determinants of Interest Rate Swap Spread 

One of the stylized facts we observe for interest rate swap is that there is a 

positive spread between the swap rate and the government default-free interest rate, 

which is termed as the swap spread. Most of the empirical studies of interest rate swap 

focus on the determinants of interest rate swap spreads, which basically include two 

components: default and liquidity components. The default component generally 

involves two types of default risk. First, the counterparties may default on their future 
                                                        
27 Bühler and Trapp (2007) argue that the protection leg should be discounted with corporate bond specific 
liquidity factor if the protection is paid in physical settlement. However, we argue that it is unnecessary since it 
could be introduced easily by adjusting ω . 
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obligations. This is called counterparty default risk. Second, the underlying floating 

rate in a swap contract is usually set at the LIBOR rate, which is a default-risky 

interest rate.28 

Sun, Sundaresan and Wang (1993) provide the earliest empirical investigation of 

default risk in swap spread and find evidence of default risk premium in the swap 

spread.29 Brown, Harlow and Smith (1994) study US dollar swaps from 1985 to 1991 

and find a positive relationship between the LIBOR spread and the swap spread, while 

Eom, Subrahmanyam and Uno (2000) find a similar evidence in Japan. Minton (1997) 

uses two proxies for default risk premium (corporate quality spread and aggregate 

default spread)30 and finds that default risk is important for interest rate swap spreads. 

In general, a 100 basis-point increase in the bond spread of BBB bonds results in a 

12-15 basis-point increase in the swap spread. Lang, Litzenberger and Liu (1998) 

argue that the sharing of surplus created by swaps affects swap spreads. Fehle (2003) 

run VAR regressions of swap spreads on default risk and liquidity proxies using 

international data. The difference between LIBOR and Treasury-bill rate is employed 

as a proxy for liquidity, while the level, slope, and volatility of term structure and the 

difference between the yields on a portfolio of corporate bonds and a corresponding 

Treasury bond act as proxies for default risk. The results show that swap spreads are 

sensitive to bond spreads in most currencies and maturities. However, there are no 

clear patterns across bond spreads from different ratings and across swap maturities. 

                                                        
28 Li (2006) summarizes six reasons to suggest that the counterparty default risk is not important for swap spreads. 
29 See also Sundaresan (2003). 
30 Corporate quality spread is defined as the difference between the yields on portfolios of Moody’s Baa-rated 
corporate debt and portfolios of Moody’s Aaa-rated corporate debt, while aggregate default spread is defined as the 
difference between the yields on portfolios of Moody’s Baa-rated corporate debt and the average of ten and thirty 
year US Treasury yields that match the maturities of Baa-rated corporate debt. 
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Most of these studies use a linear regression approach and do not apply the dynamic 

reduced-form model. 

Within the reduced-form framework, Duffie and Singleton (1997) find that both 

liquidity and default risks are necessary to explain the variation in swap spreads. 

However, the effect of liquidity factor does not last long while the default risk 

becomes more important for longer time horizons. He (2000) finds that the liquidity 

component could explain most variations in swap spreads. Grinblatt (2001) attributes 

the swap spread to liquidity differences between government securities and short-term 

Eurodollar borrowing and finds that his model could generate a wide variety of swap 

spread curves and explain about 35% to 40% of the variations in US swap spreads 

across time. Li (2006) attributes the liquidity component of swap spreads to the 

liquidity difference between the Treasury and swap markets and decomposes the swap 

spreads into default and liquidity components. The parameter estimates show that the 

default and liquidity components of swap spreads are both negatively related to 

riskless interest rates. A further analysis reveals that default risk accounts for the 

levels of swap spreads, while the liquidity component explains most of the volatilities 

of swap spreads. 

60.6.3.2 Determinants of Credit Default Swap Spread 

Given the short history of credit derivatives market and the limited data 

availability, there has been little empirical work in this arena. Most of them focus on 

the determinants of CDS spreads, spillover between CDS and other financial markets, 

and their role in price discovery of credit conditions.  
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(1) Determinants of CDS spreads 

Houweling and Vorst (2005) implement a set of reduced-form models on market 

CDS quotes and corporate bond quotes and find that financial markets may not regard 

Treasury bonds as the default-free benchmark. Zhu (2006) examines the long-term 

pricing accuracy in the CDS market relative to the bond market. His study looks into 

the underlying factors that explain the price differentials and explores the short-term 

dynamic linkages between the two markets in a time series framework. The panel data 

study and the VECM analysis both suggest that short-term deviations between the two 

markets are largely due to the higher responsiveness of CDS spreads to changes in the 

credit condition.  

Zhang, Zhou and Zhu (2005) introduce jump risks of individual firms to explain 

credit default swap spreads. Using both historical and realized measures as proxies for 

various aspects of the jump risks, they find evidence that long-run historical volatility, 

short-run realized volatility, and various jump-risk measures all have statistically 

significant and economically meaningful effects on credit spreads. More important, 

the sensitivities of credit spreads to volatility and jump risk depend on the credit grade 

of the entities and these relationships are nonlinear. Negative jumps tend to have 

larger effects.  

Blanco, Brennan and Marsh (2005) test the theoretical equivalence of credit 

default swap spreads and credit spreads derived by Duffie (1999). Their empirical 

evidence strongly supports the parity relation as an equilibrium condition. Moreover, 

CDS spreads lead credit spreads in the price discovery process. 
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(2) Spillover between CDS and Other Financial Markets 

Longstaff, Mithal and Neis (2003) examine weekly lead-lag relationships 

between CDS spread changes, corporate bond spread changes, and stock returns of 

US firms in a VAR framework. They find that both stock and CDS markets lead the 

corporate bond market which provides support for the hypothesis that information 

seems to flow first into credit derivatives and stock markets and then into corporate 

bond markets. However, there is no clear lead pattern of the stock market to the CDS 

market and vice versa. 

Jorion and Zhang (2007) examine the information transfer effect of credit events 

across the industries and document the intra-industry credit contagion effect in the 

CDS market. The empirical evidence strongly supports the domination of contagion 

effects over competition effects for Chapter 11 bankruptcies and competition effects 

over contagion effects for Chapter 7 bankruptcies.  

Acharya and Johnson (2007) quantify insider trading in the CDS market and 

show that the information flow from the CDS market to the stock market is greater for 

negative credit news and for entities that subsequently experience adverse shocks. The 

degree of information flow increases with the number of banks that have ongoing 

lending (and hence monitoring) relations with a given entity. The results suggest that 

the CDS market leads the stock market in information transmission.  

(3) Price Discovery of Credit Condition 

   Norden and Weber (2004) analyze the response of stock and CDS markets to 

rating announcements made by the three major rating agencies during the period 
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2000-2002. The results show that the CDS market reacts earlier than the stock market 

with respect to reviews for downgrade by S&P and Moody's. 

Hull, Predescu and White (2004) examine the relationship among CDS spreads, 

bond yields and benchmark risk-free rates used by participants in the derivative 

market. They show that using swap rates as the risk free benchmark produces better 

goodness-of-fit compared to using other risk-free rate proxies such as Treasury rates. 

Their empirical evidence also suggests that the CDS market anticipates credit rating 

announcements, especially negative rating events.  

Tang and Yan (2006) study the effects of liquidity in the CDS market and liquidity 

spillover from other markets to the CDS market using a large data set. They find 

substantial liquidity spillover from bond, stock and option markets to the CDS market.  

60.7  Concluding Remarks 

This paper provides a comprehensive survey of term structure models, pricing 

applications and empirical evidence. Historically, two major considerations shape the 

development of DTSMs: (i) explaining the stylized facts of term structure; and (ii) the 

tradeoff between mathematical complexity and analytical tractability.  

We begin with a generalized pricing framework by which most of the DTSMs are 

nested. Based on different specifications on the risk-neutral dynamics of state variable 

and the mapping function between state variable and short term interest rates, we 

categorize DTSMs as affine, quadratic, regime switching, jump, stochastic volatility 

models. We compare the empirical performance of these DTSMs in fitting the interest 

rate behavior in the physical measure and the price of default-free government bonds. 
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Empirical findings on DTSMs are not conclusive. Multifactor models seem to 

perform better than single-factor models. However, there remains serious concern 

about the applicability of nonlinear DTSMs. Moreover, the economic value of some 

DTSMs in bond pricing and risk management, and the relationship between the 

dynamics of term structures under the risk-neutral and physical measures remain open 

questions. 

We also evaluate the usefulness of DTSMs in the pricing of defaultable bonds. In 

standard term structure models, the yield spread is determined by two factors: the risk 

of default (modeled by default intensity) and the expected loss in the event of default 

(modeled by recovery rate). However, most of the empirical evidence has shown that 

default risk can only explain a portion of credit spreads, and non-default components, 

such as liquidity and tax, are also important for the credit spread. Lin, Liu and Wu 

(2007) propose a corporate bond pricing model that incorporates the default 

probability, liquidity and tax to decompose the corporate bond yield spread into three 

components. They find that default, liquidity and tax are all important factors for 

explaining corporate yield spreads.  However, there are two caveats. First, 

empirically Lin, Liu and Wu (2007) follow the approach of Longstaff, Mithal and 

Neis (2005) by assuming that CDS premium contains no liquidity component. This 

assumption has been questioned by several studies such as Acharya and Johnson 

(2007) and Tang and Yan (2007). Second, Lin, Liu and Wu (2007) assume that 

liquidity intensity and default intensity are independent while in reality they are more 

likely to be correlated. To accommodate this correlation, we need to obtain a 
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closed-form solution for the corporate bond pricing formula with correlated factors.   

Finally, research on the components of swap spreads is inconclusive. Most 

studies assume that the CDS premium contains no liquidity component, while several 

recent studies show the existence of liquidity premium in CDS. Other potentially 

interesting research subjects in this area include the significance of fixed-income 

derivative markets in affecting information transmission, price discovery, and 

liquidity in the spot markets. For example, there are two possible effects on corporate 

bond trading by CDS trading.  First, it provides an easier way to trade the credit risk, 

which makes investors more reluctant to trade corporate bonds and hence decreases 

the corporate bond liquidity.  Second, CDS trading provides a way to hedge the 

credit risk, which complements corporate bond trading and increases the liquidity of 

corporate bonds.  

The fixed income research will continue to be an exciting field. The recent 

literature on pricing derivatives using DTSMs shows an enormous potential for new 

insights using derivatives data in model estimation. It is expected that the 

fixed-income derivative market will provide important information for researchers to 

better understand credit risk and liquidity of the underlying market and to develop 

more sophisticated models of term structure to address the unresolved issues. 
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