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ABSTRACT

We study quantile regression estimation for dynamic models with partially varying coef-

ficients so that the values of some coefficients may be functions of informative covariates.

Estimation of both parametric and nonparametric functional coefficients are proposed.

In particular, we propose a three stage semiparametric procedure. Both consistency and

asymptotic normality of the proposed estimators are derived. We demonstrate that the

parametric estimators are root-n consistent and the estimation of the functional coeffi-

cients is oracle. In addition, efficiency of parameter estimation is discussed and a simple

efficient estimator is proposed. A simple and easily implemented test for the hypothesis

of varying-coefficient is proposed. A Monte Carlo experiment is conducted to evaluate

the performance of the proposed estimators.
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1 Introduction

The quantile regression method, first introduced by Koenker and Bassett (1978), has been

widely used in various disciplines, including finance, economics, medicine, and biology. For

example, estimation of conditional quantiles is a common practice in risk management

operations and many other financial applications. The literature on estimating conditional

quantiles is large. Much of the study on quantile regression is based on linear parametric

quantile regression models. More recently, nonparametric and semiparametric quantile

regression models have attracted a great deal of research attention due to their greater

flexibility than tightly specified parametric models. See, for example, Chaudhuri (1991),

He and Shi (1996), Chaudhuri, Doksum and Samarov (1997), He, Ng and Portnoy (1998),

Yu and Jones (1998), Koenker, Ng and Portnoy (1998), He and Ng (1999), He and Liang

(2000), He and Portnoy (2000), Honda (2000, 2004), Khindanova and Rachev (2000), Cai

(2002a), De Gooijer and Gannoun (2003), Kim (2007), Lee (2003), Yu and Lu (2004),

Horowitz and Lee (2005), Cai and Xu (2008), Cai, Gu and Li (2009) and references therein

for recent statistics and econometrics literature.

Let {Yt, Vt }∞t=−∞ be a stationary sequence and F (y |v) denote the conditional distri-

bution of Yt given Vt = v, where Vt is a vector of covariates, including possibly exogenous

variables and lagged variables. The conditional quantile function of Yt given Vt = v,

QYt
(τ |Vt = v), is defined as, for any 0 < τ < 1,

qτ (v) ≡ QYt
(τ |Vt = v) = inf{y ∈ ℜ : F (y |v) ≥ τ}.

Equivalently, qτ (v) can be expressed as

qτ (v) = argmina∈ℜE {ρτ (Yt − a) |Vt = v} , (1)

where ρτ (y) = y [τ − I{y < 0}] (with y ∈ ℜ) is called the “check” (loss) function and

I{A} is the indicator function of any set A.

Given observed data {Yt, Vt }∞t=−∞, our interest is to estimate qτ (v). If we assume

that qτ (v) = βT
τ v, where A

T denotes the transpose of a matrix or vector A, we obtain

a linear quantile regression model as in Koenker and Bassett (1978). In some practical

applications, a linear quantile regression model might not be flexible enough to capture

the underlying complex dependence structure. However, a purely nonparametric quantile

regression model may suffer from the so-called “curse of dimensionality” problem, the
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practical implementation might not be easy, and the visual display may not be useful for

the exploratory purposes. To deal with the aforementioned problems, some dimension

reduction modelling methods have been proposed in the literature. For example, He, Ng

and Portnoy (1998), He and Ng (1999), He and Portnoy (2000), De Gooijer and Zerom

(2003), Yu and Lu (2004), and Horowitz and Lee (2005) considered the additive quantile

regression models for iid data, while Honda (2004) and Cai and Xu (2008) investigated the

varying coefficient quantile regression models for time series processes. He and Shi (1996),

He and Liang (2000), and Lee (2003) discussed the partially linear quantile regression

models for iid samples.

In this paper, we consider another dimension-reduction modelling method - partially

varying coefficient models. This approach allows appreciable flexibility on the structure

of fitted models. The proposed model allows for linearity in coefficients in some variables

and nonlinearity in other variables. In such a way, the model has an ability of capturing

the individual variations and of easing the so-called “curse of dimensionality”.

By assuming that Vt = (UT
t , X

T
t )

T , a partially varying coefficient quantile regression

model for time series data takes the following form, which is a semiparametric form of

model (1),

qτ (Ut, Xt) = βT
τ Xt1 + ατ (Ut)

TXt2, (2)

where Xt = (XT
t1, X

T
t2)

T ∈ ℜp+q, the first component of Xt1 or Xt2 might be 1, Ut ∈ Rd

is called the smoothing variable, which might include some of Xt or other exogenous

variables or lagged variables, ατ (·) = (a1,τ (·), . . . , aq,τ (·))T , and {ak,τ (·)} are smooth

coefficient functions. Here, {ak,τ (·)} and βτ are allowed to depend on τ . For simplicity,

we may drop τ from ατ (·) and βτ whenever there is no confusion. Our interest here is to

estimate the coefficient functions {ak,τ (·)}, the parameter vector βτ and the conditional

quantile of Yt given in (2).

The general setting in (2) is related to many familiar forms in quantile regression

and semiparametric regression models. When Xt1 are lagged dependent variables and

Xt2 = 0, we obtain the quantile autoregressive (QAR) model of Koenker and Xiao (2006).

If there is no Xt (only Ut) in (2), then (2) reduces to the ordinary nonparametric quantile

regression model which has been studied extensively; see Cai (2002a) and Cai, Gu and

Li (2009). Further, if Xt2 = 1 in (2), then model (2) includes a partially linear quantile

model explored by He and Shi (1996), He and Liang (2000) and Lee (2003) as a special

case. Finally, if there is no Xt1 in (2), then model (2) becomes the varying coefficient

2



quantile regression model

qτ (Ut, Xt2) = ατ (Ut)
T Xt2 (3)

studied by Honda (2004) and Kim (2007) for iid data and Cai and Xu (2008) for time

series contexts.

Comparing to the fully nonparametric models of Honda (2004) and Cai and Xu (2008)

and the fully parametric models such as Koenker and Xiao (2006), the partially varying

coefficient quantile regression model (2) serves as an intermediate class of models with

good robustness by nonparametric treatment on certain covariates and relatively more

precise estimation on the parametric effect of other variables. In this semiparametric

approach, existing information concerning possible linearity of some of the components

can be taken into account in such models to improve efficiency. Thus, root-n consistent

estimation of the parametric coefficients are obtained. Engle, Granger, Rice and Weiss

(1986) were among the first to study the partially linear model. It has since been studied

extensively in both economics and statistics literature. With respect to developments

in semiparametric dynamic modelling, various estimation and testing issues have been

discussed for the case where data are strictly stationary (such as Gao (2007)) since the

publication of Robinson (1988, 1989). Li, Huang, Li and Fu (2002), Zhang, Lee and

Song (2002), Ahmad, Leelahanon and Li (2005), and Fan and Huang (2005) studied

partially varying coefficient estimation for the conditional mean model. To the best of

our knowledge, the semiparametric dynamic quantile modelling like (2) has not been

studied in either econometrics or statistics literature.

In this paper, we propose a consistent semiparametric estimation procedure for the

dynamic quantile regression model (2). Although the focus of our model is on the parame-

ters βτ , estimation of both ατ (·) and βτ and thus qτ (Ut, Xt) are studied. To estimate both

the parameter vector βτ and the functional coefficients ατ (·), we propose a three-stage

approach as follows. First, βτ is regarded as a function of Ut, βτ (Ut). Thus, the model

becomes a functional coefficient model and all coefficient functions can be estimated by

a nonparametric fitting scheme. Second, an average method is used to obtain a root-n

consistent estimator for βτ . To estimate ατ (·), for any
√
n-consistent estimate β̂∗ of βτ , we

construct the partial quantile residual Yt∗ = Yt − β̂T
∗ Xt1, and a nonparametric approach

can be applied to estimate ατ (·) based on the partial quantile residuals. We show that our

three-stage nonparametric estimator of ατ (·) is asymptotically consistent and is indeed

“oracle” in the sense that the asymptotic properties of this nonparametric estimator are
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not affected by knowing β or not. Further, we address the efficiency issue for the data

observed from a martingale difference sequence and propose a simple efficient estimator

to estimate βτ by using the weighted average approach and choosing the optimal weight-

ing function via minimizing the asymptotic variance. An important statistical question

in fitting model (2) arises if the coefficient functions ατ (·) are actually varying (namely,

if a linear quantile regression model is adequate). This amounts to testing whether the

coefficient functions are constant or in a certain parametric form. A simple and eas-

ily implemented testing procedure is proposed based on the asymptotic theory derived

in this paper. Our simulation shows that the proposed estimators has reasonably good

sampling properties and the testing procedure is indeed powerful. Finally, notice that

the well known Robinson (1988) type approach or profile least squares type method of

Speckman (1988) for classical semiparametric regression models (see Gao (2007)) might

not be suitable to quantile setting; see Remark 1 later in Section 2 for more discussion on

this issue.

The rest of this paper is as follows. Section 2 is devoted to the presentation of esti-

mation procedures with some discussions. The asymptotic results are given in Section 3.

In Section 4, we propose a simple and easily implemented testing method for testing the

goodness-of-fit of a parametric model against model (2). Efficiency is discussed and an

efficient estimator is proposed in Section 5. To illustrate the finite sample performance of

the proposed estimators, we conduct a Monte Car lo simulation in Section 6. Concluding

remarks are presented inSection 7. Finally, all theoretical proofs of the asymptotic results

stated in Sections 3 and 4 are given in the Appendix.

2 Estimation Procedures

Throughout this section, we consider estimation of model (2) based on the observed

data {(Yt, Ut, Xt)}nt=1. Without loss of generality and for simplicity of exposition, we

consider only the case when Ut in (2) is one-dimensional (d = 1). For multivariate Ut, the

modeling procedure and the related theory for the univariate case continue to hold but

more and complicated notations involve. In addition, since the rate of convergence of the

nonparametric functional coefficient estimate is dependent on d, the conventional curse of

dimensionality presents in estimation of ατ (·); see Ruppert and Wand (1994) for related

discussion. We apply a local polynomial fitting scheme to estimate the related functionals
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although other smoothing methods such as the Nadaraya-Watson kernel method and

spline methods are applicable. The main reason for using a local polynomial fitting is

due to the attractive properties of this method, such as high statistical efficiency in an

asymptotic minimax sense, design adaptation, and automatic boundary corrections; see

Fan and Gijbels (1996) for some discussions on advantages of using local polynomial

method. For ease of notation, we may drop the subscript τ from βτ and ατ (·) and simply

denote them as β and α(·).
Given model (2), if βτ were known, we could be able to construct the following partial

quantile residual:

Yt1 = Yt − βT
τ Xt1.

Using the above transformation, the quantile regression model in (2) can be re-written as

QY1t
(τ |Ut, X2t) = qτ (Ut, X2t) = ατ (Ut)

TXt2.

Under smoothness condition of coefficient functions ατ (·) so that it has (m + 1)th con-

tinuous derivative (m ≥ 1), for any given point u0, when Ut is in a neighborhood of u0,

ατ (Ut) can be approximated by a polynomial function as

ατ (Ut) ≈ ατ (u0) + α′
τ (u0) (Ut − u0) + · · ·+ α(m)

τ (u0) (Ut − u0)
m/m !,

where ≈ denotes the approximation by ignoring the higher orders, thus,

qτ (Ut, X2t) ≈
m∑

j=0

θTjτ Xt2 (Ut − u0)
j,

where θj = θjτ = α
(j)
τ (u0)/j! for 0 ≤ j ≤ m. Then, we may estimate ατ (u0) based on the

following nonparametric functional coefficient quantile regression estimation

min
θ

n∑

t=1

ρτ

(
Yt1 −

m∑

j=0

θTj Xt2 (Ut − u0)
j

)
Kh(Ut − u0), (4)

whereK(·) is a kernel function, Kh(x) = K(x/h)/h, and h = h(n) is a sequence of positive

numbers tending to zero and it controls the amount of smoothing used in estimation.

In practice, βτ is unknown and thus the transformation Yt1 = Yt − βT
τ Xt1 is infeasible.

To estimate both the parameter vector β and the functional coefficients α(·) in (2), we

propose the following three-stage approach.
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First, β is regarded as a function of Ut, β(Ut). Then, the model becomes a functional

coefficient model and all coefficient functions can be estimated by using the following local

fitting

min
β,θ

n∑

t=1

ρτ

(
Yt − βT Xt1 −

m∑

j=0

θTj Xt2 (Ut − u0)
j

)
Kh(Ut − u0). (5)

We denote the above local polynomial estimator of β as β̂(u0). If we smooth locally around

Ut and consider a local linear estimation, the objective function of the above estimation

becomes

min
β,θ

n∑

s 6=t

ρτ
(
Ys − βT Xs1 − θT0 Xs2 − θT1 Xs2(Us − Ut)

)
Kh(Us − Ut). (6)

Notice that while β is a global parameter, the above estimation of β involves only local

data points in a neighborhood of Ut so that it is not optimal. Indeed, it follows from

Cai and Xu (2008) that under some regularity conditions, β̂(·) − β = Op((nh)
−1/2) .

An optimal estimation of the constant coefficients requires using all data points and the

optimal convergence rate should be
√
n instead of

√
nh. To obtain a

√
n-consistent

estimator for βτ , we use the following average method to obtain a second stage estimator

of β that achieves the optimal rate of convergence:

β̃ = β̃τ =
1

n

n∑

t=1

β̂(Ut), (7)

as we show in Theorem 1 (see later) that the above estimator1 is
√
n-consistent and

asymptotically normal.

To estimate the functional coefficients α(·), we define the estimated partial quantile

residual as Yt∗ = Yt − β̃TXt1, where β̃ is a
√
n-consistent estimate of β, and we consider

the following feasible local polynomial functional coefficient estimation of (4)

min
θ∗

n∑

t=1

ρτ

(
Yt∗ −

m∑

j=0

θj∗
T Xt2 (Ut − u0)

j

)
Kh1

(Ut − u0), (8)

where h1 is the bandwidth used for this step, which is different from the bandwidth used

in (6); see Remark 6 later in Section 3 for more discussions. Solving the minimization

problem in (8) gives α̃(u0) = θ̂0∗, the local polynomial estimate of α(u0), and α̃
(j)(u0) =

j ! θ̂j∗ (j ≥ 1), the local polynomial estimate of the jth derivative α(j)(u0) of α(u0).

1There are alternative ways of constructing root-n estimator of β.
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We show in Theorem 2 in Section 3 that the above nonparametric estimator is “ora-

cle” in the sense that the asymptotic properties of this nonparametric estimator are not

affected by preliminary estimation of βτ . All details about their asymptotic properties

are presented in the next section.

Remark 1: It is worth to point out that the well known Robinson (1988) type or profile

least squares type of Speckman (1988) estimation approach for classical semipara-

metric regression models (see Gao (2007)) might not be suitable to quantile setting.

For example, for a profile least squares method, to estimate the parameters in the

linear component under the least squares framework, one usually multiplies a pro-

jection matrix to remove the nonparametric component and then fit a linear model;

see Fan and Huang (2005) for details. But this approach is not applicable to the

quantile setting due to lack of explicit normal equations.

Remark 2: For exploratory purposes, one might use a simple global parametric method

such as series-type or splines or sieve approximation to ατ (·) and then estimate βτ

under a parametric framework. This approach is easily implemented. However,

for such methods, it might not be easy to establish the asymptotic results for the

estimator of βτ without imposing strong assumptions like E[Xt|Ut = u] = 0 all u

or even stronger. Under this type of assumptions, He and Shi (1996) and He and

Liang (2000) studied a series-type method for a partially linear quantile model for

iid data. This harsh assumption might not be appropriate for a dynamic model.

Remark 3: The programming involved in the above local polynomial quantile estimation

can be modified with few efforts from the existing programs for a linear quantile

model. For example, to obtain the nonparametric estimate of parameters for each

grid point u0 in (5), the local polynomial quantile estimation can be implemented

by the function rq() in the package quantreg in the computing language R, due

to Koenker (2004), by setting covariates as Xt , Xt (Ut − u0), · · · , Xt (Ut − u0)
m,

and the weight as Kh(Ut − u0). Alternatively, one can use the function lprq() in

the same package.

Remark 4: In various practical applications, Fan and Gijbels (1996) recommended us-

ing the local linear fit (m = 1). Therefore, for expositional purpose and without
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loss of generality, in this paper, we consider only the case when m = 1 (local linear

fitting).

3 Asymptotic Properties

In this section, we develop the asymptotic theory for the proposed estimators β̃ and α̃(u0)

based on local linear estimation. To show that β̃ is a
√
n -estimator of β and to establish

its asymptotic normality, we will employ the U-statistics technique. For the convenience

of analyzing U-statistics, we introduce β-mixing (absolutely regular), which is defined as

follows. A stationary process {(ξt,Ft),−∞ < t < ∞} is said to be absolutely regular if

the mixing coefficient β(n) defined by

β(n) = E
{

sup
A∈F∞

t+n

|P (A| F t
−∞)− P (A)|

}

converges to zero as n → ∞. β-mixing includes many linear and nonlinear time series

models as special cases; see Doukhan (1994) for the definition and Cai (2002a) for some

examples in economics and finance.

We first give some regularity conditions that are sufficient for the consistency and

asymptotic normality of the proposed estimators, although they might not be the weakest

possible. Denote fu(·) the marginal density of Ut and fy|u,x(·|·) the conditional density of

Yt given (Ut, Xt). In addition, let

Ω(u) = E
[
XtX

T
t |Ut = u

]
and Ω∗(u) = E

[
XtX

T
t fy|u,x(qτ (Ut, Xt))|Ut = u

]
.

and define

µj =

∫
ujK(u)du, and ν0 =

∫
K2(u)du. (9)

Assumption A:

(A1) α(u) is (m+1)-th order continuously differentiable in a neighborhood of u0 for any

u0. Further, fu(u) is continuous and fu(u) > 0 on {u : 0 < Fu(u) < 1}, and fy|u,x(y)
is bounded and satisfies the Lipschitz condition.

(A2) Ω(u0) and Ω∗(u0) are positive-definite and continuous in a neighborhood of u0.

(A3) The kernel function K(·) is symmetric and has a compact support, say [−1, 1].

(A4) The bandwidth h satisfies h→ 0 and nh→ ∞.
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Assumption B:

(B1) {(Vt, Yt)} is a strictly β-mixing stationary process with mixing coefficient β(n) sat-

isfying
∑∞

n=1 n
2 βδ/(1+δ)(n) <∞ for some δ > 0.

(B2) E‖Xt‖2(1+δ) < ∞ for some δ > 0 . Further, functions fu(·), Ω∗(·), and Ω(·) and

their inverse functions are uniformly bounded.

(B3) The bandwidth h = O(n−λ), where 1/4 < λ < 1/3.

Clearly, Assumption B3 is about the undersmoothing at the first step for the nonpara-

metric estimate and it is slightly stronger than nh4 → 0, which is commonly imposed for

iid samples.

The main idea of establishing the consistency and asymptotic normality of β̃ under the

mixing setting is that first we give an explicit expression for β̂(Ut) as a linear estimator plus

a higher order term, and then, we can express β̃ as a U-statistic form. Finally, we apply

the U-statistic technique as in Dette and Spreckelsen (2004) to obtain the consistency and

asymptotic normality for β̃.

In Appendix A, we provide some useful lemmas. From Lemmas 1 - 3 in our Appendix A

and Theorem 2 in Dette and Spreckelsen (2004), we can establish the following asymptotic

normality for β̃. The detailed proofs of the above lemmas and the following theorem are

relegated to Appendix B. All limits will be taken as n → ∞; this will not be mentioned

explicitly in the body of the paper. Finally, we define,

B∗
1 = eT1 E

[
(Ω∗(U1))

−1Ω∗′(U1)

(
0

α′(U1)

)]

where Ω∗′(u) is the first order derivative of Ω∗(u), eT1 = (Ip, 0p×q) with Ip being a p × p

identity matrix and 0p×q being a p× q zero matrix, and

B∗
2 = eT1 E

[
(Ω∗(U1))

−1Γ(U1)
]
,

where

Γ(u0) = E
[
f ′
y|u,x(qτ (Ut, Xt))Xt

(
α′(Ut)

TXt2

)2 |Ut = u0

]

and f ′
y|u,x(y) denotes the derivative of fy|u,x(y) with respect to y.
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Theorem 1: Under Assumptions A1 - A4 and B1 - B2,

√
n
[
β̃τ − βτ −Bβ

]
d−→ N (0, Σβ),

where the asymptotic bias term is Bβ = h2µ2(B
∗
1 − B∗

2/2), µ2 is defined as (9), and the

asymptotic variance is

Σβ = τ(1− τ)E
[
eT1 (Ω

∗(U1))
−1Ω(U1)(Ω

∗(U1))
−1e1

]

+2
∞∑

s=1

Cov(eT1
(
Ω∗(U1))

−1X1 η1, e
T
1 (Ω

∗(Us+1))
−1Xs+1 ηs+1

)
.

Here, ηt = τ − I{Yt ≤ qτ (Ut, Xt)}. In addition, under Assumptions A1 - A4 and B1 - B3,

we have
√
n
[
β̃τ − βτ

]
d−→ N (0, Σβ).

Remark 5: From Theorem 1, the estimator is root-n consistent because of the band-

width Condition B3 so that
√
nh2 → 0. Therefore, we should under-smooth in the

first stage to reduce the bias since the variance is averaged out in the second stage.

In many important time series models including the case when Yt is a p-th order

Markov process, ηt is a martingale difference sequence. In this case, we have the following

corollary.

Corollary 1: Under the additional assumption that ηt is a martingale difference sequence,

the results of Theorem 1 holds with the following asymptotic variance

Σβ,0 = τ(1− τ)E
[
eT1 (Ω

∗(U1))
−1Ω(U1)(Ω

∗(U1))
−1e1

]
.

Of course, the above corollary implies that, in the special case when {(Ut, Xt, Yt)}nt=1

are iid, the result is the same as that in Lee (2003) for iid data (see Theorem 2 in Lee

(2003)) for a partially linear quantile regression model (that is Xt2 = 1), while Lee (2003)

did not use a kernel smoothing method and did not provide the asymptotic bias term.

Finally, we establish the asymptotic results for α̃(u0) given in (8). To this effect, we

introduce the following additional definitions:

Ω22(u) = E
[
Xt2X

T
t2|Ut = u

]
and Ω∗

22(u) = E
[
Xt2X

T
t2fy|u,x(qτ (Ut, Xt))|Ut = u

]
.

and set Σa(u0) = [Ω∗
22(u0))]

−1 Ω22(u0) [Ω
∗
22(u0)]

−1. We need some sufficient conditions as

follows.

Assumption C:
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(C1) Same as (B1).

(C2) E‖Xt2‖2(1+δ∗) < ∞ with δ∗ > δ. Further, functions fu(·), Ω∗
22(·), and Ω22(·) and

their inverse functions are uniformly bounded.

(C3) f(u, v|x02, xs2; s) ≤ M < ∞ for s ≥ 1, where f(u, v|x02, xs2; s) is the conditional

density of (U0, Us) given (X02 = x02, Xs2 = xs2).

(C4) n1/2−δ/4 h
δ/δ∗−1/2−δ/4
1 = O(1), and h/h1 = o(1).

Clearly, (C4) allows the choice of a wide range of smoothing parameter values and is

slightly stronger than the usual condition of nh1 → ∞. However, for the bandwidths of

optimal size (i.e., h1 = O(n−1/5)), (C4) is automatically satisfied for δ ≥ 3 and it is still

fulfilled for 2 < δ < 3 if δ∗ satisfies δ < δ∗ ≤ 1+1/(3−δ). This assumption is also imposed

by Cai, Fan and Yao (2000) for mean regression. Finally, if Xt2 = 1 in model (2), (C1)

can be replaced by (C1)′: β(n) = O(n−δ) for some δ > 2 and (C4) can be substituted by

(C4)′: nh
δ/(δ−2)
1 → ∞; see Cai (2002a) for related discussions on this issue.

Theorem 2: Under Assumptions A and C, the local linear estimator of α(u0) has the

following asymptotic distribution:

√
nh1

[
α̃(u0)− α(u0)−

h21µ2α
′′

(u0)

2
+ op(h

2
1)

]
d−→ N (0,Σα) ,

where Σα = τ(1− τ)ν0Σa(u0)/fu(u0), and µ2 and ν0 are defined in (9).

Remark 6: Notice that from Theorem 2, we see easily (by comparing Theorem 1 in

Cai and Xu (2008)) that the asymptotic result is exactly same as that for the case

where β would be known. This property is referred as “oracle” in the literature.

Remark 7: It is clear that the asymptotic mean squared error (AMSE) is of the order

O(n−4/5) if the bandwidth is taken to be the optimal one as h1,opt = O(n−1/5). Also,

at the final step, any data-driven type bandwidth selection can be applied; see, for

example, Cai and Xu (2008) for a rule-of-thumb bandwidth.

11



4 Inference

The asymptotic results derived in the previous sections facilitate statistical inference in

conditional quantile models. An important inference problem is to test constancy of the

coefficients α(·), corresponding to

H0 : ατ (u) = ατ , versus H1 : varying coefficients ατ (u). (10)

This hypothesis can be tested in different ways. A natural approach to test constancy

of α(·) is to directly look at the variability of the estimated coefficient α̃(u). For this

purpose, in addition to the semiparametric functional coefficient estimator α̃(u), we may

consider the (null) restricted regression

qτ (Ut, Xt) = βT
τ Xt1 + ατ

TXt2, (11)

and compare α̃(u) with the restricted quantile regression estimator ᾰ from (11) over a

range of u, based on [α̃(u)− ᾰ].

Notice that under the null hypothesis and regularity conditions,

√
n(ᾰ− α)

d−→ N (0, τ(1− τ)D22) ,

where D22 is the lower diagonal sub-matrix of D = H−1Σ0H
−1 , H = E[Ω(Ut)], and

Σ0 = E[Ω∗(Ut)]; see Theorem 4.1 in Koenker (2005) for details. If we choose nh51 → 0,

then under the null hypothesis,

√
nh1 (α̃(u)− ᾰ) =

√
nh1 (α̃(u)− α) + op(1)

d−→ N (0,Σα(u)) .

If we denote the consistent estimator of Σα as Σ̂α(u), which may be obtained by the

method proposed in Cai and Xu (2008), we have

√
nh1Σ̂

−1/2
α (u) (α̃(u)− ᾰ)

d−→ N (0, Iq) ,

where Iq is an identity matrix and q is the dimension of Xt2, and then,

∥∥∥
√
nh1Σ̂α(u)

−1/2 (α̃(u)− ᾰ)
∥∥∥
2 d−→ χ2(q).

where χ2(q) is χ2 random variable with q degrees of freedom.

In order to look at α̃(u)− ᾰ over a range of u, and construct an asymptotically valid

test, we need to find out the joint distribution of the estimated functional coefficients over
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a number of points. Let u∗i (i = 1, · · · ,m) be m distinct points. The joint distribution of

α̃(u∗i ) (i = 1, · · · ,m ) is given by the following Theorem.

Theorem 3. Under Assumptions A and C, the kernel estimators of the parameters has

the following limiting joint distribution

√
nh1




α̃(u∗1)− ᾰ
...

α̃(u∗m)− ᾰ




d−→ N


0,




Σα(u
∗
1) 0

. . .

0 Σα(u
∗
m)





 .

Now we can define the test statistic. For distinct u∗1, ..., u
∗
m, define

Tm = max
1≤i≤m

∥∥∥
√
nh1Σ̂α(u

∗
i )

−1/2 (α̃(u∗i )− ᾰ)
∥∥∥
2

. (12)

Then, we show easily that suppose Assumptions A and C hold, under H0 given by (10),

as n→ ∞,

Tm
d→ max

1≤i≤m
χ2
i (q),

where χ2
1(q), · · · , χ2

m(q) are independent chi-square random variables with q degrees of

freedom. Thus, one can reject the null if Tm is too large. The critical value of Tm can be

easily tabulated since the limiting distribution of Tm is a functional of independent chi-

square random variables (with q degrees of freedom) that is free of nuisance parameters

and quantiles.

Remark 8: The testing procedure given by (12) and Theorem 2 is an asymptotic test.

It has the advantage that its limiting distribution is free of nuisance parameter and

quantiles. As an alternative, we may consider a bootstrap based test of (12), which

may give some finite sample improvement. Another issue related to the proposed

test is the choice of finite distinct points {u∗i }mi=1. In practice, we may consider, say

choosing lower quartile, median, and upper quartiles, or we may construct the test

based on all deciles. In some applications, different choices of m and the points

{u∗i }mi=1 may potentially lead to different conclusions in finite sample, thus it would

be desirable to consider all points u on the domain Ut, and treat α̃(u) as a process in

u, and Kolmogorov-Smirnov or Cramer-von-Mises type tests may be constructed. Of

course, it would be warranted as a future research topic to investigate the properties

of those test statistics.
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5 More Efficient Estimation of βτ

The estimator β̃ proposed in the previous section has the advantage that it is easy to con-

struct and also achieves the
√
n-rate of convergence. In addition to this simple estimator,

other root-n consistent estimators of β can be constructed. To estimate the parameters β

without being overly influenced by the tail behavior of the distribution of Ut, one might

use a trimming function wt = I(Ut ∈ D) with a compact subset D of ℜ; see Cai and

Masry (2000) for details. Then, (7) becomes the weighted average estimator as

β̃w =

∑n
t=1wtβ̂(Ut)∑n

t=1wt

. (13)

For simplification of presentation, our focus is on β̂ given in (7). Indeed, this type of

estimator was considered by Lee (2003) for a partially linear quantile regression model.

To estimate β in a more efficient way, similar to Cai and Fan (2000), we can construct

a general weighted average approach as follows

β̌w =

[
1

n

n∑

t=1

W (Ut)

]−1 [
1

n

n∑

t=1

W (Ut)β̂(Ut)

]
, (14)

where W (·) is a weighting function (a symmetric matrix). This is a functional of β̂(u)

and possesses some good properties. The weighted averaging can significantly reduce the

variance, but not bias, of the resulting estimate β̌w. This enables us to obtain an optimal

estimate of β via adjusting the bandwidths and choosing the optimal weighting function

by minimizing the asymptotic variance. Of course, the trimming function wt in (13) can

be applied to (14) too.

Following a similar argument as the proof of Theorem 1, it can be shown that, when

ηt is a martingale difference sequence, the weighted average estimate β̌w of βτ defined in

(14) has the following asymptotic distribution under some regularity conditions,

√
n
[
β̌w − βτ

] d−→ N (0, Σw), (15)

where

Σw = τ(1− τ)W−1
e E

[
W (U1)e

T
1 (Ω

∗(U1))
−1Ω(U1)(Ω

∗(U1))
−1e1W (U1)

T
]
W−1

e , (16)

where We = E[W (U1)]. When the conditional density fy|u,x(qτ (u, x)) is constant, denoted

by fτ (0), then Σw becomes

Σw =
τ(1− τ)

f 2
τ (0)

W−1
e E

[
W (U1)e

T
1 (Ω(U1))

−1e1W (U1)
]
W−1

e .
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Clearly, the optimal choice of the weighting function is to set

Wopt(u) =
[
eT1 (Ω(u))

−1e1
]−1

= Ω11(u)− Ω12(u)Ω
−1
22 (u)Ω21(u) (17)

based on the matrix theory, where Ω11(u) = E[Xt1X
T
t1|Ut = u], Ω12(u) = E[Xt1X

T
t2|Ut =

u], Ω21 = ΩT
12, and Ω22(u) = E[Xt2X

T
t2|Ut = u], so that the optimal asymptotic variance

is

Σw,opt =
τ(1− τ)

f 2
τ (0)

[E(Wopt(U1))]
−1.

Specifically, if Xt2 = 1, then, Wopt(u) = Var(Xt1|Ut = u), which is the same as that in He

and Shi (1996) and Lee (2003). By the same token, one may derive the optimal weighting

function when the conditional density fy|u,x(qτ (u, x)) is not constant, however it has a

complex form. Finally, notice that if Ω(u) does not depend on u, then Wopt(u) in (17)

is constant so that the efficient estimator β̌w given in (14) is the same as the estimator

given in (7).

In practical applications, Ω(u) is usually unknown. However, it can be estimated by

using any nonparametric method, say local linear approach since it is a conditional mean

function. For example, in view of (17), we can use the following estimated weighting

function

Ŵopt(u) = Ω̂11(u)− Ω̂12(u)Ω̂
−1
22 (u)Ω̂21(u), (18)

where Ω̂ij(u) denotes a kernel estimate of the corresponding conditional expectation

Ωij(u); see Fan and Gijbels (1996). One can show easily based on the kernel estima-

tion theory in Fan and Gijbels (1996) that Ŵopt(u) is a consistent estimate of Wopt(u)

given in (17).

Remark 9: Without assuming that ηt is a martingale difference sequence, it is still pos-

sible to establish the asymptotic result in (15) for β̌w. In this general case, the

asymptotic variance in (16) should be given by

Σw = τ(1− τ)W−1
e E

[
W (U1)e

T
1 (Ω

∗(U1))
−1Ω(U1)(Ω

∗(U1))
−1e1W (U1)

T
]
W−1

e

+2W−1
e

∞∑

s=1

Cov(W (U1)e
T
1

(
Ω∗(U1))

−1X1 η1,W (Us+1)e
T
1 (Ω

∗(Us+1))
−1Xs+1 ηs+1

)
W−1

e .

But, due to the complex expression for Σw, it may not be easy to find an explicit

mathematical expression for the optimal weighting function Wopt(·).
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6 Monte Carlo Simulations

We conduct a Monte Carlo experiment to examine the finite sample performance of the

proposed estimation procedures. For comparison purpose, we also estimate the condi-

tional quantile model using the fully parametric quantile autoregression (QAR) model as

Koenker and Xiao (2006) in Example 1 and the fully nonparametric model of Cai and

Xu (2008) in Example 2. In Example 3, we examine the efficiency gain from using the

information of linearity or nonlinearity in estimation of the coefficients and conditional

quantiles. Finally, the simulation result in Example 4 shows that the resulting testing

procedure is indeed powerful, and the proposed method does give the correct null dis-

tribution. The Monte Carlo simulations are repeated 1000 times for each sample size

n = 200, 500 and 800. Also, we consider several values of τ as τ = 0.05, τ = 0.25,

τ = 0.50, τ = 0.75, and τ = 0.95. The bandwidth is selected based on a rule-of-thumb

idea similar to the procedure in Cai (2002b) as follows. First, we use a data-driven band-

width selector as suggested in Cai and Xu (2008) to obtain an initial bandwidth denoted

by ĥ0 which should be O(n−1/5). At the step of estimating β1, the bandwidth should be

under-smoothed. Therefore, by following the idea in Cai (2002b) for a two-step approach,

we take the bandwidth as ĥ1 = A0× ĥ0 with A0 = n−αa with αa = 1/10 so that ĥ1 satisfies

Assumption B3. To obtain α̃2(·), we use a a rule-of-thumb bandwidth suggested in Cai

and Xu (2008). Finally, the Gaussian kernel is used in the nonparametric estimation.

Example 1: The data generating process is given by:

Yt = β1 Yt−1 + α2(Ut)Yt−2 + et, t = 1, . . . , n, (19)

where β1 ≡ 0.5, α2(Ut) = −0.75 + 0.5 cos(
√
2 π Ut), Ut is generated from uniform (0, 1)

independently, and et ∼ N(0, 1). Clearly, the quantile regression is

qτ (Ut, Yt−1, Yt−2) = β0,τ + β1 Yt−1 + α2(Ut)Yt−2,

where β0,τ ≡ Φ−1(τ) and Φ−1(τ) is the τ -th quantile of the standard normal. Therefore,

only β0,τ is a function of τ . Notice that β0,0.5 = 0 when τ = 0.5. Obviously, qτ is a semi-

parametric function. The estimators of β0,τ , β1τ , α2(·), and qτ (·) based on the proposed

three stage estimation procedure are denoted as β̃0,τ , β̃1τ , α̃2(·), and q̃τ (·) respectively.
We first look at estimation of the parametric coefficient (i.e., β1 ) and investigate the

efficiency gain when we take into account the nonlinearity in α2. We compare the proposed
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estimator with the estimator of β1 that does not take into account the nonlinearity in α2.

For this purpose, we also estimate the conditional quantile model using the following

fully parametric quantile autoregression (QAR) estimation as Koenker and Xiao (2006)

(denote the corresponding estimator as β̌1):

qτ (Yt−1, Yt−2) = β0,τ + β1 Yt−1 + α2 Yt−2, t = 1, . . . , n. (20)

Comparing to β̃1, β̌1 ignores the information that α2 is a function of u. The assessment

is based on the absolute deviation error (ADE) as follows:

ADE(β̌j,τ ) = |β̌j,τ − βj,τ |, and ADE(β̃j,τ ) = |β̃j,τ − βj,τ |

for j = 0 and j = 1.

The median and standard deviation (in parentheses) of the 1000 values of ADE for

both β̌ and β̃ are summarized in the left part of Table 1 for the estimator β0,τ and in the

right part of Table 1 for the estimator β1. From Table 1, one can observe clearly that the

medians of the estimated values for β̌0 are kept the same when the sample size increases -

and this is because that β̌0 is not consistent due to the model misspecification. Also, we

can see that the medians and standard deviations of the ADEs for β̃0 and β̃1 as well as

β̌1 become smaller for all τ values when the sample size increases. This is along with the

asymptotic theory. More importantly, one can see that β̃1,τ always outperforms β̌1,τ for

all settings. To gauge the efficiency gain for β̃1, we compute the ratios of ADE(β̃1) over

ADE(β̌1) and the medians of the 1000 values of the ratios are given in Table 1. One can

observe from Table 1 that the ADE for β̃1,τ is less than that for β̌1,τ up to 40%. Therefore,

the efficiency gain for β̃1,τ is huge. Moreover, it is interesting but not surprising to see

that the performance for β̃0 is not as good as β̃1 for all selected quantiles since β̃0 is a

function of τ . Further, it is not surprising to see, due to the sparsity of data in the tailed

regions, that the median quantile (τ = 0.50) performance is slightly better than that for

two tails (τ = 0.05 and τ = 0.95).

Next, estimation of the conditional quantiles qτ (·) is reported in Table 2. As a measure

of performance in quantile estimates, we report the mean square error (MSE) of the various

estimators. The mean square error of the conditional quantiles is measured as averaged

over the sample, i.e. the MSE is calculated as

MSE(q̃τ ) =
1

n

n∑

t=1

[q̃τ (Ut, Xt)− qτ (Ut, Xt)]
2 .
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Table 1: Median and Standard Deviation (in parentheses) of 1000 ADE Values for β̌j,τ

and β̃j,τ as well as Ratios ADE(β̃)/ADE(β̌).

Results for β̌0,τ Results for β̃1,τ

τ ADE n = 200 n = 500 n = 800 n = 200 n = 500 n = 800

β̌ 0.526(0.373) 0.533(0.220) 0.560(0.182) 0.059(0.054) 0.039(0.035) 0.030(0.028)

0.05 β̃ 0.119(0.101) 0.067(0.060) 0.057(0.045) 0.040(0.038) 0.028(0.023) 0.019(0.017)

β̃/β̌ 0.640 0.672 0.607

β̌ 0.171(0.123) 0.168(0.085) 0.168(0.067) 0.032(0.033) 0.022(0.021) 0.018(0.016)

0.25 β̃ 0.066(0.061) 0.039(0.036) 0.032(0.029) 0.024(0.026) 0.016(0.015) 0.013(0.012)

β̃/β̌ 0.760 0.726 0.745

β̌ 0.074(0.066) 0.047(0.042) 0.560(0.182) 0.030(0.030) 0.021(0.019) 0.030(0.028)

0.50 β̃ 0.059(0.051) 0.037(0.033) 0.030(0.026) 0.023(0.025) 0.015(0.014) 0.011(0.010)

β̃/β̌ 0.780 0.732 0.694

β̌ 0.161(0.120) 0.174(0.088) 0.167(0.066) 0.037(0.032) 0.022(0.020) 0.018(0.016)

0.75 β̃ 0.066(0.057) 0.041(0.035) 0.031(0.028) 0.026(0.027) 0.016(0.014) 0.013(0.012)

β̃/β̌ 0.759 0.702 0.728

β̌ 0.515(0.363) 0.568(0.223) 0.568(0.164) 0.061(0.053) 0.037(0.035) 0.032(0.027)

0.95 β̃ 0.123(0.096) 0.068(0.058) 0.053(0.044) 0.041(0.041) 0.024(0.022) 0.018(0.018)

β̃/β̌ 0.736 0.649 0.602

Similarly, we can define MSE(q̌τ ). It is evident that the semiparametric estimator provides

much better estimator for the conditional quantiles than the fully parametric model in

the presence of nonlinearity in some coefficients. Therefore, one can conclude that the

proposed method performs very well comparing to the misspecified linear model.

Example 2: In this example, we consider the following data generating process:

Yt = β1Xt1 + α2(Ut)Xt2 + σ(Ut) et, t = 1, . . . , n, (21)

where β1 ≡ 0.5, α2(Ut) = cos(
√
2 π Ut), σ(Ut) = 3 exp(−4(Ut − 1)2) + 2 exp(−5(Ut − 2)2),

Xt1 is generated from Xt1 = 0.75Xt−1,1+ vt1 with vt1 ∼ N(0, 1) iid, Xt2 is generated from

Xt2 = −0.5Xt−1,2 + vt2 with vt2 ∼ N(0, 1/4) iid, Ut is generated from Ut = 0.5Ut−1 + vt3

with vt3 ∼ N(0, 1) iid, and et ∼ N(0, 1). Clearly, the quantile regression is

qτ (Ut, Xt1, Xt2) = β0,τ (Ut) + β1Xt1 + α2(Ut)Xt2,

where β0,τ (Ut) = σ(Ut)Φ
−1(τ).
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Table 2: Median and Standard Deviation (in parentheses) of 1000 MSE Values for q̌τ and

q̃.

τ τ = 0.05 τ = 0.50 τ = 0.95

MSE q̌τ q̃τ q̌τ q̃τ q̌τ q̃τ

n = 200 1.120(1.431) 0.175(0.092) 0.811(0.946) 0.057(0.031) 1.192(1.291) 0.171(0.093)

n = 500 1.192(0.702) 0.071(0.034) 0.888(0.698) 0.025(0.012) 1.191(0.750) 0.074(0.034)

n = 800 1.225(0.559) 0.049(0.022) 0.886(0.408) 0.016(0.008) 1.226(0.606) 0.047(0.023)

First, we compare estimator of the functional coefficient α2(·) based on the fully non-

parametric estimation of Cai and Xu (2008), where qτ (Ut, Xt) is

qτ (Ut, Xt) = β0,τ (Ut) + β1(Ut)Yt−1 + α2(Ut)Yt−2, t = 1, . . . , n. (22)

(denoted as α̌2(·)) and the estimator based on the proposed procedure (denoted as α̃2(·)) in
(8). Comparing to α̃2(·), α̌2(·) does not utilize existing information concerning linearity

of β1. To obtain α̌2(·), we use the bandwidth as suggested in Cai and Xu (2008). To

compare two estimators, we define the mean absolute deviation error (MADE) as

MADE(α̌2(·)) =
1

nu

nu∑

k=1

|α̌2(uk)−α2(uk)|, and MADE(α̃2(·)) =
1

nu

nu∑

k=1

|α̃2(uk)−α2(uk)|,

where {uk}nu=100
k=1 are the grid points taken from the interval (min(Ut),max(Ut)), the

domain of Ut with an equal increment. Table 3 reports the median and standard deviation

Table 3: Median and Standard Deviation (in parentheses) of 1000 MADE Values for α̌2(·)
and α̃2(·).

τ τ = 0.05 τ = 0.50 τ = 0.95

MADE MADE(α̌2) MADE(α̃2) MADE(α̌2) MADE(α̃2) MADE(α̌2) MADE(α̃2)

n=200 0.117(0.046) 0.110(0.046) 0.071(0.030) 0.064(0.028) 0.119(0.046) 0.114(0.044)

n=500 0.075(0.024) 0.073(0.023) 0.046(0.015) 0.043(0.014) 0.076(0.025) 0.073(0.023)

n=800 0.061(0.018) 0.058(0.017) 0.036(0.011) 0.032(0.011) 0.060(0.019) 0.058(0.018)

of 1000 values for MADE for different settings. One can observe from Table 3 that the

finite sample performance of α̃2(·) is better than α̌2(·), although the efficiency gain is not

huge. Finally, although α2(·) does not depend on τ , due to the sparsity of data in the

tailed regions, it is not surprising to see that the median quantile (τ = 0.50) performance

is better than that for two tails (τ = 0.05 and τ = 0.95).
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Next, we compare estimators of qτ (Ut, Xt) from these two different estimation proce-

dures: the proposed semiparametric estimation (denoted as q̃τ ) and the fully nonpara-

metric estimation (denoted as q̌τ ). The results are displayed in Table 4. From Table 4,

Table 4: Median and Standard Deviation (in parentheses) of 1000 MSE Values for q̌τ and

q̃τ as well as Ratios MSE(q̃τ )/MSE(q̌τ ).

τ MSE n = 200 n = 500 n = 800

MSE(q̌τ ) 0.979(0.394) 0.514(0.167) 0.364(0.113)

τ = 0.05 MSE(q̃τ ) 0.811(0.358) 0.400(0.145) 0.281(0.094)

MSE(q̃τ )/MSE(q̌τ ) 0.852 0.804 0.790

MSE(q̌τ ) 0.619(0.213) 0.299(0.089) 0.364(0.113)

τ = 0.50 MSE(q̃τ ) 0.521(0.308) 0.217(0.085) 0.151(0.050)

MSE(q̃τ )/MSE(q̌τ ) 0.844 0.755 0.720

MSE(q̌τ ) 0.975(0.377) 0.515(0.172) 0.363(0.116)

τ = 0.95 MSE(q̃τ ) 0.792(0.348) 0.402(0.144) 0.282(0.098)

MSE(q̃τ )/MSE(q̌τ ) 0.860 0.802 0.787

it is evident that: First, the MSEs for q̌τ and q̃τ are decreasing when the sample size

becomes larger, corroborating the asymptotic theory. Second, we can see clearly that

the MSE for q̃τ is less than the MSE for q̌τ by 14% to 28% for all settings. Therefore,

q̃τ always outperforms q̌τ . Comparing to the coefficient estimation, the efficiency gain of

the proposed estimator in estimation of conditional quantile is more substantial. Finally,

once again, the performance for both q̌τ and q̃τ when τ = 0.50 is better than that when

τ = 0.05 or τ = 0.95.

Example 3: We compare the finite sample performance of the estimator given in Section

2 ((7) and (13 )) with that for the efficient estimator in (14) proposed in Section 5. To

this effect, we consider the following model

qτ (Ut, Xt1, Xt2) = Φ−1(τ) + β1Xt1 + α2(Ut)Xt2,

where β1 = 0.5, and Xt1 and Xt2 are generated as follows

Xt1 = g1(Ut) + vt5, and Xt2 = g2(Ut) + vt6
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with {vt5} iid from N(0, σ2
5) and {vt6} iid from N(0, σ2

6). It is easy to check that the

conditional density of Yt given Ut and Xt is f(Yt|Ut, Xt) = φ(Yt − β1Xt1 − α2(Ut)Xt2),

where φ(·) is the standard normal density, so that f(qτ (Ut, Xt)|Ut, Xt) = φ(Φ−1(τ)) =

fτ (0). Therefore, f(qτ (Ut, Xt)|Ut, Xt) does not depend on Ut. Then, the optimal weighting

Table 5: Median and Standard Deviation (in parentheses) of 1000 Bias Values for β̃1 and

β̌w.

τ = 0.25 τ = 0.75

Bias(β̃1) Bias(β̌w) Bias(β̃1) Bias(β̌w)

n=200 0.002(0.131) -0.005(0.145) 0.003(0.127) 0.008(0.141)

n=500 -0.002(0.081) -0.003(0.089) 0.011(0.078) 0.011(0.088)

n=800 0.004(0.064) -0.003(0.073) 0.004(0.062) 0.005(0.070)

function in (18) has the following form,

Wopt(Ut) =
[
σ2
5g2(Ut)

2 + σ2
6g1(Ut)

2 + σ2
5σ

2
6

]
/
[
g2(Ut)

2 + σ2
6

]
,

although it can be estimated using (18).

We compare the estimator in (7) with the estimator in (14) by examining the biases

and ADEs. For this purpose, we consider the following setting: Ut ∼ N(0, 1), α2(Ut) =

cos(
√
2 π Ut), σ

2
5 = 0.01, σ2

6 = 1, g1(Ut) = 6 exp(−4(Ut + 1/2)2) + 4 exp(−5 (Ut − 1/2)2)

and g2(Ut) = Ut/4. Ŵopt(u) is computed using (18). The median and standard deviation

of 1000 values for bias and ADE are represented in Table 5 and in Table 6, respectively.

From Table 5, we can observe that the biases for both estimators are almost same. This

supports the theory in Section 5 that the efficient estimator can not reduce the bias.

Table 6: Median and Standard Deviation (in parentheses) of 1000 ADE Values for β̃1 and

β̌w.

τ = 0.25 τ = 0.75

ADE(β̃1) ADE(β̌w) ADE(β̃1) ADE(β̌w)

n=200 0.136(0.082) 0.092(0.063) 0.116(0.072) 0.093(0.058)

n=500 0.081(0.051) 0.068(0.037) 0.069(0.043) 0.055(0.034)

n=800 0.059(0.038) 0.039(0.023) 0.051(0.033) 0.037(0.020)

However, it is strongly evident from Table 6 that the ADE value for β̌w is much smaller
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than that for β̃1 for all cases. This implies that the efficiency gain for β̌w is very significant.

Example 4: Finally, we examine the finite sample performance of the test statistic

proposed in (12). To this effect, we consider the following model

qτ (Ut, Xt1, Xt2) = Φ−1(τ) + β1Xt1 + α2(Ut)Xt2,

where β1 = 0.5, Ut ∼ U(0, 1) iid, Xt1 ∼ N(0, 1) iid, and Xt2 is generated from Xt2 =

g2(Ut) + vt7, where g2(Ut) = 2 cos(
√
2π Ut) and {vt7} is iid from N(0, 1). Clearly, the

conditional density of Yt given Ut and Xt is f(Yt|Ut, Xt) = φ(Yt − β1Xt1 − α2(Ut)Xt2)

and f(qτ (Ut, Xt)|Ut, Xt) = fτ (0), which is independent of Ut. Also, it is easy to ob-

tain that Ω22(Ut) = E[X2
t2|Ut] = g2(Ut)

2 + 1, which implies that Σα(Ut) = τ(1 −
τ)ν0Ω22(Ut)

−1/f 2
τ (0) = τ(1− τ)

√
π exp(Φ−1(τ)2)/[g2(Ut)

2 + 1].

To demonstrate the power of the proposed test, we consider the null hypothesis

H0 : α2(Ut) = α0, (23)

namely a linear quantile model, versus the alternative

H1 : α2(Ut) 6= α0.

The power function is evaluated under a sequence of the alternative models indexed by γ

H1 : α2(Ut) = α0 + γ(α0
2(Ut)− α0), 0 ≤ γ ≤ 1, (24)

where α0
2(Ut) = 3 exp(−4(Ut−1/2)2)+4 exp(−5(Ut−3/4)2) and α0 is the average height

of α0
2(Ut) which is about 3.9466. We take u∗i = 0.05i for 1 ≤ i ≤ m = 19. The simulation

is repeated 1000 times for each sample size (n = 200, n = 500 and n = 800) and for

each quantile (τ = 0.2, τ = 0.40, τ = 0.60 and τ = 0.80). The power function p(γ)

is estimated based on the relative frequency of Tm over the critical value among 1000

simulations. Figure 1 (1(a) for τ = 0.20, 1(b) for τ = 0.40, 1(c) for τ = 0.60 and 1(d)

for τ = 0.80) plots the simulated power function p(γ) against γ for n = 200 (dashed

line), n = 500 (solid line) and n = 800 (dashed-dotted line). When γ = 0, the specified

alternative collapses into the null hypothesis and the power becomes the test size. Notice

that for simplicity, the bandwidth suggested in Cai and Xu (2008) is used to compute the

power although some sophisticated bandwidth selectors may be applicable. From Figure
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1, it is clear that the power becomes larger and the test size is closer to the significance

level of 5% when the sample size increases. Also, the power and size are almost the same

for all four given quantiles though the performance for the middle two quantiles (τ = 0.40

and τ = 0.60) is a slightly better than that for the tailed two quantiles (τ = 0.20 and

τ = 0.80). This indicates that the simulation results are indeed along with the line of

the asymptotic theory given in Theorem 3. In particular, when n = 800, the empirical

size is 0.051 for τ = 0.20, 0.052 for τ = 0.40, 0.049 for τ = 0.60, and 0.056 for τ = 0.08,

and they are very close to the significant level of 5%. The power function shows that our

test is indeed powerful. To appreciate why, consider the specific alternative with γ = 0.3.

The functions α2(·) under H0 and H1 are shown in Figure 2. The null hypothesis is

essentially the constant curve in Figure 2. Even with a small difference under our noise

level, when n = 800, we can correctly detect the alternative over 80% (80.4% for τ = 0.20,

88.3% for τ = 0.40, 86.0% for τ = 0.60 and 80.5% for τ = 0.60 respectively) among 1000

simulations. The power increases rapidly to 1 when γ = 0.5 for τ = 0.40 and τ = 0.60

and when γ = 0.6 for τ = 0.20 and τ = 0.80.

7 Conclusion

We study quantile regression with partially varying coefficients. The proposed partially

varying coefficient quantile regression model serves as an intermediate model between the

fully nonparametric functional-coefficient model and the dynamic linear quantile regres-

sion model. Such a model provides a trade-off on robustness and precision, and suffers less

from the so-called “curse of dimensionality” problem comparing to purely nonparametric

models.

A simple and easily implemented three stage semiparametric procedure is proposed.

In particular, we construct an estimator for the parameter component based on averaging

(or weighted averaging) preliminary nonparametric functional coefficient estimates. The

parametric estimators are root-n consistent and the estimation of the functional coeffi-

cients is oracle. The proposed estimators are asymptotically normal, which facilitates

inference on the functional form of the coefficients. Our Monte Carlo experiment indi-

cates that efficiency gain can be achieved when appropriately using information about the

partial linear structure.

Important and interesting further studies can be conducted on inference problems
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based on the proposed partially varying coefficient quantile regression model. As remarked

in Section 4, one may consider inference problems based on the stochastic process α̃(u)

in u, and one may also consider inference procedures of other forms. In addition, other

types of inference problems can be studied. We hope to explore these issues in subsequent

work.

Appendix: Proofs

Appendix A: Useful Lemmas

For convenience of the proof, we introduce some notations. Define ξt = (Ut, Xt, Yt),

B(ξt) = fu(Ut) Ω
∗(Ut), M(ξt) = Xt, Kh(u0, ξt) = Kh(Ut − u0), ψτ (x) = τ − I(x ≤ 0),

ψτ (u0, ξj) = τ − I{Yj ≤ βTXj1 + α(u0)
TXj2} = τ − I{Yj ≤ qτ (u0, Xj)}, and Z(u0, ξj) =

ψτ (u0, ξj)M(ξj)Kh(u0, ξj). It is easy to show that ηt = ψτ (ξt, ξt), E(ηt) = 0, and Var(ηt) =

τ(1− τ).

It follows from Theorem 1 in Cai and Xu (2008) that for any u0,

√
nh

(
β̂(u0)− β(u0)

α̂(u0)− α(u0)

)
≈ 1√

nhfu(u0)
[Ω∗(u0)]

−1
n∑

j=1

ψτ (εj)XjK((Uj − u0)/h)

=
h√
nh

n∑

j=1

B−1(u0)Z(u0, ξj)

+
h√
nh

n∑

j=1

B−1(u0)[ψτ (εj)− ψτ (u0, ξj)]XjK((Uj − u0)/h),

where εj = εjτ = Yj − βTXj1 − [α(u0) + α
′

(u0)(Uj − u0)]
TXj2. In particular

β̂(u0)− β(u0) ≈
1

n

n∑

j=1

eT1 B
−1(u0)Z(u0, ξj) +Bn(u0), (25)

holds uniformly for all u0 under Assumption B, where an = (nh)−1/2 and

Bn(u0) =
1

n

n∑

j=1

eT1 B
−1(u0)[ψτ (εj)− ψτ (u0, ξj)]XjK((Uj − u0)/h).

Indeed, one can show that (25) is true by applying Assumption B to the proofs of Lemmas

1 - 4 in Cai and Xu (2008). By using the leave-one-out method, the similar Bahadur

representation for each design point Ui is

β̂(Ui)− β(Ui) ≈
1

n

n∑

j 6=i

B−1(ξi)Z(ξi, ξj) + Bn(Ui)
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holds uniformly for all u0. Thus,

β̃ − β =
1

n

n∑

i=1

eT1

[
β̂(Ui)− β(Ui)

]

≈ 2

n2

∑

1≤i<j≤n

eT1B
−1(ξi)Z(ξi, ξj) +Bn

=
1

n2

∑

1≤i<j≤n

[eT1B
−1(ξi)Z(ξi, ξj) + eT1B

−1(ξj)Z(ξj, ξi)] + Bn

=
n− 1

2n
Vn +Bn, (26)

where Tn(ξi, ξj) = eT1B
−1(ξi)Z(ξi, ξj) + eT1B

−1(ξj)Z(ξj , ξi),

Vn =
2

n(n− 1)

∑

1≤i<j≤n

Tn(ξi, ξj), and Bn =
1

n

n∑

i=1

Bn(Ui).

Then, we show that Vn is a U-statistics with non-degenerate n -dependent kernel Tn(ξi, ξj).

To derive the asymptotic properties for β̃, we use the Hoeffding decomposition (see

Lee (1990)) as follows. Let,

H(1)
n =

1

n

n∑

i=1

h(1)n (ξi), and H(2)
n =

2

n(n− 1)

∑

1≤i<j≤n

h(2)n (ξi, ξj),

where the kernels in the statistics H
(1)
n and H

(2)
n are defined respectively by

h(1)n (v) = E[Tn(v, ξj)]− γn, and h(2)n (v, w) = Tn(v, w)−E[Tn(v, ξj)]−E[Tn(ξi, w)] + γn

with F (·) being the distribution of ξi,

γn =

∫ ∫
Tn(ξi, ξj)dF (ξi)dF (ξj) ≡ E⊗Tn(ξi, ξj)

and E⊗ denoting the expectation with respect to the measure P ξi ⊗ P ξj . Then,

Vn = γn + 2H(1)
n +H(2)

n .

To establish the consistency and asymptotic normality of the proposed estimator, we use

Theorem 2 in Dette and Spreckelsen (2004). To do so, we need to check the conditions in

Theorem 2 of Dette and Spreckelsen (2004), which are provided by the following lemmas.

Lemma 1: Under Assumptions A and B1 - B2,
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(1) γn = h2µ2(2B
∗
1 −B∗

2) + o(h2);

(2) h
(1)
n (v) = eT1B

−1(v)ψτ (v, v)M(v)fu(v) + o(h) ;

(3) h
(2)
n (v, w) = Tn(v, w)−eT1B−1(v)ψτ (v, v)M(v)fu(v)−eT1B−1(w)ψτ (w,w)M(w)fu(w)

+o(h), where fu(·) is the density distribution of U1.

Lemma 2: Under Assumptions A and B1 - B2,

(1) E[h
(1)
n (ξi)] = 0;

(2) Var(h
(1)
n (ξi)) = Σβ,0 + o(1);

(3) Cov(h
(1)
n (ξ1), h

(1)
n (ξs+1)) = Cov(W1,Ws+1) ≤ C β(s) for some C > 0, where Ws =

eT1 [Ω
∗(Us)]

−1Xs ηs.

Lemma 3: Under Assumptions A and B1 - B2,

(1) E[H
(1)
n ] = 0;

(2) nVar(H
(1)
n ) = Σβ + o(1);

(3) E|h(1)n (ξi)|4 = O(1);

(4) E|h(2)n (ξi, ξj)|2 = O(h−2).

Lemma 4: Under Assumptions A and B1 - B2, we have

Bn = h2µ2(−B∗
1 + B∗

2/2) + op(h
2),

where B∗
1 and B∗

2 are given before Theorem 1.

The detailed proofs of the above lemmas and the following theorem are relegated to

Appendix B.
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Appendix B: Proofs of Lemmas and Theorems

Proof of Lemma 1: It is easy to see by the Taylor expansion that for Uj close to u0,

E [ψτ (u0, ξj)|Xj, Uj ]

= τ − Fy|u,x(qτ (Uj, Xj)−XT
j2(α(Uj)− α(u0))

≈ fy|u,x(qτ (Uj, Xj))X
T
j2(α(Uj)− α(u0))−

1

2
f ′
y|u,x(qτ (Uj, Xj))

[
XT

j2(α(Uj)− α(u0))
]2

= fy|u,x(qτ (Uj, Xj))X
T
j

(
0

α(Uj)− α(u0)

)
− 1

2
f ′
y|u,x(qτ (Uj, Xj))

(
[α(Uj)− α(u0)]

TXj2

)2
,

which implies that

E [Z(u0, ξj)]

= E
[
Xj{τ − Fy|u,x(qτ (Uj, Xj)−XT

j2(α(Uj)− α(u0))}Kh(Uj − u0)
]

≈ E

[
fy|u,x(qτ (Uj , Xj))XjX

T
j

(
0

α(Uj)− α(u0)

)
Kh(Uj − u0)

]

−1

2
E
{
f ′
y|u,x(qτ (Uj, Xj))Xj

(
[α(Uj)− α(u0)]

TXj2

)2
Kh(Uj − u0)

}

≈ h2µ2

2
Ω∗(u0)fu(u0)

(
0

α1(u0)

)
+ h2µ2Ω

∗′(u0)fu(u0)

(
0

α′(u0)

)
− h2µ2

2
Γ(u0)fu(u0)

=
h2µ2

2
B(u0)

(
0

α1(u0)

)
+ h2µ2Ω

∗′(u0)fu(u0)

(
0

α′(u0)

)
− h2µ2

2
Γ(u0)fu(u0), (27)

where α1(u0) = α′′(u0) + 2α′(u0)f
′
u(u0)/fu(u0). It follows from the definition of Tn(ξi, ξj)

and (27) that

γn = E⊗Tn(ξi, ξj)

=

∫ ∫
[eT1B

−1(ξi)Z(ξi, ξj) + eT1B
−1(ξj)Z(ξj , ξi)]dF (ξi)dF (ξj)

= 2eT1

∫ ∫
B−1(ξi)Z(ξi, ξj)dF (ξi)dF (ξj)

= 2eT1

∫
µ2h

2

2

(
0

α1(ξi)

)
dF (ξi) + 2h2µ2B

∗
1 − h2 µ2B

∗
2 + o(h2),

= h2µ2(2B
∗
1 − B∗

2) + o(h2),
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and

E[Tn(v, ξj)] = E
[
eT1B

−1(v)Z(v, ξj)
]
+ E

[
eT1B

−1(ξj)Z(ξj, v)
]

= EeT1B
−1(ξj)Z(ξj , v) + o(h2)

= E
[
eT1B

−1(ξj)ψτ (ξj, v)M(v)Kh(ξj, v)
]
+ o(h2)

= E
[
eT1B

−1(ξj)ψτ (ξj, v)Kh(v − Uj)M(v)
]
+ o(h2)

= eT1B
−1(v)ψτ (v, v)M(v)fu(v) + o(h).

The lemma is established.

Proof of Lemma 2: It is easy to see that E
[
h
(1)
n (ξi)

]
= 0 holds. Similar to the proofs

of Lemma 4 and Theorem 1 in Cai and Xu (2008), one has

Var(h(1)n (ξi)) = E
[
eTB−1(ξi)ηiM(ξi)f(ξi)

]2
+ o(h2)

= E
[
eT1 (Ω

∗(Ui))
−1XiX

T
i (Ω

∗(Ui))
−1e1η

2
i

]
+ o(h2)

= E
{
eT1 (Ω

∗(Ui))
−1XiX

T
i (Ω

∗(Ui))
−1e1E[η

2
i |Ui, Xi]

}
+ o(h2)

= Σβ,0 + o(h2).

Further, one has

Cov(h(1)n (ξ1), h
(1)
n (ξs+1)) = E

[
h(1)n (ξ1)h

(1)
n (ξs+1)

]

= E
[
eT1 (Ω

∗(U1))
−1X1X

T
s+1(Ω

∗(Us+1))
−1e1η1 ηs+1

]
+ o(h2)

= Cov(W1,Ws+1) + o(1) ≤ C β(s).

This proves the lemma.

Proof of Lemma 3: The first assertion follows easily by Lemma 2. For the second

result, similar to the method used in the proofs of Lemma 4 and Theorem 1 in Cai and

Xu (2008), it follows from Lemma 2 that

n Var
(
H(1)

n

)
= τ(1− τ)E

[
eT1 (Ω

∗(Ui))
−1Ω(Ui)(Ω

∗(Ui))
−1e1

]

+2
n−1∑

s=1

(1− s

n
)Cov(h(1)n (ξ1), h

(1)
n (ξs+1))

= Σβ + o(1).

Thirdly, by Lemma 1, it can be easily shown that

E|h(1)n (ξi)|4 ≤ C E|eT1 (Ω∗(Ui))
−1ψτ (ξi, ξi)Xi|4

≤ C E|eT1 (Ω∗(Ui))
−1XiX

T
i (Ω

∗(Ui))
−1e1|2 ≤ C.
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Finally, by Lemma 1 again, one has

E|h(2)n (ξi, ξj)|2 ≤ CE|Tn(ξi, ξj)− eT1B
−1(ξi)ψτ (ξi, ξi)M(ξi)f(ξi)

−eT1B−1(ξj)ψτ (ξj)M(ξj, ξj)f(ξj)|2

≤ C{E|Tn(ξi, ξj)|2 + E[eT1B
−1(ξi)ψτ (ξi, ξi)M(ξi)f(ξi)]

2

+E[eT1B
−1(ξj)ψτ (ξj)M(ξj, ξj)f(ξj)]

2}
≤ C{E|Tn(ξi, ξj)|2 + E[eT1 (Ω

∗(Ui))
−1ψτ (ξi, ξi)Xi]

2

+E[eT1 (Ω
∗(Uj))

−1ψτ (ξj, ξj)Xj]
2}

≤ C{E|Tn(ξi, ξj)|2 + 2E[eT1 (Ω
∗(Ui))

−1ψτ (ξi, ξi)Xi]
2}

≤ CE|Tn(ξi, ξj)|2 + C1,

and

E|Tn(ξi, ξj)|2 = E{eT1B−1(ξi)Z(ξi, ξj) + eT1B
−1(ξj)Z(ξj, ξi)}2

≤ C E|eT1B−1(ξi)Z(ξi, ξj)|2

≤ CE
[
eT1B

−1(ξi)Z(ξi, ξj)Z
T (ξi, ξj)B

−1(ξi)e1
]

= C eT1E
{
E[B−1(ξi)Z(ξi, ξj)Z

T (ξi, ξj)B
−1(ξi)|ξi]

}
e1.

= O(h−1).

The last inequality is by Lemma 4 and Theorem 1 in Cai and Xu (2008). The proof of

the lemma is complete.

Proof of Lemma 4: Similar to the proofs in Lemma 1, we have, for Uj close to u0,

E [{ψτ (εj)− ψτ (u0, ξj)}|Xj , Uj ]

= Fy|u,x(qτ (Uj, Xj)−XT
j2α(u0)(Uj − u0))

−Fy|u,x(qτ (Uj, Xj)−XT
j2(α(Uj)− α(u0)− α′(u0)(Uj − u0)))

≈ −fy|u,x(qτ (Uj, Xj))X
T
j2α

′(u0)(Uj − u0) +
1

2
f ′
y|u,x(qτ (Uj , Xj))

[
XT

j2α
′(u0)(Uj − u0)

]2

= −fy|u,x(qτ (Uj, Xj))X
T
j

(
0

α′(u0)(Uj − u0)

)
+

1

2
f ′
y|u,x(qτ (Uj, Xj))

(
α′(u0)

TXj2(Uj − u0)
)2
,
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which implies that

E [{ψτ (εj)− ψτ (u0, ξj)}XjKh(Uj − u0)]

= E [E [{ψτ (εj)− ψτ (u0, ξj)}|Xj, Uj ]XjKh(Uj − u0)]

≈ −E
[
fy|u,x(qτ (Uj, Xj))XjX

T
j

(
0

α′(u0)(Uj − u0)

)
Kh(Uj − u0)

]

+
1

2
E
{
f ′
y|u,x(qτ (Uj, Xj))Xj

(
α′(u0)

TXj2(Uj − u0)
)2
Kh(Uj − u0)

}

≈ −h2µ2

[
Ω∗(u0)f

′
u(u0) + Ω∗′(u0)fu(u0)

]
(

0

α′(u0)

)
+
h2µ2

2
Γ(u0)fu(u0)

= −h2µ2

[
B(u0)f

′
u(u0)/fu(u0) + Ω∗′(u0)fu(u0)

]
(

0

α′(u0)

)
+
h2µ2

2
Γ(u0)fu(u0),

so that

E[Bn(U1)] = h2µ2(−B∗
1 + B∗

2/2) + o(h2).

Similarly, we can show that Var(Bn) = o(h4). Therefore, Bn = E[Bn(U1)] + op(h
2) =

h2µ2(−B∗
1 + B∗

2/2) + op(h
2). This proves the lemma.

Now we embark on the proof of Theorem 1 based on Lemmas 1 - 4.

Proof of Theorem 1: It suffices to check that the assumptions of Theorem 2 in Dette

and Spreckelsen (2004) are satisfied for the kernel Tn(ξi, ξj). Condition II of Theorem 2

in Dette and Spreckelsen (2004) is obviously satisfied by Lemmas 2 and 3. Thus, one

only needs to check Condition I of Theorem 2 in Dette and Spreckelsen (2004). To this

end, for 1 < η < 2/(1 + δ), ζ is chosen to satisfy 1/ζ + 1/η = 1. Then, by the Hölder’s

inequality, for (i, j) 6= (k, l),

E|Tn(ξi, ξj)Tn(ξi, ξj)|1+δ ≤ [E|Tn(ξi, ξj)|ζ(1+δ)]
1

ζ [E|Tn(ξi, ξj)|η(1+δ)]
1

η .

It follows by the Cr-inequality that

E|Tn(ξi, ξj)|ζ(1+ǫ)

= E|eT1B−1(ξi)Z(ξi, ξj) + eT1B
−1(ξj)Z(ξj, ξi)|ζ(1+δ)

≤ CE|eT1B−1(ξi)Z(ξi, ξj)|ζ(1+δ) + E|eT1B−1(ξj)Z(ξj, ξi)|ζ(1+δ)

≤ CE|eT1B−1(ξi)Z(ξi, ξj)|ζ(1+δ)

= CE|eT1B−1(Ui)ψτ (ξi, ξj)XjKh(Uj − Ui)|ζ(1+δ)

= O(h−ζ(1+δ)).
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Similarly, E|Tn(ξi, ξj)|η(1+δ) = O(h−η(1+δ)). Thus, it follows that

sup
i 6=j,k 6=l,j 6=l

E|Tn(ξi, ξj)Tn(ξk, ξl)|1+ǫ = O(h−2(1+δ)).

For other cases, by the same token, one obtains

sup
i 6=j,k 6=l,j 6=l

E1⊗|Tn(ξi, ξj)Tn(ξk, ξl)|1+ǫ = O(h−2(1+δ)),

sup
i 6=j,k 6=l,j 6=l

E3⊗|Tn(ξi, ξj)Tn(ξk, ξl)|1+ǫ = O(h−2(1+δ)),

and

sup
i 6=j,i 6=l,j 6=l

E2⊗|Tn(ξi, ξj)Tn(ξi, ξl)|1+ǫ} = O(h−d(1+δ)).

Therefore, Cn = O(h−2(1+ǫ)) so that Condition I of Theorem 2 in Dette and Spreckelsen

(2004) is satisfied. Thus, by Lemma 2, one has

Vn − γn√
4
n
Var(h

(1)
n (ξ1))

d−→ N (0, 1).

By (26) and Assumption B2, finally, it shows the asymptotic normality:

√
n
[
β̃ − β − γn −Bn

]
d−→ N (0, Σβ).

This, in conjunction with Lemmas 1 and 4, completes the proof of the theorem.

Proof of Theorem 2: For a given
√
n-consistent estimator β̂∗ of β, similar to the proof

of Theorem 1 in Cai and Xu (2008), we can show that

√
nh [α̃(u0)− α(u0)] =

[Ω∗
22(u0)]

−1

√
nh fu(u0)

n∑

t=1

ψτ (Y
∗
t )Xt2K(Uth) + op(1), (28)

where Y ∗
t = Yt∗ −XT

t2[α(u0) + α′(u0)(Ut − u0)] and Uth = (Ut − u0)/h. From (28),

√
nh [α̃(u0)− α(u0)] ≈ [Ω∗

22(u0)]
−1

√
nh fu(u0)

n∑

t=1

[ψτ (Y
∗
t )− ηt]Xt2K(Uth)

+
[Ω∗

22(u0)]
−1

√
nh fu(u0)

n∑

t=1

ηtXt2K(Uth) ≡ A1n + A2n,

the definitions of Ajn = Ajn(u0) (j = 1 and 2) should be apparent from the context.

Similar to the proof of Theorem 2 in Cai, Fan and Yao (2000) or Theorem 1 in Cai
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(2002a), by using the small-block and large-block technique and the Cramér-Wold device,

one can show (although lengthy and tediously) that

A2n
d−→ N (0, Σα). (29)

By the stationarity and Lemma 4 in Cai and Xu (2008),

E[A1n] =
[Ω∗

22(u0)]
−1

√
nhfu(u0)

nE[{ψτ (Y
∗
t )− ηt}Xt2K(Uth)] = a−1

n

h2

2
α′′(u0)µ2{1 + o(1)}. (30)

Since ψτ (Y
∗
t ) − ηt = I(Yt ≤ c1t) − I(Yt ≤ c2t), where c1t = βTXt1 + α(Ut)

TXt2 and

c2t = β̂T
∗ Xt1 + [α(u0) + α′(u0)(Ut − u0)]

TXt2, then, [ψτ (Y
∗
t ) − εt]

2 = I(d1t < Yt ≤ d2t),

where d1t = min(c1t, c2t) and d2t = max(c1t, c2t). Further,

E
[
{ψτ (Y

∗
t )− ηt}2K2(Uth)Xt2X

T
t2

]
= E

[
{Fy|u,x(d2t)− Fy|u,x(d1t)}K2(Uth)Xt2X

T
t2

]

= O(h3).

Thus, Var(A1n) = o(1). This, in conjunction with (29) and ( 30) and the Slutsky Theorem,

proves the theorem.

Proof of Theorem 3: It is clear from (29) that to establish the theorem, it suffices to

show the following, for any u∗i 6= u∗j ,

Cov(A2n(u
∗
i ), A2n(u

∗
j)) → 0. (31)

To this end, we define, for ant t and s,

M(Ut, Us) = E[ηtηsXt2Xs2|Ut, Us].

Then, it is easy to show that

E[ηtXt2K((Ut − u∗i )/h)ηsXs2K((Us − u∗j)/h))]

= E[M(Ut, Us)K((Ut − u∗i )/h)K((Ut − u∗i )/h)] = O(h2).

Thus, similar to the proof of Lemma A.1 in Cai, Fan and Yao (2000), we can show easily

that (31) holds. This proves the theorem.
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Figure 1: The plot of power curves against γ for the testing hypothesis. The dashed line

is for n = 200, the solid line is for n = 500 and the dashed-dotted line is for n = 800. (a)

τ = 0.20; (b) τ = 0.40; (c) τ = 0.60; (d) τ = 0.80.
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Figure 2: The coefficient function α2(·) under the null hypothesis (dotted line) with γ = 0

and specific alternative hypothesis with γ = 0.3 (solid line) and γ = 1 (dashed line).
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