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Abstract GMM-based Wald tests tend to overreject when used for small
samples, mainly due to inaccurate estimation of the weighting matrix. This
article proposes applying the shrinkage method to address this problem. Us-
ing a possibly-misspecified factor model, the shrinkage method can provide a
good estimator for the weighting matrix, and hence improve the finite-sample
performance of the GMM-based Wald tests.
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1 Introduction

The generalized method of moments (GMM) procedures outlined by Hansen
(1982) are widely-used in economics. The estimation is conducted by minimiz-
ing a criterion function which combines all the available moment conditions
in a quadratic form with certain weights. As for the hypothesis testing, the
GMM-based Wald statistic is the distance measure for the degree to which the
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unrestricted estimator fails to satisfy the restrictions. Most inferences of Wald
tests are based on their asymptotic properties. However, many researchers have
mentioned that GMM-based Wald tests tend to overreject moment restrictions
in finite-samples (for example, Rothenberg (1984), Christiano and den Haan
(1996), Kan and Zhang (1999) and Bekaert and Hodrick (2001)). As for po-
tential solutions to remedy the Wald tests’ limitation, Hansen et al. (1996)
use an iterative weighting matrix; Andersen and Sørenson (1996) emphasize
controlling the number of moments; Burnside and Eichenbaum (1996) sug-
gest imposing the null hypotheses into the estimation of the weighting matrix;
Hall and Horowitz (1996) propose using a bootstrap approach to derive the
inferences. Although their solutions are different, they all find that the poor
small-sample performance of the GMM-based Wald tests is due to the inaccu-
rate estimation of the weighting matrix. The weighting matrix of the Wald test
involves an asymptotic covariance matrix for the moments. When the sample
size is small, relative to the number of moments, the sample covariance matrix
is not accurate.

This paper proposes using the shrinkage method to estimate this covari-
ance matrix in small samples. If the moments of interest can be related with
a factor model, a good estimator of the covariance matrix can be obtained
by following the shrinkage methods in Ledoit and Wolf (2003) and Ren and
Shimotsu (2009). The basic idea behind shrinkage estimation is to take an op-
timally weighted average of the sample covariance matrix and the covariance
matrix implied by a possibly-misspecified factor model. On the one hand, the
factor model provides a covariance matrix estimate that is biased but has only
a small estimation error due to the small number of parameters estimated.
On the other hand, the sample covariance matrix provides another estimate
which has a small bias, but a large estimation error. Thus, the shrinkage esti-
mator balances the trade-off between the estimation error and bias by taking
a weighted average of these two estimates.

The shrinkage method is valid only when the factor model, even misspeci-
fied, exists. This condition is quite mild in practice. Many variables in macroe-
conomics or finance have this property. Compared with other estimators men-
tioned in the literature, the shrinkage estimator has three advantages. First,
it is easy to compute. It is a one-step estimator. Second, unlike the estimator
in Burnside and Eichenbaum (1996), it is robust to modification of the null
hypothesis. Last, it is more reliable because it adopts more information from
the factor model. So if we use this estimator as the weighting matrix for Wald
tests, their performance should be superior to the alternatives.

Following Burnside and Eichenbaum (1996), we conduct several simula-
tions to support our conjecture. We compare the small-sample performance
of Wald tests by adopting different estimations of the weighting matrix. The
shrinkage method outperforms all others. In addition, as a simple illustration
of the empirical importance of our method, we revisit the mean-variance effi-
ciency of portfolio returns. We collect the Fama-French 25 portfolios and follow
Markowitz (1952) to derive one mean-variance efficient portfolio. Furthermore,
we generate some portfolios which have the same mean but a different variance
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from the efficient portfolio. We test the null hypothesis that the volatilities of
the generated portfolios are the same. If we use the conventional Wald tests,
we can reject the null at the 5 percent significance level. However, with our
approach, we draw the opposite conclusion.

The remainder of this paper is organized as follows. Section 2 briefly reviews
the shrinkage method. Sections 3 and 4 show our simulation results and our
empirical analysis, with a conclusion in Section 5.

2 Shrinkage Estimation

Suppose Xt = [X1t X2t . . . XJt]
′, where t = 1, 2, · · · , T , is a random vector

with zero mean. We define X2
t = [X2

1t X
2
2t . . . X

2
Jt]
′. Following Burnside and

Eichenbaum (1996), we are interested in the covariance matrix of X2
t , which

is denoted by S0. In our context, the sample covariance matrix, denoted by

S
(1)
T , is an unbiased estimator of S0 but has a large variance. Suppose X2

t can
be expressed by a factor model as

X2
t = η + βVt + εt, (1)

where η = [η1 η2 · · · ηJ ]′, εt = [ε1t ε2t . . . εJt]
′, Vt is a K × 1 factor,

β = [β1 β2 · · · βJ ]′ and βi is a K × 1 vector. Here, no correlation between
εit and εjt for any i 6= j is assumed.

This factor model implies that the covariance matrix of X2
t , Φ0, is given

by
Φ0 = βVar(Vt)β

′ + ∆, (2)

where ∆ = diag{Var(ε1t),Var(ε2t), · · · ,Var(εJt)}. The matrix Φ0 can be
estimated by estimating its components using the least squares method. Let
b and D be the estimators of β and ∆, respectively. Thus, the estimator of
Φ0 is

ΦT = b ̂Var(Vt)b
′ + D, (3)

where ̂Var(Vt) is the sample covariance matrix of Vt.
The shrinkage estimator takes an optimally weighted average of the sample

covariance matrix S
(1)
T and ΦT as

S
(s)
T = âTΦT + (1− âT )S

(1)
T . (4)

Here, âT is the estimator of the optimal weight aT
1, which minimizes the

expected distance between S
(s)
T and the true covariance matrix S0. If we use

the Frobenius norm 2 to denote this distance, aT can be expressed as

aT = arg min
aT

E||aTΦT + (1− aT )S
(1)
T − S0||. (5)

1 For more details about computing âT , please refer to Eq. (10) in Ren and Shimotsu
(2009).

2 For an N ×N matrix Z, the Frobenius norm is ||Z|| =
∑N

i=1

∑N
j=1 z

2
ij .
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We assume that X2
t and Vt are independently and identically distributed

(i.i.d.) over time3 and that X2
t and Vt have a finite fourth moment. Based on

the corollary in Ren and Shimotsu (2009), S
(s)
T is a consistent estimator of S0.

3 Simulation

Burnside and Eichenbaum (1996) study a very simple case, in which the
time series Xit is mutually independent. We are going to relax this strong
assumption, and suppose that we have time series data generated by the data-
generating process (DGP)

Xit =
√
rvt +

√
1− reit for all i and t, (6)

where the common factor vt is i.i.d. N(0, 1) for all t, and eit is mutually and
serially independent N(0, 1). Thus, Xit still follows N(0, 1) and the correlation
between Xit and Xjt for any i 6= j is r. We set r = 0.5 and consider the sample
size 100, 300, 700.

The factor model used as a shrinkage target is

X2
it = µi + vtβi0 + v2t βi1 + εit, t = 1, 2, . . . , T and i = 1, 2, . . . , J. (7)

So, in Eq. (1), Vt = [vt v
2
t ]′, β =

[
β10 β20 · · · βJ0
β11 β21 · · · βJ1

]′
.

3.1 GMM estimation and hypothesis testing

We are interested in estimating and testing hypotheses about the standard
deviations, σi, of Xit, where i = 1, 2, . . . , J . To simplify the analysis, we assume
that we know E(Xit) = 0 for all i and t. So the moment conditions for the
GMM estimation of σ = [σ1 . . . σJ ]′ are

E[u(Xt,σ)] = E[X2
1t − σ2

1 · · · X2
Jt − σ2

J ]′ = 0J×1. (8)

This leads to the exactly identified GMM estimator

σ̂ =

( 1

T

T∑
t=1

X2
1t

)1/2

· · ·

(
1

T

T∑
t=1

X2
Jt

)1/2
′ , (9)

where σ̂ = [σ̂1 . . . σ̂J ]′.
The first hypothesis of interest for σ = [σ1 . . . σJ ]′ is the same as in

Burnside and Eichenbaum (1996). The null is

HF
0 : σ1 = σ2 = · · · = σJ = 1

3 We discuss the case where Xt follows a GARCH (1,1) process in Section 3.3.
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with the alternative
HF

1 : the null is wrong.

We denote this hypothesis by a superscript ‘F’.
The other hypothesis we consider does not contain full information about

σi. The null is
HP

0 : σ1 = σ2 = · · · = σJ

with the alternative
HP

1 : the null is wrong.

The hypothesis HP
0 tests equality among σi without imposing any specific

value on themselves.
The specific Wald statistic that we use to test HF

0 is given by

WF
T = T (σ̂ − 1J×1)′V−1T (σ̂ − 1J×1). (10)

Here VT denotes a generic estimator of the asymptotic covariance matrix of√
T (σ̂ − σ0), where σ0 is the true value of σ. Given well-behaved estimators

σ̂ and VT , WF
T

d−→ χ2(J). Similarly, the specific Wald statistic for testing HP
0

is
WP

T = T σ̂′A′(AVTA′)−1Aσ̂, (11)

where A = [−1J−1×1 IJ−1×J−1]. Also, we have WP
T

d−→ χ2(J − 1).
For the moment conditions, E[u(Xt,σ)] = 0J×1, which are used to esti-

mate σ, the asymptotic covariance matrix of
√
T (σ̂ − σ0) is given by V0 =

(D′0S
−1
0 D0)−1, where

D0 = E
∂u(Xt,σ0)

∂σ′ and S0 =

∞∑
j=−∞

Eu(Xt,σ0)u(Xt−j ,σ0)′. (12)

For the specified DGP, we can characterize D0 and S0 explicitly. First, D0 is
given by

D0 =


−2σ0,1 0 · · · 0

0 −2σ0,2 · · · 0
...

...
...

...
0 0 · · · −2σ0,J

 (13)

where (σ0,1 σ0,2 · · · σ0,J)′ = σ0 = 1J×1. Second, S0 is given by

S0 =


Var(X2

1t) Cov(X2
1t, X

2
2t) · · · Cov(X2

1t, X
2
Jt)

Cov(X2
2t, X

2
1t) Var(X2

2t) · · · Cov(X2
2t, X

2
Jt)

...
...

...
...

Cov(X2
Jt, X

2
1t) Cov(X2

Jt, X
2
2t) · · · Var(X2

Jt)

 (14)

where Var(X2
it) = E(X4

it)− [E(X2
it)]

2 = 2 since Xit follows a normal distribu-
tion, for i = 1, 2, . . . , J . Moreover, Cov(X2

it, X
2
jt) = E(X2

itX
2
jt)−E(X2

it)E(X2
jt) =
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2r2, since E(X2
itX

2
jt) = E([

√
rvt+

√
1− reit]2[

√
rvt+

√
1− rejt]2) = r2E(v4t )+

2r(1− r) + (1− r)2 = 2r2 + 1, for any i 6= j. Therefore, the true value of the
asymptotic covariance matrix of

√
T (σ̂ − σ0) is given by

V0 =


1
2

1
2r

2 · · · 1
2r

2

1
2r

2 1
2 · · ·

1
2r

2

...
...

...
...

1
2r

2 1
2r

2 · · · 1
2

 . (15)

3.2 Estimators of the covariance matrix

In practice, we do not know the underlying DGP, so the true value of V0

cannot be observed. Here, we discuss various estimators of the asymptotic
covariance matrix of

√
T (σ̂ − σ0). Accordingly, the corresponding estimator

of V0 is given by VT = (D′TS−1T DT )−1, where DT and ST are the consistent
estimators of D0 and S0.

By Newey and West (1987), a general nonparametric version of ST can be
written as

ST =

T−1∑
j=−(T−1)

k

(
j

BT

)
Ω̂j , (16)

where

Ω̂j =


1
T

T∑
t=j+1

u(Xt, σ̂)u(Xt−j , σ̂)′ for j ≥ 0

1
T

T∑
t=−j+1

u(Xt+j , σ̂)u(Xt, σ̂)′ for j < 0.

(17)

and

k(x) =

{
1− |x| for |x| ≤ 1

0 otherwise.
(18)

Here BT is a scalar that determines the bandwidth of the lag window, k(·).
This estimator does not exploit any of the underlying information. To simplify
our analysis, we set BT < 1 based on the assumption that the time series data
are serially and independently generated. This implies that the estimator has

an ijth element given by 1
T

T∑
t=1

(X2
it− σ̂2

i )(X2
jt− σ̂2

j ). This estimator is denoted

by S
(1)
T , and it serves as the first estimator of S0. From u(Xt,σ), the estimator

of D0 is straightforwardly given by D
(1)
T , which is a diagonal matrix with the

iith element equal to −2σ̂i.

The second estimator, S
(2)
T , exploits the fact that Xit is Gaussian, which

implies that E(X4
it) = 3σ4

i . So S
(2)
T is a matrix with the iith element given by

2σ̂4
i and with the same nondiagonal elements as in S

(1)
T . That is to say, the

estimators of the diagonal elements are obtained by estimating the parameter
σ and the nondiagonal elements are estimated by the nonparametric method.
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We can impose the null hypothesis HF
0 , where σi = 1 for i = 1, 2, . . . , J .

This suggests a third estimator, S
(3)
T , which has the iith element equal to 2

and the same nondiagonal elements as in S
(2)
T . Similarly, the null hypothesis

can be imposed on D
(1)
T to yield another estimator of D0, i.e, D

(2)
T , which is a

diagonal matrix with the iith element equal to −2 for i = 1, 2, . . . , J .

Corresponding to each of these estimators of S0, the first three estimators
of V0 are given by

V
(k)
T = [D

(1)′

T (S
(k)
T )
−1

D
(1)
T ]
−1
, k = 1, 2, 3. (19)

In addition, we also consider the estimator

V
(4)
T = [D

(2)′

T (S
(3)
T )
−1

D
(2)
T ]
−1
. (20)

All these estimators correspond to those in panels (d), (f), (g) and (h) of
Table 1 in Burnside and Eichenbaum (1996). In this paper, we assume that any
information about the nondiagonal elements of S0 cannot be explored, whereas
Burnside and Eichenbaum (1996) impose a diagonal matrix on ST since Xit

are mutually and independently generated. This ensures our results are com-
parable to those of Burnside and Eichenbaum (1996) which employ almost full
information about the underlying DGP and the null hypothesis to improve the
finite-sample performance of the Wald tests. However, the practitioner usually
does not have full information about the model, so our settings are more re-
alistic. In addition, this comparison allows us to test whether imposing on
ST partial information from the underlying DGP and the null hypothesis can
improve the finite-sample performance of the Wald tests.

Based on the findings of Burnside and Eichenbaum (1996), we find that
the anomalies associated with the finite-sample distribution of Wald statistics
are closely related to the finite-sample distribution of VT in our settings. In

order to justify this conjecture, we set V
(5)
T = V0.

The last estimator of V0 is based on the shrinkage estimator of S0, or

V
(6)
T = [D

(1)′

T (S
(s)
T )
−1

D
(1)
T ]
−1
. (21)

For hypothesis HP
0 , the information from the null is implemented in a

manner which suggests σ1 = σ2 = . . . = σJ = 1
J

∑J
j=1 σ̂j . This indicates that

S
(3∗)
T is a matrix with the iith element equal to 2 1

J

∑J
j=1 σ̂j for all i and with

the same nondiagonal elements as in S
(2)
T , and that D

(2∗)
T is a diagonal matrix

with the iith element equal to −2 1
J

∑J
j=1 σ̂j for all i. From this, six different

estimators of V0 can be created, as before.

In addition, we discuss whether incorrect information from the underlying
DGP will distort the size of the Wald tests for HP

0 by imposing a diagonal
matrix on ST .
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3.3 Monte Carlo experiments

We use MATLAB to simulate 10, 000 sets of {Xt}Tt=1, where Xt=[X1t · · ·XJt]
′.

Following Burnside and Eichenbaum (1996), we set J = 20. For each data set,
we estimate six different estimators of the covariance matrix and conduct the
Wald test for HF

0 and HP
0 , denoting WF

T and WP
T as the corresponding Wald

test statistics, respectively.
Table 1 summarizes the results of HF

0 for this simulation with T=100,
300, 700. The panels correspond to the different estimators of V0. The first
column of each panel is the asymptotic size of the tests. The entries in the
other columns are the rejection frequencies of the Wald test corresponding
to the different sizes of the test. This table reveals four findings. First, the
Wald test performs poorly in finite samples. From Panel (a) of Table 1, the
finite-sample sizes of the test exceed the nominal levels. This result is similar
to that obtained by Burnside and Eichenbaum (1996). Although the finite-
sample sizes are improved as T increases from 100 to 700, the deviation still
exists.

Second, partially imposing restrictions from the underlying DGP or the
null hypothesis does not improve the finite-sample performance of the Wald
test significantly. For T = 100, the finite-sample sizes of the test are improved
by imposing the information from the DGP and the null hypothesis; however,
for T = 300 and 700, the sizes of the test are not improved, and are even less
accurate, as indicated in panels (b)–(d) of Table 1.

Third, as Panel (e) shows, the finite-sample size of the test is close to
the corresponding nominal levels when the Wald statistics are calculated by
using a true value of V0. These findings are consistent with those showed by
Burnside and Eichenbaum (1996).

Finally, Panel (f) indicates that the shrinkage method can improve the
finite-sample performance of the Wald test, compared with panels (a)-(d). The
improvement is most prominent for T = 300. When T = 300, the rejection
frequencies in Panel (f) are just half of those in the first four panels, and are
closer to the nominal levels.

Since HP
0 does not contain enough information about ST , we conduct two

experiments. In the first one, information from the null is implemented in
such a way that suggests σ1 = σ2 = . . . = σJ = 1

J

∑J
j=1 σ̂j . In the second one,

incorrect information -that Xit is mutually independent- is imposed directly
on the estimation of S0. We then follow the same steps as in Table 1 and
obtain the rejection frequencies of the Wald tests.

The left-hand panels of Table 2 summarizes the results for the first ex-
periment. We see that these results are quite similar to Table 1. This is not
surprising because 1

J

∑J
j=1 σ̂j is close to the true value, 1. However, if we look

at the right-hand panels of Table 2, as panels (a′)–(d′) indicate, the finite-
sample sizes are very close to zero. The larger the sample size, T , the closer
the finite-sample sizes are to zero. This means that the restriction from such
incorrect information distorts the sizes of the Wald test. In contrast, Panel (f′)
has finite-sample sizes similar to those in Panel (f), implying that the improve-
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Table 1 Finite-Sample Performance of Wald Test for HF
0 : σ1 = σ2 = · · · = σJ = 1.

The data are simulated by Gaussian distributions with a mutual correlation of 0.5. VT is

the estimated covariance matrix of
√
T (σ̂ − σ0), and VT = (D′TS−1

T DT )−1. S
(1)
T is the

Newey-West estimator with no lags. S
(2)
T is a matrix with the iith element given by 2σ̂4

i and

the same nondiagonal elements as in S
(1)
T . S

(3)
T has the iith element equal to 2 and the same

nondiagonal elements as in S
(2)
T . S

(s)
T is the shrinkage estimator. D

(1)
T is a diagonal matrix

with the iith element equal to −2σ̂i. D
(2)
T is a diagonal matrix with the iith element equal

to -2.

Finite-sample size (%)
Asymptotic

size T=100 T=300 T=700

(a) S
(1)
T and D

(1)
T

1% 27.65 6.01 2.52
5% 45.54 15.35 9.27
10% 54.49 25.26 15.28

(b) S
(2)
T and D

(1)
T

1% 26.32 6.64 2.64
5% 39.05 15.43 8.90
10% 45.36 25.18 14.91

(c) S
(3)
T and D

(1)
T

1% 20.30 9.38 3.12
5% 28.55 18.22 9.58
10% 34.52 26.71 15.92

(d) S
(3)
T and D

(2)
T

1% 20.34 7.98 2.53
5% 30.37 16.89 8.97
10% 36.94 26.29 15.16

(e) True value of V0

1% 0.94 0.84 0.96
5% 4.87 5.11 5.13
10% 10.32 10.70 9.78

(f) S
(s)
T and D

(1)
T

1% 11.00 3.07 1.72
5% 22.65 9.96 7.17
10% 32.17 17.99 12.45

ment from the shrinkage estimator is robust to the change of the shrinkage
target.

Many economic variables demonstrate conditional heteroscedasticity. In
order to explore how this dependence affects our approach, we use a GARCH
(1,1) model to simulate the data and repeat the previous experiments. The
data generating process is

Xit =
√
rvt +

√
1− reit for all i and t,
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Table 2 Finite-Sample Performance of Wald Test for HP
0 : σ1 = σ2 = · · · = σJ . The

data are simulated by Gaussian distributions with a mutual correlation of 0.5. VT is the

estimated covariance matrix of
√
T (σ̂−σ0), and VT = (D′TS−1

T DT )−1. S
(1)
T is the Newey-

West estimator with no lags. S
(2)
T is a matrix with the iith element given by 2σ̂4

i and with

the same nondiagonal elements as in S
(1)
T . S

(3∗)
T has the iith element equal to 2 1

J

∑J
j=1 σ̂j

and the same nondiagonal elements as in S
(2)
T . S

(s)
T is the shrinkage estimator defined in

Eq. (4) while S
(s∗)
T is the shrinkage estimator when Xit is assumed to be i.i.d. (or, β = 0).

D
(1)
T is a diagonal matrix with the iith element equal to −2σ̂i. D

(2∗)
T is a diagonal matrix

with the iith element equal to −2 1
J

∑J
j=1 σ̂j . The right-hand side panels report the results

when we assume ST is a diagonal matrix and keep all other settings unchanged.

Finite-sample size (%) Finite-sample size (%)
Asymptotic Asymptotic

size T=100 T=300 T=700 size T=100 T=300 T=700

(a) S
(1)
T and D

(1)
T (a’) Diagonal S

(1)
T , D

(1)
T

1% 17.03 3.31 1.72 1% 0.31 0.05 0.02
5% 33.09 11.31 7.66 5% 1.81 0.62 0.37
10% 44.06 20.43 13.58 10% 3.57 1.64 1.14

(b) S
(2)
T and D

(1)
T (b’) Diagonal S

(2)
T , D

(1)
T

1% 18.93 4.21 1.91 1% 0.10 0.02 0.01
5% 29.77 11.54 7.34 5% 0.60 0.33 0.32
10% 37.48 20.56 13.20 10% 1.77 1.22 0.92

(c) S
(3∗)
T and D

(1)
T (c’) Diagonal S

(3∗)
T , D

(1)
T

1% 22.79 7.07 2.53 1% 0.07 0.03 0.00
5% 31.87 15.49 8.95 5% 0.52 0.29 0.31
10% 37.74 24.11 14.83 10% 1.61 1.07 0.87

(d) S
(3∗)
T and D

(2∗)
T (d’) Diagonal S

(3∗)
T , D

(2∗)
T

1% 17.43 4.39 1.75 1% 0.03 0.03 0.00
5% 26.48 11.74 7.44 5% 0.42 0.25 0.29
10% 32.35 20.09 12.87 10% 1.40 1.06 0.86

(e) True value of V0 (e’) True value of V0

1% 1.06 0.83 0.95 1% 1.06 0.83 0.95
5% 5.19 5.08 5.02 5% 5.19 5.08 5.02
10% 9.79 10.64 9.86 10% 9.79 10.64 9.86

(f) S
(s)
T and D

(1)
T (f’) S

(s∗)
T , D

(1)
T

1% 3.63 1.26 1.07 1% 3.57 1.52 1.36
5% 12.49 6.92 5.77 5% 12.53 7.52 6.47
10% 20.52 13.40 10.78 10% 19.40 13.77 11.44

where vt is i.i.d. and N(0, 1) for all t and for each i. Here, eit =
√
hitzt,

zt ∼ N(0, 1) and hit = αi + βie
2
i,t−1 + γihi,t−1.

We set αi = 0.5, βi = 0.25 and γi = 0.25 for all i. As before, we set r
to be 0.5. We use the optimal bandwidth, BT , to obtain the Newey-West

estimators, denoted by S
(1)
T . As for the shrinkage estimator, we still treat the
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data as if they are i.i.d. The results are reported in Table 3. We find that when
{Xit, t ∈ Z} follows a GARCH (1,1) model, the performance of the shrinkage
method is still better than of the alternative methods when T = 100, 300.
When T = 700, the performance of the shrinkage estimator is comparable to
those alternatives. We can conservatively conclude that if the true DGP is
a GARCH (1,1) model, then the shrinkage method, at a minimum, does not
adversely affect our results.

In summary, the results from the experiments imply that partial informa-
tion from the underlying DGP and from the null hypothesis could not improve
the results of the finite-sample sizes of the Wald test, and that imposing incor-
rect information leads to a distortion of the sizes of the Wald test. However,
the shrinkage estimator of the covariance matrix significantly improves the
finite-sample properties of the Wald test under our simple Gaussian DGP.
This improvement is robust to the choice of the shrinkage target.

4 Empirical Application

Mean-variance efficiency is a key issue in finance. Researchers try to construct
portfolios which are mean-variance efficient. A portfolio is deemed to be mean-
variance efficient if either of two conditions are met. The first, given the level
of the expected portfolio return, has the smallest variance compared with the
other portfolios, the second, given the level of variance of the return, has the
highest mean. These comparisons are mostly conducted based on the observa-
tions of the sample mean and the sample variance. We can get more reliable
inferences from a Wald test. In this section, we illustrate the importance of
our method by studying mean-variance efficiency properties.

We collect the monthly returns of the Fama-French 25 portfolios from July
1963 to December 1990 (330 observations). 4 These portfolios are formed on
the basis of their sizes (market equity) and the ratios of book equity to market
equity for all stocks listed on the NYSE, the AMEX, and the NASDAQ. We
treat them as 25 different risky assets. By holding these assets with J different
weights, we can obtain J different portfolios.

In the first step, we form only one portfolio, which is mean-variance effi-
cient. According to Markowitz (1952), given the mean of the return, we mini-
mize the variance of the return of this new portfolio as

min
w

w′Σw (22)

subject to

w′1 = 1 and w′µ = q,

where Σ is the covariance matrix of the asset returns, µ is the mean vector of
the returns, w is the weight, q is the mean of the return for this portfolio and
1 is a vector of 1.

4 URL: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Table 3 Finite-Sample Performance of Wald Test for HF
0 : σ1 = σ2 = · · · = σJ = 1 and

HP
0 : σ1 = σ2 = · · · = σJ . The data are simulated by a GARCH (1,1) model. VT is the

estimated covariance matrix of
√
T (σ̂−σ0), and VT = (D′TS−1

T DT )−1. S
(1)
T is the Newey-

West estimator with optimal bandwidth. S
(2)
T is a matrix with the iith element given by

2σ̂4
i and with the same nondiagonal elements as in S

(1)
T . S

(3)
T has the iith element equal to

2 and with the same nondiagonal elements as in S
(2)
T . S

(3∗)
T has the iith element equal to

2 1
J

∑J
j=1 σ̂j and the same nondiagonal elements as in S

(2)
T . S

(s)
T is the shrinkage estimator.

D
(1)
T is a diagonal matrix with the iith element equal to −2σ̂i. D

(2)
T is a diagonal matrix

with the iith element equal to -2. D
(2∗)
T is a diagonal matrix with the iith element equal to

−2 1
J

∑J
j=1 σ̂j .

H0 : σi = 1 for all i
Finite-sample size (%)

Asymptotic
size T=100 T=300 T=700

(a) S
(1)
T and D

(1)
T

1% 72.18 29.10 13.14
5% 83.48 47.64 30.08
10% 87.92 58.62 40.50

(b) S
(2)
T and D

(1)
T

1% 51.48 50.08 47.44
5% 64.50 62.10 55.01
10% 73.18 68.34 59.06

(c) S
(3)
T and D

(1)
T

1% 47.34 44.28 32.02
5% 62.50 55.46 39.58
10% 69.42 60.76 43.54

(d) S
(3)
T and D

(2)
T

1% 47.48 45.02 33.94
5% 62.86 56.32 42.66
10% 70.20 62.38 47.00

(e) True value of V0

1% 3.46 3.08 2.91
5% 9.78 9.10 8.94
10% 16.73 15.99 14.61

(f) S
(s)
T and D

(1)
T

1% 33.14 20.60 14.82
5% 52.20 35.06 32.67
10% 63.02 47.54 40.63

H0 : σi = σj for all i 6= j.
Finite-sample size (%)

Asymptotic
size T=100 T=300 T=700

(a) S
(1)
T and D

(1)
T

1% 64.62 24.90 11.68
5% 78.32 43.06 27.18
10% 84.34 53.91 37.96

(b) S
(2)
T and D

(1)
T

1% 52.18 48.38 45.04
5% 63.70 60.91 52.44
10% 71.66 67.24 56.84

(c) S
(3∗)
T and D

(1)
T

1% 48.08 46.08 34.62
5% 63.10 56.78 41.24
10% 70.40 62.72 44.82

(d) S
(3∗)
T and D

(2∗)
T

1% 46.50 44.21 32.86
5% 61.91 55.48 40.38
10% 70.16 62.01 44.80

(e) True value of V0

1% 3.47 3.09 2.90
5% 10.00 9.33 9.03
10% 16.76 16.09 14.54

(f) S
(s)
T and D

(1)
T

1% 24.28 17.26 13.71
5% 43.92 34.41 30.48
10% 56.54 45.22 37.48
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Then, a frontier portfolio can be obtained by choosing

w =
C − qB
AC −B2

Σ−11 +
qA−B
AC −B2

Σ−1µ (23)

where A = 1′Σ−11, B = 1′Σ−1µ and C = µ′Σ−1µ.
In the second step, we can create other J − 1 portfolios, which have the

same q but a different sample variance. Each of these portfolios is constructed
by randomly generating the first 23 elements of w̄ from w+U [−1/27.5, 1/27.5]
and then calculating the remaining two elements of w̄ according to two restric-
tions: w̄′1 = 1 and w̄′µ = q. A rough figure is plotted in Figure 1.

Fig. 1 Mean-Variance Efficienct Frontier. The curve is the mean-variance efficient frontier.
Small circles are the portfolios when q = 2% and J = 10. One of them is located on the
curve, and the others are below the curve.

The curve in Figure 1 is the mean-variance efficient frontier. Any point on
this frontier indicates the minimum standard deviation a portfolio can achieve
given the mean (e.g., the value of q). If we focus on the case where q = 2%
and J = 10, then the small circles are the mean and the standard deviations
of the portfolios we construct. One of them is mean-variance efficient, located
on the efficient frontier; the others are located below the curve.

Then, we test the null hypothesis that

H0 : σ1 = σ2 = · · · = σJ .

We conduct two kinds of Wald tests. The first uses the sample analog to
estimate the covariance matrix, and the second uses the Fama-French three-
factor model to derive the shrinkage estimator. The Fama-French three-factor
model is:

Ri = Rf + β1i(Rm −Rf ) + β2iSMB + β3iHML + ei,
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where Ri is the portfolio return, Rf is the risk-free return, Rm is the market
portfolio return and SMB is the average return of the three small portfolios
(based on market equity) minus the average return of the three big portfolios.
HML is the average return of the two value portfolios (based on the ratios
of book equity to market equity) minus the average return of the two growth
portfolios.

We try different combinations of q and J . The results are summarized in
Tables 4 and 5. We see that these two tables deliver quite different results.
Table 4 suggests that we should reject the null hypothesis for any value of q
and J , while Table 5 leads us to the opposite conclusion. This implies that, in
practice, the shrinkage method really matters. If we follow the conventional
Wald test, we would believe that, given q, the frontier portfolio based on
Eq. (23) is mean-variance efficient and unique since Eq. (23) suggests that
there is one-to-one correspondence between q and w. However, if we apply
the shrinkage method to the estimation of the covariance matrix, the testing
results suggest that we can find yet another set of portfolios which has the
same mean and the same variance with the frontier portfolio. The p-values
that are marginally non-significant (q=2% in Table 5) should be treated with
caution, since the test is slightly liberal.

Table 4 WJ
T statistics when the weighting matrix is estimated by the sample analogue.

p−values are in the parentheses.

q \ J 5 6 7 8 9 10
2.00% 55.16(0.00) 57.40(0.00) 60.11(0.00) 63.62(0.00) 64.11(0.00) 69.43(0.00)
2.05% 54.91(0.00) 57.25(0.00) 58.58(0.00) 63.57(0.00) 64.13(0.00) 69.45(0.00)
2.10% 54.64(0.00) 57.09(0.00) 58.44(0.00) 63.51(0.00) 64.13(0.00) 69.44(0.00)
2.15% 54.36(0.00) 56.92(0.00) 58.29(0.00) 63.44(0.00) 64.12(0.00) 69.44(0.00)
2.20% 54.06(0.00) 56.74(0.00) 58.13(0.00) 63.36(0.00) 64.11(0.00) 69.41(0.00)
2.25% 53.75(0.00) 56.54(0.00) 57.95(0.00) 63.28(0.00) 64.08(0.00) 69.37(0.00)
2.30% 53.42(0.00) 56.33(0.00) 57.76(0.00) 63.18(0.00) 64.04(0.00) 69.31(0.00)
2.35% 53.08(0.00) 56.12(0.00) 57.57(0.00) 63.08(0.00) 64.00(0.00) 69.24(0.00)
2.40% 52.73(0.00) 55.89(0.00) 57.36(0.00) 62.97(0.00) 63.94(0.00) 69.16(0.00)
2.45% 52.36(0.00) 55.65(0.00) 57.15(0.00) 62.85(0.00) 63.87(0.00) 69.06(0.00)
2.50% 51.99(0.00) 55.40(0.00) 56.92(0.00) 62.73(0.00) 63.79(0.00) 68.95(0.00)

5 Conclusion

We propose using shrinkage method to remedy the small-sample properties
of GMM-based Wald tests. The shrinkage method provides a more reliable
estimator for the covariance matrix used in the Wald test, and hence improves
the size of the Wald test. Simulations reveal that our method is superior to
those suggested in Burnside and Eichenbaum (1996). Furthermore, we apply
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Table 5 WJ
T statistics when the weighting matrix is estimated by the shrinkage method.

p−values are in the parentheses.

q \ J 5 6 7 8 9 10
2.00% 7.96(0.09) 10.12(0.07) 11.60(0.07) 11.39(0.12) 11.65(0.17) 12.83(0.17)
2.05% 7.22(0.12) 9.21(0.10) 10.55(0.10) 10.37(0.17) 10.62(0.22) 11.70(0.23)
2.10% 6.54(0.16) 8.36(0.14) 9.58(0.14) 9.42(0.22) 9.66(0.29) 10.66(0.30)
2.15% 5.92(0.20) 7.58(0.18) 8.70(0.19) 8.56(0.29) 8.78(0.36) 9.70(0.38)
2.20% 5.36(0.25) 6.88(0.23) 7.89(0.25) 7.78(0.35) 7.98(0.44) 8.83(0.45)
2.25% 4.86(0.30) 6.24(0.28) 7.16(0.31) 7.08(0.42) 7.26(0.51) 8.04(0.53)
2.30% 4.41(0.35) 5.67(0.34) 6.51(0.37) 6.44(0.49) 6.61(0.58) 7.33(0.60)
2.35% 4.01(0.40) 5.16(0.40) 5.92(0.43) 5.87(0.55) 6.03(0.64) 6.68(0.67)
2.40% 3.65(0.46) 4.70(0.45) 5.38(0.50) 5.35(0.62) 5.50(0.70) 6.10(0.73)
2.45% 3.33(0.50) 4.28(0.51) 4.91(0.56) 4.90(0.67) 5.03(0.75) 5.58(0.78)
2.50% 3.04(0.55) 3.91(0.56) 4.49(0.61) 4.48(0.73) 4.60(0.80) 5.11(0.82)

the shrinkage method to mean-variance efficient portfolios and find that the
conventional Wald test can be misleading when determining mean-variance
efficiency, and that our method produces more reliable inferences.
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