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1 Introduction

The consistency of a least squares estimator relies on a crucial assumption of the uncorrela-

tion between regressors and measurement errors. However, in many real applications such

as business and economics, this uncorrelated assumption is often violated due to measure-

ment error problems, simultaneous causation, unobserved variables, missing information and

other problems. This is well documented as the endogenous problem in the literature. To

deal with the problem of endogenous regressors, one method widely used in the literature is

to adopt an instrumental variables regression. The validity of using instrumental variables

requires two conditions. On one hand, the instrumental variables must be uncorrelated with

the measurement errors in the structural equations1. On the other hand, the instrumental

variables must be highly correlated with endogenous regressors. Recent studies found that in

many important applications instrumental variables are weakly correlated with endogenous

regressors. When one regresses instrumental variables on endogenous variables, the values

of R2 and the partial F statistics are usually very small when instruments are weak. For

example, when estimating returns to education, education is measured by years of schooling

and is regarded as an endogenous variable (see, e.g., the review paper by Card (2001)) due

to the fact that individual ability can affect both years of schooling and future incomes but

unfortunately economists can not observe it. Angrist and Krueger (1991) proposed employ-

ing quarter of birth as an instrument of years of schooling to estimate returns to education.

However, the R2 of the first-stage regression is extremely low. This is the so-called weak

instruments problem.

The most popular instrumental variables estimation includes the two-stage least squares

(TSLS) estimator and the limited information maximum likelihood (LIML) estimator. It is

well known in the literature that both two-stage least squares estimator and limited informa-

tion maximum likelihood estimator provide a poor approximation in a cross-sectional model

when instruments are weakly correlated with the endogenous explanatory variables (Nelson

and Startz, 1990a, 1990b; Bound, et al., 1995; Staiger and Stock, 1997; Stock, Wright and

Yogo, 2002; among others). Indeed, both the two-stage least squares estimation and the

limited information maximum estimation lead to inconsistent estimators when weak instru-

mental variables are used. Chao and Swanson (2005) obtained a consistent instrumental

variables estimation when available instruments are weak but the number of instruments

goes to infinity with the sample size. However, they found that to achieve consistency, the

1The exogeneity of instrumental variables requires a zero correlation between instrumental variables and
measurement errors, which is hard to be exactly verified in real applications. Berkowitz, Caner and Fang
(2008, 2011) discussed the impact on subsequent estimation and inference when the zero correlation is
violated.
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two-stage least squares estimator needs more stringent conditions than those for the limited-

information maximum likelihood estimator. Based on the best of our knowledge, there are

relatively few studies on weak instruments estimation using repeated measurements or panel

data.

In this paper, we extend the instrumental variables estimation to a model with panel data

or repeated measurements. Let N denote the number of individual units and T denote the

number of time periods for each indiviual. When instruments are weakly correlated to the

endogenous variables, we consider to reduce the asymptotic bias of an instrumental variables

estimation using independently repeated cross-sectional information. We will show that the

bias term of an instrumental variables estimation has the order of O(T−1) when N goes to

infinity. When both N and T go to infinity, the consistent instrumental variables estimation

can be achieved. Section 2 introduces the basic statistic model and Section 3 lists the main

assumptions and derives the large sample properties of an instrumental variables estimation

using weak instruments in a panel data model. In Section 4, we conduct a simple Monte

Carlo simulation to illustrate the finite sample performance and Section 5 concludes.

2 The Model and Estimation Method

Without loss of generality2, we consider the following simple simultaneous equations model

with independently repeated cross-sectional data:

yit = αi + β>Yit + uit, Yit = γi + Π>Zit + Vit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (1)

where yit is a scalar dependent variable, Yit is p × 1 vector of endogenous variables, Zit is

a q × 1 instrumental variables (q ≥ p)3, B> denotes the transpose of a matrix or vector B,

{αi} and {γi} are independent cross individuals i. In panel data models, {αi} and {γi} are

the so called fixed effects which are allowed to be correlated to regressors Yit. We assume

that {Zit, uit} and {Zit, Vit} are independent across both N and T . N and T are defined

earlier. In panel data applications, T is usually the number of observations across time for

a given individual unit.

To model the weak correlation between instrumental variables Zit and endogenous re-

gressors Yit, the value for a significance test of Π = 0 at the first-stage regression should

2It is well known that the weak instruments problem does not affect the consistent estimation of the
coefficients of included exogenous variables. To ease notation, we focus on a simple model without any
included exogenous variables. A general model with included exogenous variables can be simplified to the
above model by projecting out them.

3For the sake of identification, the number of instrumental variables q must be at least equal to the
number of endogenous regressors p. Otherwise, β is not identified.

2



be small even if N tends to infinity. Therefore, to overcome this problem, we follow the so

called local-to-zero asymptotics proposed by Staiger and Stock (1997) and widely accepted

in the literature of weak instruments, and assume that

Π = C/
√

N, (2)

where C is a q×p matrix of parameters contained in a compact set. It is called local-to-zero

since the coefficient Π converges to zero as the sample size goes to infinity.

The above model has a lot of applications in empirical studies. For example, Andreoni

and Payne (2003) examined whether or not government grants crowd out private chari-

ties by employing panel data from arts and social science organizations. They applied the

instrumental variables estimation by using several sets of instruments, and all F-test on in-

struments in the first stage are relatively small, which means it possibly suffers from the

weak instruments problem. Other examples using instrumental variables estimation in panel

data include Fishback, et al. (2002), Gruber and Hungerman (2007), and Andreoni and

Payne (2007) among others.

To remove the individual effect {αi} and {γi}, both equations in (1) are multiplied by

the forward orthogonal deviations operator A (Arellano, 2003), where A>A = IT − ee>/T ,

AA> = IT−1, where IT is an identity matrix with dimension T ×T and e is a vector of ones.

The transformed model can be represented as

y∗i = Y ∗
i β + u∗i , Y ∗

i = Z∗
i Π + V ∗

i , 1 ≤ i ≤ N, (3)

where yi = (yi1, yi2, · · · , yiT )>, y∗i = Ayi, and Z∗
i = A Zi, respectively. The notations of ui

and u∗i are defined in the same fashion. Thus, Var(u∗i ) = σ2
u IT−1 if Var(ui) = σ2

uIT in the

original model.

We consider two most important instrumental variables estimators, the two-stage least

squares estimator and the limited information maximum likelihood estimator. Both estima-

tors can be written as a member of the k-class of estimators (Nagar, 1959; Theil, 1961). The

k-class of estimators is defined by

β̂k−class = [Y ∗>(I − kMZ∗)Y
∗]−1[Y ∗>(I − kMZ∗)y

∗], (4)

where MB = I −B(B>B)−1B> for a matrix or vector B and I is an identity matrix. When

k = 1, the k-class of estimators is reduced to a two-stage least squares estimator. When k

is the smallest root of the determinantal equation

| Y ∗>
Y
∗ − kY

∗>
MZ∗Y

∗ |= 0, (5)
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where Y
∗

= ( y∗ Y ∗ ), then the k-class of estimators becomes the limited information

maximum likelihood estimator. Note that y∗ = (y∗>1 , · · · , y∗>N )>, Y ∗ = (Y ∗>
1 , · · · , Y ∗>

N )> and

Z∗ = (Z∗>
1 , · · · , Z∗>

N )>.

3 Large Sample Theory

In this section, we derive the large sample properties of the two-stage least squares estimator

and the limited information maximum likelihood estimator using weak instruments in a panel

data model with fixed effects. We show that the asymptotic bias of both estimators can be

reduced when the number of independently repeated cross sections T increases. As T goes

to infinity, we can achieve the consistent estimator. To derive asymptotic results, we make

the following assumptions.

Assumption 1: Π = C/
√

N , where C is a fixed q × p matrix.

Assumption 2: (u>u/NT, V >u/NT, V >V/NT )
p−→ (σ2

u, ΣV u, ΣV V ).

Assumption 3: Z∗′Z∗/NT
p−→ ΣZZ = E(ZitZ

>
it )−E(Zit)E(Zit)

> is positive definite q× q

matrix.

Assumption 4: (Z∗>u∗/
√

NT, Z∗>V ∗/
√

NT )
d−→ (ΨZu, ΨZV ), where (Ψ>

Zu, Vec(Ψ>
ZV )>) is

distributed as N(0, Σ ⊗ ΣZZ), Σ =

(
σ2

u Σ>
V u

ΣV u ΣV V

)
, Vec(Ψ) is a vector formed by stacking

the columns of Ψ under each, and ⊗ denotes the Kronecker product.

Convergence assumptions in Assumptions 2-4 are not primitive assumptions but hold

under weak primitive conditions. Assumptions 2 and 3 follow from the weak law of large

numbers. Assumption 4 follows from triangular arrays central limit theorems.

Theorem 1. Suppose Assumptions 1-4 hold for the model defined in (3) and NT (k −
1)

p−→ κT , then as N tends to infinity,

β̂k−class − β
d−→ B/

√
T ,

where β is the true parameter in (3), B =
[
D>Σ−1

ZZD − κT ΣZZ

]−1 [
D>Σ−1

ZZΨZu − κT Σ>
V u

]
and D = ΣZZC + ΨZV /

√
T .

The proof of the above theorem is relegated to the appendix. It is obvious that B is a

mixture of finite random variables. For the two-stage least squares estimator (k = 1), the

above result is simplified to B =
[
D>Σ−1

ZZD
]
D>Σ−1

ZZΨZu.
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When only cross-sectional data are considered (T = 1), the asymptotic bias of k-class of

estimators is given by

B̃ =
[
D̃>Σ−1

ZZD̃ − κT ΣZZ

]−1 [
D̃>Σ−1

ZZΨZu − κT Σ>
V u

]
,

where D̃ = ΣZZC + ΨZV , which is consistent with the result in Staiger and Stock (1997)

when the instrumental variables regression with weak instruments is employed in a cross

sectional model. It is interesting to note that the bias B̃ in the cross sectional model is not

in the order of
√

T . Theorem 1 shows that the asymptotic bias shrinks as T becomes large.

To understand this result, let us recall the so called concentration parameter, a measurement

of strength of instruments in the literature, which is defined as

Σ
−1/2
V V Π>Z∗>Z∗ΠΣ

−1/2
V V

p−→ TΣ
−1/2
V V C>ΣZZCΣ

−1/2
V V , (6)

which clearly grows as T increases. When both N and T tend to infinity, the concentration

parameter also increases to infinity. While in a cross sectional model, the concentrate pa-

rameter converges to a constant when N tends to infinity. This is the reason of inconsistency

for the instrumental variables estimation. On the other hand, to see how fast the asymptotic

bias shrinks to zero, one can show that when p = 1, the asymptotic bias for the two-stage

least squares estimator (k = 1) is given by

E[β̂TSLS − β] = qT−1ΣV u

[
C>ΣZZC

]−1
+ O(T−2), (7)

which has the order O(T−1). Note that the proof of (7) is similar to that in Cai, Fang and Li

(2010) and omitted here. Therefore, when T →∞, intuitively, we can achieve the consistent

estimation of the two-stage least squares estimator and the limited information maximum

likelihood estimator. The consistent result and asymptotic normality of the two-stage least

squares estimator are summarized in the following corollary.

Corollary 1. Suppose that Assumptions 1-4 hold. Then as both N and T tend to infinity,

(a) β̂TSLS
p−→ β; and (b)

√
T
[
β̂TSLS − β

]
d−→ N(0, σ2

u(C
>ΣZZC)−1).

Note that the asymptotic distribution depends on C which is never identified under

Assumption 1. Therefore, the above asymptotic normality can not be used in testing the

coefficient β. To make a statistical inference under weak instruments in a panel data model,

the reader is referred to the paper by Cai, Fang and Li (2010).

When both N and T tend to infinity, the limited information maximum likelihood es-

timator is asymptotically equivalent to the two-stage least squares estimator. To show the
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asymptotic equivalence of both estimators, it suffices to prove that NT (kLIML − 1)
p−→ 0

(Schmidt, 1976), where kLIML is the smallest root of the determinantal equation given in

(5).

Theorem 2. Under Assumptions 1-4, as both N and T tend to infinity, one has

NT (kLIML − 1)
p−→ 0.

Therefore, the limited information maximum likelihood estimator and the two-stage least

squares estimator are asymptotically equivalent.

4 A Monte Carlo Simulation Study

In this section, we consider the following model for Monte Carlo simulations:

yit = αi + 9 Yit + uit, Yit = λi + (0.7/
√

N)Zit + vit, 1 ≤ i ≤ N, 1 ≤ t ≤ T,

where Zit is generated from a uniform distribution U(2, 10), αi and γi are generated from

independent standard normal distributions. uit and vit are generated jointly from a bivariate

normal distribution with the correlation coefficient ρ = 0.74. Note that in the above data

generating process, Π = 0.7/
√

N which reflects the setup of weak instruments. Clearly, {Zit}
is independent of uit and vit. We consider three cases: (a) T is fixed (T = 50), and N takes

values of 50, 150, 250, 350, and 450, respectively; (b) N is fixed (N = 50), and T takes values

of 50, 150, 250, 350, and 450, respectively; and (c) N = 2T , and T takes values of 20, 40,

60, 80, and 100, respectively. We compute the average absolute bias of the two-stage least

squares estimators and the limited information maximum likelihood estimators respectively,

and the medians of absolute bias as well. 1000 replications are performed for each pair of N

and T . All simulation results are summarized in Tables 1-3.

When T is fixed, as Table 1 shows, an increase of N can not reduce the bias neither

of the two-stage least squares estimators or the limited information maximum likelihood

estimators. When N is fixed but T grows, Table 2 shows clearly that the average absolute

bias is reduced from 0.0714 (when T is 50) to 0.0235 (when T is 450) for the two-stage

least squares estimators, and from 0.0685 to 0.0237 for the limited information maximum

likelihood estimators. The median of the absolute bias also decreases significantly when

T grows large. Table 3 demonstrates that the bias can be reduced when N and T grow

proportionally. All these simulation results are consistent with our theoretical results in

previous sections.

4ρ is used to control the degree of endogeneity of Yit.
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Table 1: Average bias and median bias when T is fixed
T = 50 Average Absolute Bias Median of Absolute Bias

TSLS LIML TSLS LIML
N = 50 0.0714 0.0697 0.0588 0.0596
N = 150 0.0724 0.0705 0.0600 0.0588
N = 250 0.0732 0.0691 0.0606 0.0609
N = 350 0.0715 0.0726 0.0583 0.0618
N = 450 0.0703 0.0726 0.0583 0.0611

Table 2: Average bias and median bias when N is fixed
T = 50 Average Absolute Bias Median of Absolute Bias

TSLS LIML TSLS LIML
T = 50 0.0714 0.0685 0.0582 0.0584
T = 150 0.0402 0.0401 0.0344 0.0339
T = 250 0.0310 0.0317 0.0274 0.0274
T = 350 0.0264 0.0271 0.0213 0.0228
T = 450 0.0235 0.0237 0.0198 0.0202

Table 3: Average bias and median bias when N = 2T
T = 50 Average Absolute Bias Median of Absolute Bias

TSLS LIML TSLS LIML
T = 20 0.1133 0.1229 0.0933 0.1005
T = 40 0.0805 0.0810 0.0675 0.0644
T = 60 0.0649 0.0654 0.0549 0.0567
T = 80 0.0536 0.0565 0.0463 0.0489
T = 100 0.0490 0.0518 0.0407 0.0447

5 Conclusions

This paper shows that the asymptotic bias of an instrumental variables estimation arising

from weak instruments shrinks when independently repeated cross-sectional data are avail-

able. As the number of independently repeated cross sections goes to infinity, we can achieve

the consistent estimation of the two-stage least squares estimator and the limited information

maximum likelihood estimator.
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Appendix

Proof of Theorem 1: The bias of the k-class of estimators is given by

β̂k−class − β0 = [Y ∗>(I − kMZ∗)Y
∗]−1[Y ∗>(I − kMZ∗)u

∗]

= [Y ∗>PZ∗Y
∗ − (κT /NT )Y ∗>MZ∗Y

∗]−1[Y ∗>PZ∗u
∗ − (κT /NT )Y ∗>MZ∗u

∗] + op(1),

where PB = I −MB and κT is given in Theorem 1. Clearly, we have the following results:

as N →∞,

Y ∗>PZ∗Y
∗ = (Y ∗>Z∗/

√
N)(Z∗>Z∗/N)−1(Z∗>Y ∗/

√
N)

→ T [ΣZZC +
1√
T

ΨZu]
>Σ−1

ZZ [ΣZZC +
1√
T

ΨZu] (A.1)

and

Y ∗>PZ∗u
∗ = (Y ∗>Z∗/

√
N)(Z∗>Z∗/N)−1(Z∗>u∗/

√
N)

→
√

T [ΣZZC +
1√
T

ΨZV ]>Σ−1
ZZΨZu. (A.2)

Note that Y ∗>PZ∗Y
∗/NT → 0 and Y ∗>PZ∗u

∗/NT → 0 as N → ∞. The result of the the-

orem follows from (A.1), (A.2), and the facts that V ∗>V ∗/NT →p ΣV V and V ∗>u∗/NT →p

ΣV u. Q.E.D.

Proof of Theorem 2: kLIML is the smallest root of the determinantal equation |Ȳ ∗>Ȳ ∗ −
kȲ ∗>MZ∗Ȳ

∗| = 0. Let J =
(

1 0
−β I

)
and note that Ȳ ∗J = ( u∗ Y ∗ ). Since J is a non-

singular matrix, the roots of the modified determinantal equation |NT (J>Ȳ ∗>Ȳ ∗J/NT −
kJ>Ȳ ∗>MZ∗Ȳ

∗J/NT )| = 0 has the same roots of the original determinantal equation

NT (J>Ȳ ∗>Ȳ ∗J/NT − kJ>Ȳ ∗>MZ∗Ȳ
∗J/NT )

= NT × {
(

u∗>u∗

NT
u∗>Y ∗

NT
Y ∗>u∗

NT
Y ∗>Y ∗

NT

)
−
(

u∗>MZ∗u∗

NT
u∗>MZ∗Y ∗

NT
Y ∗>MZ∗u∗

NT
Y ∗>MZ∗Y ∗

NT

)
}

→p NT{
(

σ2
u Σ>

V u
ΣV u ΣV V

)
− k

(
σ2

u Σ>
V u

ΣV u ΣV V

)
}

= NT (k − 1)
(

σ2
u Σ>

V u
ΣV u ΣV V

)
= 0.

It follows that NT (kLIML − 1) → 0. Q.E.D.
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