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This paper estimates the impact of inter-sectoral linkages on productivity at the sectoral level.
An exhaustive Chinese panel data set for capital, infrastructure and a sectoral agglomeration
index is linked with an economic distance matrix derived from inter-sectoral transactions.
The latter matrix can replace the conventional geographic distance matrix from spatial
econometrics. The impact through spillovers is mixed—the direct impact passing to related
sectors and back to the initial sector itself, and the indirect impact arising from changes in all
sectors. The results suggest that (1) economic growth in a sector is driven by spillovers among
sectors that are linked through flows of goods and services; economic distance plays a more
important role in stimulating productivity spillover than spatial distance; a shorter economic
distance transmits a larger productivity spillover between sectors; (2) infrastructure spillover
improves labor productivity in linked sectors; (3) agglomeration diseconomies can be partially
reduced by infrastructure investment.
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1. Introduction

Industrialization is a process— productivity grows through dynamic change of the economic structure (Kuznets, 1971). At the
risk of oversimplification, there are three different schools of thought regarding the nature of labor productivity. For analytical
convenience, we designate them as the ‘economic distance approach’, the ‘infrastructure-driven approach’ and the ‘geographic
distance approach’. The economic distance approach assumes that inter-sectoral linkages are the main determinant of industrial
productivity. The economic sectors grow at different rates, as determined by resource endowments, consumer preferences,
income elasticity of demand, and the path of economic growth. To the degree that sectoral transactions are nationally mobile and
connected, the production of goods as inputs of other sectors, through their effects on production costs, may have important
impacts on resource allocation and economic growth in the other sectors. Countries that rely on protecting ‘infant sectors’ with
subsidies, quotas and tariffs to create structural reforms, face consumption distortions and a price wedge. So using key sectors to
induce growth of related sectors and pull along the rest of the economy has gradually made its way onto the economic policy
agenda under the heading of ‘structural upgrading’. The effectiveness of such policy intervention depends crucially on the
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linkages among sectors. United Nations (2007) stated succinctly: ‘Strengthening linkages is one of three most important
dimensions that industrial policies in developing countries should be concerned with’.

In contrast, an alternative perspective, the geographic distance approach, has long existed. The geographic distance
approach attributes labor productivity in a sector to geographic agglomeration (e.g. Martinez, Paluzie, & Pons, 2007). Part of its
rationale comes from the new economic geography (NEG) theory that economic agents clustering in space have lower logistic
costs than economic agents dispersing over space. However, high-tech sectors such as biotechnology, telecommunication,
computer and electronics sectors do not necessarily rely on geographic agglomeration to transmit techniques or reduce logistic
costs. This raises questions such as: Do upstream and downstream sectors have to relocate from one place to another to form
geographic agglomerations such as core-periphery structures? Is there any spillover from sectors that are geographically
distant but economically close? Are the externalities brought by spatial closeness larger than externalities brought by
transactions?

Additionally, investigators such as Baffes and Shah (1998) attached more importance to the sectoral allocation of public
investment as a major factor in the growth of labor productivity. Rather than allocating limited public capital equally in all sectors,
governments can allocate public capital to key sectors such as transportation and telecommunications. Through the cooperation
among different economic agents, the interaction of public and private inputs helps realize long-term sustainability of the
manufacturing sector.

Based on the above-mentioned approaches, the goal of this paper is therefore to analyze the role of inter-sectoral linkages,
infrastructure and agglomeration in sector-level productivity with a panel dataset of 31 provinces from all manufacturing
sectors in China during the period 1996–2007. Accordingly, this paper creatively converts the trend of the changing
inter-sectoral interactions into an economic proximity matrix and applies this matrix with spatial autocorrelation econometrics
(Anselin, Varga, & Acs, 2000; Autant-Bernard & LeSage, 2011). This method is well-suited to this investigation for reasons
described in Appendix A. We will test whether inter-sectoral dependence exists in the dependent variables, the independent
variables or the error terms.

This paper extends current work on sectoral productivity in three important ways. The main finding is that the productivity of
a sector is related to other sectors that provide its input or that use its output. This sectoral multiplier effect can be differentiated
into direct impact (growth in a particular sector induces growth of other sectors and feedback to the sector itself) and indirect
impact (growth in a particular sector supports net growth in the overall economy). The closer the economic distance among
sectors, the higher the productivity spillover is. Economic distance is at least as important as geographic distance to the
competitiveness of manufacturing sectors. Secondly, infrastructure spillovers through inter-sectoral linkages have acted as
drivers of labor productivity growth. Thirdly, the low coefficient of sectoral agglomeration spillover is likely the result of
agglomeration diseconomies, which can be offset partially by infrastructure spillover.

The remainder of this paper proceeds as follows. Section 2 summarizes literature relating to the channels through which
inter-sectoral linkages promote productivity spillover, the control variables (infrastructure and agglomeration) and the
estimation method (spatial econometrics). Section 3 presents a theoretical model and translates it into inter-sectoral econometric
models that include the inter-sectoral transaction matrix. Section 4 explains the data. In Section 5, the effect of linkages on
productivity is tested by selecting from a non-inter-sectoral panel model, an inter-sectoral Durbin model, an inter-sectoral lag
model and an inter-sectoral error model, and by decomposition into direct and indirect impacts. The relationship between
productivity spillover and economic distance is assessed. To compare economic distance with spatial distance, an empirical
analysis of the spatial Durbin model is carried out in Section 6. The paper closes with a summary of key findings.

2. Literature review

This section starts with an introduction about the spatial econometrics that is closest to our method. Although there is no
shortage of papers using spatial econometrics to estimate geographical linkages, our paper is the first to combine an economic
matrix with spatial econometrics to investigate the economic linkages among sectors. The inter-dependencies among sectors
through input–output linkages drive productivity spillover among sectors. The literature review also highlights two other issues
which might contribute to productivity growth: infrastructure and agglomeration.

2.1. Linkages across sectors

Previous studies have embedded three Marshallian forces (Marshall, 1920) to classify inter-sectoral linkages into labor
linkage, customer–supplier linkage and technology linkage. With regard to the riddle which inter-sectoral linkage contributes
most significantly to productivity growth, different scholars give different answers: labor linkage (Dumais, Ellison, & Glaeser,
2002; Jofre, Marín, & Viladecans, 2011), customer–supplier linkage (Ellison, Glaeser, & Kerr, 2010), and technology linkage
(Greenstone, Hornbeck, & Moretti, 2010). Nonetheless, these three linkages are NOT wholly independent from each other.
Customer–supplier linkages are closely followed by labor sharing (Ellison et al., 2010) and trigger technology diffusion
(Hauknes & Knell, 2009).

Customer–supplier linkage sets into motion a chain of flows that revolutionize the national production system. Customer–
supplier linkage occurs when a sector provides its output to or buys input from other sectors. With the exchange of materials,
technological and organizational innovations from upstream sectors are able to weave into production and be absorbed by the
downstream sectors. Almost all other linkages can stem from customer–supplier linkages.
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Many factors explain how a sector pulls along the linked sectors through input–output linkages. A short list of such causal
factors includes:

(i) cost reduction: cost is reduced in two channels. On one hand, the improvement of productivity of downstream sectors will
enlarge the market size for intermediate suppliers (upstream sectors), triggering entries of new upstream firms. The
competition in upstream sectors reduces intermediate prices, which in turn decrease the procurement costs of the
downstream sectors (Kranich, 2011). On the other hand, increasing demand by downstream sectors can lead to higher
levels of specialization in upstream sectors, which eventually results in lower prices (Antonelli, 2008).

(ii) pecuniary externalities: the input–output linkages between FDI and domestic suppliers transmit pecuniary externalities.
One out of every three FDI firms offers frequent financial support to suppliers (Jordaan, 2011).

(iii) knowledge spillover: the interaction of upstream producers and downstream producers develops a learning environment
and facilitates knowledge spillover (Lewis, 2009; Hauknes & Knell, 2009; Kellogg, 2011). A sector, due to the existence of
supplier–customer linkage, is likely to apply patented inventions obtained in other sectors (Scherer, 1984), and likely to
use knowledge carried by innovative inputs from upstream producers to generate its own technological knowledge
(Gehringer, 2010).

(iv) the standardization of rules: in the multi-sector ladder, no sector can set economic norms in isolation. The regulations are
usually streamlined between supplier and customer sectors. Sectors have to adopt widely-accepted and balanced standards
so as to increase transactions efficiency and market transparency and competition (Lewis, 2009).

(v) the improvement of labor quality: input output linkages are closely followed by similar labor needs (Ellison et al., 2010).
Sharing labor among sectors improves the quality of labor and facilitates the growth of labor productivity (Young, 1995).
Input output linkages reduce the gap between low-skilled and high-skilled workers.

(vi) urbanization: linkages generate geographic concentration between manufacturers and suppliers (Ellison et al., 2010),
which is crucial to the emergence and growth of cities (Lewis, 2009).

Within this strand of literature, several methods have been used to estimate inter-sectoral productivity spillover. The first
method is the nonlinear model. After comparing negative and positive effects of inter-sectoral linkages, Bravo-Ortega and
Lederman (2005) pointed out that the development of non-agricultural sectors can cause the share of agriculture in national
production to decline as the household spends less on food, and the technological innovations of related sectors spill over to the
agriculture sector. The second method is patent citation. But patent citation is still an imperfect measure of intellectual spillover
(Ellison et al., 2010). Knowledge sharing that occurs between customers and suppliers may be captured better by an input–output
table than by patent citations (Porter, 1990).

The conventional methods pay little attention to the direct and indirect impacts of linkages. Inter-sectoral linkages have been
recognized as economic distance (Dietzenbacher, Romero, & Bosma, 2005; Greenstone et al., 2010). To apply this notion
empirically, we extract an economic transaction matrix where sectors are interwoven in the process of material exchange, and
integrate this economic proximity matrix with the spatial Durbin model.

2.2. Productivity spillover

Productivity of a sector is influenced by its inputs, which are bought from other sectors. To estimate the productivity spillover,
Bartelsman, Caballero, and Lyons (1994) built a model yit=γxit+βxita+vit, where yit is the growth rate in real value added in
sector i, xit is the growth rate in sector i's input, xita is a weighted average of other sectors' activity, as measured by the growth rate
of their inputs, and vit is the growth rate of industry i's technology. They stated that the linkages between a sector and its
customers are the most important factor in the transmission of externalities. Moretti (2004) noted that productivity spillover is
strongly correlated with input–output and technology distances, and that spillover among sectors that are economically close is
larger than spillover among sectors that are economically distant.

The inter-dependency of sectors also leads to productivity diffusion among sectors. Hayami (1991) and Crespi et al. (2008) used
input–output data to prove the presence of productivity spillover among sectors due to the sharing of information. Holly and Petrella
(2012) provided a useful modeling framework for productivity diffusion through factor demand linkages. In their RBC model, as an
upstream sector increases productivity and lowers the price of its products, its downstream sectors can decrease themarginal cost of
production and increase productivity and demand. This will in turn raise the productivity of the upstream sector since it is also a
buyer of other sectors' supplies. The aggregate positive comovement between labor and productivity is driven, in particular, by a
very strong positive complementary effect in those sectors which are most connected through input–output linkages.

2.3. Infrastructure spillover

It is widely agreed that public capital is of fundamental importance to aggregate productivity and should be included in
production functions. 1% increase in infrastructure stock is associated with a 0.35% reduction in the poverty ratio (Jalilian &Weiss,
2004). Every $1 invested in public transportation generates approximately $4 in economic returns.1 ICT investment accounted for
1 American Public Transit Association, “Facts at a Glance, 2012” http://www.publictransportation.org/news/facts/Pages/default.aspx (accessed: Dec. 2012).

http://www.publictransportation.org/news/facts/Pages/default.aspx
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0.3%–~0.8% of growth in per capita GDP in 1995–2001 in OECDmembers (Tambo, 2004). However, infrastructure spillover remains
a relatively new area of research. It can be divided into spillover among regions and among sectors.

Infrastructure spillover among regions is defined as a phenomenon whereby public infrastructure in one region spills over to
other regions and raises productivity in other regions. Boarnet (1998) included the infrastructure stock in neighboring counties in
a county production function to prove that factors such as labor and private capital move in response to differences in public
capital stocks. Pereira and Roca-Sagalés (2003) developed vector auto regressive (VAR) models to prove that public goods
produce benefits outside the funding jurisdiction. Dembour and Wauthy (2009) reiterated that a ‘local’ infrastructure, as a public
good, will inevitably see its benefits spill over to contiguous regions. Thus, they believed physical location in region A rather than
B does not actually matter as far as spatial externalities are concerned.

Infrastructure spillover across sectors occurs when sectors in one region which have better infrastructure transact with sectors
in other regions which have less infrastructure. Eberts and McMillen (1999) argued that both spatial proximity and physical
infrastructure contribute positively to the productivity of firms in urban areas, and public infrastructure should be included as an
input in the production function. Fernald (1999), using data for 29 sectors and public investment in roads during 1953–1989 in
the U.S., observed that (1) when infrastructure investment decreases, sectors with higher vehicle shares experience larger
slowdowns in productivity growth; (2) when infrastructure investment increases, productivity growth rises in vehicle-intensive
sectors and falls in nonvehicle-intensive sectors. Innovation spillover occurs when there are large inter-sectoral linkages
(Dietzenbacher, 2000; Swieczewska & Tomaszewicz, 2006). Changes in one sector's infrastructure share affect neighboring
sectors. Duranton, Morrow, and Turner (2012) offered a complementary explanation that highways within cities bring sectors
producing heavy goods comparative advantages. According to a report by Dahlman (2007), the Taiwan government implements
“State-directed technological development strategy” by developing a strong supportive technological infrastructure such as
technical information services and specialized public research institutes, and by creating technological linkages.
2.4. Sectoral agglomeration index

Sectoral agglomeration is also called industrial clustering (Ellison et al., 2010; Coniglio, Prota, & Viesti, 2011). Agglomeration
indices can be used to quantify the inequality of a distribution across firms, people, or space and identify the mechanisms that
drive employees and firms to co-locate geographically. The Herfindahl index measures industrial concentration. The generalized
entropy index, the Theil index and special generalized entropy decompose total inequality into within region and between
regions. To estimate the coefficient of regional industrial concentration, Gonda and Kyūi (1998) constructed the CRIC index which
we will discuss in Section 3.1 and use the data of 23 sectors in 47 prefectures from 1980 to 1994 to identify the spatial mobility
and developmental stages of manufacturing sectors. Based on employment data of Italian manufacturing sectors, Arbia (2001)
concluded that the Gini coefficient, the Getis–Ord coefficient and Moran-I statistics can be used complementarily to capture
spatial concentration of sectors. Using K-functions, Arbia, Espa, and Quah (2008) found that sectors tend to collocate to exploit
technological and physical spillovers. Ellison et al. (2010) used the EG index, which is a modification of the spatial Gini index, to
estimate coagglomeration of two sectors. Jofre et al. (2011) created an inter-sectoral weight index to assess each of Marshall's
agglomeration mechanisms (using similar workers, a customer–supplier relationship, and knowledge spillover). While
confirming the existence of all three mechanisms, they concluded that the most important mechanism is labor market pooling.
2.5. Spatial econometrics

Spillover among different units is widely studied by spatial econometric models. Case et al. (1993) used spatial econometrics
to estimate the effect of one state's spending on that of its neighbors. Anselin et al. (2000) used a geographic matrix and sectorally
disaggregated data and applied the methodology of spatial econometrics to estimate geographic spillover between university
research and high technology innovations. Autant-Bernard and LeSage (2011) estimated R&D spillover across regions by using a
spatial matrix. Cohen and Paul (2004) found public infrastructure investment related to manufacturing production is both
enhanced and augmented by spatial spillover. Baicker (2005) also used spatial autocorrelation to estimate the extent to which a
state's spending is influenced by the spending of its neighboring states.

Spatial econometric models are routinely created by adding a spatial weight matrix into theoretical models. Tian, Wang, and
Chen (2010) added a spatial weight matrix into the technology variable of a Cobb–Douglas production function to create a spatial
Durbin model which can capture technology spillover across provinces. Poudyal et al. (2009) defined a conceptual model: Life
expectancy=f (socio-demographic factors; medical facility and risk factors; natural resource and environmental amenities),
added a spatial matrix and rewrote this model into a spatial error model and, separately, a spatial lag model.
3. Model

To test the hypothesis that productivity at the sectoral level is driven primarily by inter-sectoral linkages, and secondarily by
public investment on infrastructure, we first build an economic model which includes infrastructure and a sectoral agglomeration
index, and then add an economic proximity matrix analogous to the spatial matrix from spatial econometrics.
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3.1. Within-sector productivity

We start by building a sectorally disaggregated model so that inter-sectoral linkages can be added to it in Section 3.2.
Y=L ¼ ACγ K=Lð Þα G=Lregion
� �β ð1Þ

A is a positive constant. Y refers to sectoral industrial output. K denotes capital, and L labor in a sector. Lregion is total labor in
where
all sectors in a region. G is the region's infrastructure stock, and C is a sectoral agglomeration index. γ is the output elasticity of the
sectoral agglomeration index and α is the output elasticity of capital. β is the output elasticity of infrastructure, measuring a
sector's gain from the accumulation of infrastructure investment in a region.

To examine the hypothesis that public capital formation fosters productivity growth in linked sectors, we add infrastructure
into the production function. As an external economy, infrastructure spreads knowledge and technology, reduces transaction
costs, improves business and living environments and diminishes agglomeration diseconomies due to congestion, pollution or
over-competition. It is a facilitator for agglomeration and thus can be a shift factor in the production function. For example,
investment in the telecommunications sector can increase its demand for material from labor-intensive sectors such as the cable
sector and the chemical material sector. Investment in 3G infrastructure helps the oil sector to discover resources and boosts the
development of the automobile sector. Investment in the information sector makes it easier to publish ads, search suppliers and
select logistic channels. Investments in water, power and gas make hotels more comfortable and travel safer, thereby facilitating
the development of the tourism sector and the air transportation sector. By adapting Basile's (2011) definition of spatial
externalities, inter-sectoral externalities can be defined as those growth enhancing elements of one sector that, in their nature of
public goods, exert positive (or negative) effects on other sectors, with visible distance decay effects.

Our aim of assessing the contribution of sector-level agglomeration to economic growth leads us to incorporate a measure of
sectoral agglomeration into the production function. C in Eq. (1) is a CRIC index (C index), which compares concentration and
specialization both region-wide and industry-wide and compares the value for a particular sector with the value for all
sectors:
C ¼ Csi=Csð Þ= Cni=Cnð Þ

Csi denotes the variable value for sector s in province i, i=1,…, N (N=31). Cs is the variable value of sector s in all
where
provinces where s=1,…,S (S=36). Cni refers to the variable value for all sectors in province i. Cn is the variable value for all
sectors in all provinces. Take the sector ‘Tobacco in Shanghai’ as an example. C should be:
C ¼
variable value of tobacco sector in Shanghai

variable value of tobacco sector in China
variable value of all sectors in Shanghai

variable value of all sectors in China

:

Thus, the value of C represents the sectoral agglomeration degree of a particular sector in a region and indicates the extent of
the deviation between a sector and a region. The closer to one, the more closely the national average is approached. When the
value of the C index exceeds one, a sector accounts for a disproportionately high share of a region's amount of the variable value;
the larger the value, the more concentrated a sector in that region compared to the nation overall. The C index compares overall
agglomeration trends in a sector in the numerator, and compares overall agglomeration trends across all sectors and all regions in
the denominator. Furthermore, to obtain a single value of C for sector s in region i, you have to compute the values of all sectors
and the values of all regions. Economists assume a sectoral agglomeration index should be comparable across sectors (Duranton &
Overman, 2002), separate spatial concentration from industrial concentration (Duranton & Overman, 2002) and require for the
most complicated data (Kominers, 2007). The C index meets these criteria and is a satisfactory sectoral agglomeration
measurement.

Taking the natural log of Eq. (1) and adding an error term, logged output per worker becomes:
ln Y=Lð Þ ¼ lnAþ α ln K=Lð Þ þ β ln G=Lregion
� �

þ γ lnC þ ε: ð2Þ
3.2. Economic linkages: inter-sectoral Durbin model (IDM)

Given that spillover among economically linked sectors is not necessarily tied to any particular geographic market, we adapt
an S×S sectorally weighted matrix, as a measure of economic distance, into spatial econometrics to test the existence and
strength of inter-sectoral dependency (see Appendix A). As with spatial autocorrelation, inter-sectoral autocorrelation occurs
when the economic development of a sector is influenced by other sectors. Our model differs from Anselin et al. (2000), who use a
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spatial matrix to research spatial externalities of innovation and R&D across sectors. The inter-sectoral Durbin model (IDM) is
obtained by rewriting Eq. (2).
2 The
ln Y=Lð Þsti ¼ δ1∑
S

m¼1
Vsm ln Y=Lð Þmti þ α ln K=Lð Þsti þ β ln G=Lregion

� �
sti

þ γ lnCsti

þθ1∑
S

m¼1
Vsm ln K=Lð Þmti þ θ2∑

S

m¼1
Vsm ln G=Lregion

� �
mti

þ θ3∑
S

m¼1
Vsm lnCmti þ ξs þ λt þ εsti

ð3Þ

δ1 is the inter-sectoral autoregressive coefficient. θ1,θ2 and θ3 are parameters. The model contains s=1,…, S sectors in i=1,
where
…, N regions. The index t=1,…, T refers to the time period. The subscripts represent the inter-sectoral interaction process, with
sti denoting own sector and mti representing other sectors. ln(Y/L)sti, ln(K/L)sti and ln(C)sti are NTS×1 2 vectors of natural
logarithms of industrial output per worker, fixed assets per worker, and the sectoral agglomeration index for sector s in province i
in year t. ln(G/Lregion)sti is an NTS×1 vector of natural logarithms of infrastructure per worker in province i in year t. Vsm stands for
an S×S inter-sectoral transaction matrix, whose value is based on product flows from sector s to sector m and refined by an
algorithm described in Appendix A. IDM assumes that the dependent variable in sector s is influenced by the dependent and
independent variables in related sectors.∑S

m¼1Vsm ln Y=Lð Þmti is the transaction-weighted average of sectoral industrial output per
worker in other sectors, capturing the inter-sectoral spillover.∑S

m¼1Vsm ln K=Lð Þmti,∑
S
m¼1Vsm ln G=Lregion

� �
mti and∑S

m¼1Vsm lnCmti

refer to the transaction-weighted averages of these variables from other related sectors. ξs is an S×1 vector of coefficients to be
estimated, denoting sector specific effects. λt is an unobserved sectorally invariant effect, which is included to capture time-period
heterogeneity (i.e. time-period fixed effects or time-period random effects). εsti is an i. i.d(0,σ2) disturbance.

The data set is a 3-dimensional S×T×N matrix (sector, time and region) and needs be decomposed into a 2-dimensional
matrix. After segmentation, the dimension of Eq. (3) can be reduced to:
ln Y=Lð Þi0 ¼ δ1∑
N

j¼1
V ln Y=Lð Þi0 þ α ln K=Lð Þi0 þ β ln G=Lregion

� �
i0
þ γ lnCi0

þθ1∑
N

j¼1
V ln K=Lð Þi0 þ θ2∑

N

j¼1
V ln G=Lregion

� �
i0
þ θ3∑

N

j¼1
V lnCi0

þ ξi0 þ λi0
þ εi0 :

ð4Þ
The inter-sectoral multiplier can be obtained by moving inter-sectorally lagged dependent variables from the right hand side
to the left hand side of the equation:
ln Y=Lð Þi0 ¼ I−δ1Vð Þ−1 α ln K=Lð Þi0 þ β ln G=Lregion
� �

i0
þ γ lnCi0

þ θ1∑
N

j¼1
V ln K=Lð Þi0 þ θ2∑

N

j¼1
V ln G=Lregion

� �
i0
þ θ3∑

N

j¼1
V lnCi0

" #

þ I−δ1Vð Þ−1ξs þ I−δ1Vð Þ−1λt þ I−δ1Vð Þ−1εi0

ð5Þ

I is an ST×ST identity matrix and (I−δ1V)−1 is an inter-sectoral multiplier. (I−δ1V)−1= I+δ1V+δ12V2+δ13V3…. This
where
expansion illustrates the second-order, third order, and higher-order impact. The impact is multi-directional. If sector A uses
outputs from sector B as raw material and sector B buys outputs from sector C, production in sector A is influenced by both sector
B and sector C. This multi-sector structure determines the magnitude and impact of the inter-sectoral spillover. A sector which has
high backward linkages (uses output from other sectors as its input) and forward linkages (provides its output to other sectors as
their input) generates a high multiplier effect.

Furthermore, spillover can be divided into a direct effect and an indirect effect. Partial differentiation of the dependent variable
with respect to the independent variables yields:
∂ ln Y=Lð Þ
∂ ln K=Lð Þ ¼ Z1 Vð Þ ¼ I−δVð Þ−1 α þ Vθ1ð Þ

∂ ln Y=Lð Þ
∂ ln G=Lregion

� � ¼ Z2 Vð Þ ¼ I−δVð Þ−1 β þ Vθ2ð Þ

∂ ln Y=Lð Þ
∂ lnC ¼ Z3 Vð Þ ¼ I−δVð Þ−1 γ þ Vθ3ð Þ

ð6Þ
(i). direct impact. The diagonal elements of Z1(V), Z2(V) and Z3(V) measure the impact of independent variables in sector s on the
dependent variable in sector s. The direct impact includes the feedback loop where different sectors influence each other.

(ii). indirect impact. The off-diagonal elements of Z1(V), Z2(V) and Z3(V) measure the impacts of independent variables in other
sectors on the dependent variable in sector s. The indirect impact needs to be interpreted in two ways. (a) How a change in
explanatory variables (capital, infrastructure, sectoral agglomeration) in sector s would impact the dependent variable
total number of rows is N×T×S. N is the total number of regions, T is the total number of years, and S is the total number of sectors.
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(productivity) in neighboring sectors. (b) How a change in explanatory variables (capital, infrastructure, agglomeration) in
all sectors would impact the dependent variable (productivity) in a typical sector s.

3.3. Implication of theory

Eq. (3) provides several valuable insights for the analysis of productivity spillover. The improvement of productivity in sector s
might bring about positive impacts such as cost reduction, pecuniary externalities, knowledge spillover and the standardization of
rules in sector m as stated in Section 2.1. Technologically cutting-edge sectors (e.g., computer and electronics sectors) or
capital-intensive sectors (e.g., petroleum refining and tobacco) usually have higher productivity than the overall manufacturing
average, while the lowest-paying sectors have less technology and capital.

Also, negative linkages might occur. Suppose sector s in region i improves its technology. Then sector s might increase its
production efficiency and decrease its demand for raw materials, which would reduce its demand from supplying sectors. Output
per worker should also be a function of economic distances among sectors. Specifically, the productivity in one sector is expected
to be correlated with three groups of variables: the independent variables (ln(K/L)sti,ln(G/Lregion)sti,lnCsti) in own sector,
productivity in its related sectors ∑S

m¼1Vsm ln Y=Lð Þmti, and linkages across sectoral boundaries ∑S
m¼1Vsm ln K=Lð Þmti,

∑S
m¼1Vsm ln G=Lregion

� �
mti, and ∑S

m¼1Vsm lnCmti. Omitting the second and third groups of variables may generate endogeneity
bias, since these variables will be absorbed by the error term and the latter will be correlated with the included individual
characteristics.

From this discussion, the hypotheses that could be tested using Eq. (3) are the following:

(A). H0
A:δ=θ1=θ2=θ3=0. When hypothesis A is correct, Eq. (3) is reduced to Eq. (2). The non-inter-sectoral regression does

not consider linkages generated by inter-sectoral transactions between customers and suppliers. Thus, there is no
relationship between a supplier and customer sector pair: sector s and sector m. Sector s is own sector, while sector m
stands for its related sectors.
∂E ln Y=Lð Þsti
� �
∂ ln K=Lð Þsti

¼ α;
∂E ln Y=Lð Þsti

� �
∂ ln G=Lregion

� �
sti

¼ β;
∂E ln Y=Lð Þsti

� �
ln Cð Þsti

¼ γ

∂E ln Y=Lð Þsti
� �

∂ ln Y=Lð Þmti
¼ 0;

∂E ln Y=Lð Þsti
� �

∂ ln K=Lð Þmti
¼ 0;

∂E ln Y=Lð Þsti
� �

∂ ln G=Lregion
� �

mti

¼ 0;
∂E ln Y=Lð Þsti

� �
ln Cð Þmti

¼ 0

Under hypothesis A, we might conclude that there is no inter-sectoral effect and the explanatory variables in sector m do
not affect its related sector s.
(B). H0
B:θ1=θ2=θ3=0. When hypothesis B is correct, Eq. (3) is reduced to an inter-industrial autocorrelation lag model

(ILM):
ln Y=Lð Þsti ¼ δ2 ∑
S

m¼1
Vsm ln Y=Lð Þmti þ α ln K=Lð Þsti þ β ln G=Lregion

� �
sti

þ γ ln Cð Þsti þ ξs þ εsti: ð7Þ

ILM indicates the possibility of a diffusion process (i.e. an event in one sector increases the likelihood of the same event
occurring in related sectors). If ILM is favored, the spillover in productivity comes directly from the productivity of other sectors,
whether that productivity is caused by capital, infrastructure or technology in the other sectors.
(C). H0
C:(θ1,θ2,θ3)'+δ(α,β,γ)'=0. When hypothesis C is correct, the restricted model is an inter-sectoral error model (IEM):
ln Y=Lð Þsti ¼ α ln K=Lð Þsti þ β ln G=Lregion
� �

sti þ γ ln Cð Þsti þ ξs þ φsti:

φsti ¼ ρ1

XS
m¼1

Vsmφmti þ εsti ð8Þ

where ρ is an inter-sectoral error coefficient to be estimated and φmti are the error terms for other sectors. IEM suggests the

presence of omitted explanatory variables. IEM specifies an inter-sectoral autoregressive process for the error term to account for the
inter-sectoral influence of unmeasured (or omitted) explanatory variables on productivity in the related sectors. If the error model is
preferred, the increase in productivity in one sector is transmitted from technology or other unmeasured residuals in the other sectors.
In Section 5, wewill test these hypotheses and compare the performance of models based on LM tests and LR tests for these hypotheses.

3.4. Counterpart: spatial Durbin model (SDM)

Using spatial econometrics to capture spatial externalities is not the aim of this paper, but the technique provides some useful
principles for uncovering the sectoral linkages. Elhorst (2010) presented test specifications for selecting among spatial panel data
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models. He discussed spatial error autocorrelation, the determination of the variance–covariance matrix, the determination of
goodness-of-fit measures and the best linear unbiased predictor. In spatial econometric models, the spatial weights contiguity
matrix has zeros on the main diagonal, and the values will be ‘0’ in positions where observational units are non-contiguous and ‘1’
in positions where neighboring units are contiguous. A clear exposition of the spatial econometric models can also be found in
Kalenkoski and Lacombe (2011).

Eq. (2) can be expressed in the form of the spatial Durbin model (SDM):
ln Y=Lð Þits ¼ δ2∑
N

j¼1
Wij ln Y=Lð Þjts þ α ln K=Lð Þits þ β ln G=Lregion

� �
its

þ γ lnCits

þθ4∑
N

j¼1
Wij ln K=Lð Þjts þ θ5∑

N

j¼1
Wij ln G=Lregion

� �
jts

þ θ6∑
N

j¼1
Wij lnCjts þ μ i þ λt þ εits

ð9Þ

δ2 is a spatial autoregressive coefficient. θ4, θ5 and θ6 are parameters. The subscript its stands for own region, and subscript
where
jts other regions. ln(Y/L)its, ln(K/L)its and ln(C)its are NTS×1 vectors of natural logarithms of industrial output per worker, fixed
assets per worker, and sectoral agglomeration index for sector s in province i in year t. ln(G/Lregion)its is an NTS×1 vector of natural
logarithms of infrastructure per worker in province i in year t.Wij is an N×N spatial matrix which denotes the connectivity of i-th
(row) and j-th (column) elements and is time independent, location-based and binary-continuity. Its elements are 1 for adjacent

neighbors and 0 otherwise.∑N
j¼1Wij ln Y=Lð Þjts,∑N

j¼1Wij ln K=Lð Þjts,∑N
j¼1Wij ln G=Lregion

� �
jts and∑N

j¼1Wij lnCjts refer to the averages

of these variables from neighboring areas. Including spatially lagged independent variables when the coefficients on these
variables are zero will not bias the estimates of the other parameters. μi is an unobserved temporally invariant effect, which is
included to capture spatial heterogeneity (i.e. spatial fixed effect or spatial random effect). λt is an unobserved spatially invariant
effect, which is included to capture time-period heterogeneity (i.e. time-period fixed effect or time-period random effect). εits is
an i. i.d(0,σ1

2) disturbance.
The SDM nests the spatial lag model (SLM) and the spatial error model (SEM) as special cases that arise when common factor

constraints are valid. When θ4=θ5=θ6=0, the SDM can be simplified to SLM. The first order SLMmodel of Eq. (2) can be written
as:
ln Y=Lð Þits ¼ δ2 ∑
N

j¼1
Wij ln Y=Lð Þjts þ α ln K=Lð Þits þ β ln G=Lregion

� �
its

þ γ ln Cð Þits þ μ i þ εits: ð10Þ
When (θ4,θ5,θ6)'+δ2(α,β,γ)'=0, SDM can be simplified to SEM. Adding a spatially correlated error structure into Eq. (2) gives
a spatial error model (SEM):
ln Y=Lð Þits ¼ α ln K=Lð Þits þ β ln G=Lregion
� �

its
þ γ lnCits þ μ i þ φits

φits ¼ ρ2

XN
j¼1

Wijφjts þ εits
ð11Þ

φits is the spatial error component, ρ2 is the spatial error coefficient and
XN
j¼1

Wijφjts is a spatial weighted error term. In SEM,
where

a random shock in a region affects productivity in that region and additionally impacts its neighboring regions through the spatial
transformation.

4. Data

The data covers the 1996–2007 period (12 years) and includes a total of 36 sectors (all manufacturing sectors) from 31
provinces of China. Data sources are summarized in Table 1.

Industrial output is adjusted by the ex-factory price index of industrial products by sector. Capital stock is adjusted by a price
index of investment in fixed assets by region. The spatial matrix derives from the map of China at the provincial level. The
economic matrix is derived from the sectoral transaction data in 1997, 2002 and 2005. Each of the 36 industrial sectors generates
output to satisfy the final demand by other sectors. Each of the 36 sectors is both a buyer of inputs from and a supplier of output to
other sectors (see Appendix A).

The infrastructure series is constructed from investments in transport, telecommunications (post, radio, TV, Internet, etc.),
utilities (electricity, gas, water, environmental hygiene), and social infrastructure (public works, scientific research, and
environment protection). Infrastructure has been deflated into a constant price by the price index for investment in fixed assets
by region. The accumulation begins in 1949 when the data are first available. The perpetual inventory method was used. That is
G= It+Gt−1(1−d), where t is the time period. It denotes infrastructure investment in the current period, Gt−1 is the
accumulated infrastructure in province i in the previous period, and d denotes the depreciation rate. A depreciation rate of 5% was
assumed (see evidence in Zhao & Hong, 2004).

We use sector-level data in each province to deal with both spatial econometrics and sectoral econometrics. The spatial
regression includes spatial and time fixed effects to control for unobserved characteristics of regions. The intersectoral regression



Table 1
Data explanation.

Variable Definition Source

Y Industrial output (RMB billion) for sector s in region i drcne, cei
K Capital stock (RMB billion) in sector s in region i drcne, cei
L Labor force (10 thousand) in sector s in region i drcne, cei
Lregion labor in all sectors in a region drcne, cei
G Accumulated infrastructure (RMB billion) in a region drcne, cei
N Number of firms in sector s in region i drcne, cei
C Sectoral agglomeration measure calculated
Csi Variable value for sector s in region i cei
Cs Variable value for sector s in all regions Calculated
Cni Variable value for all sectors in region i cei
Cn Variable value for all sectors in all regions Calculated

Notes: cei is the abbreviation for China Economic Information Network; drcne is the abbreviation for Development Research Center
Information Network;missing data is complemented by data from China Statistical Yearbooks at the provincial level.
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includes sectoral and time fixed effects to control for unobserved characteristics of sectors and time that might bias a simpler
cross-sectional specification.
5. Estimates of economic distance

This section tests Eq. (3) against hypotheses A, B and C. If hypothesis A is correct, we should use a conventional panel data
model, without interaction among sectors. If hypothesis B is accepted, we should select ILM. If hypothesis C is accepted, IEM is the
best model. If hypotheses A, B and C are all rejected, IDM outperforms the others.
Table 2
Conventional model, inter-sectoral lag model, inter-sectoral error model and inter-sectoral Durbin model.

Eq. (3). Dependent variable: industrial output per worker ln(Y/L)

Without inter-sectoral interaction effects With inter-sectoral interaction effects

Pooled
OLS
(1)

Inter-sectoral
fixed effects
(2)

Time fixed
effects
(3)

Inter-sectoral and
time fixed effects
(4)

Sectoral and time
fixed effects
(5)

Sectoral and time fixed
effects bias-corrected
(6)

Random sectoral
effects, fixed time
effects
(7)

Intercept 0.83a

ln(K/L)sti 0.55a 0.65a 0.45a 0.50a 0.51a

(41.61)
0.51a

(41.92)
0.51a

(41.64)
ln(G/Lregion)sti 0.28a 0.26a 0.17a 0.16a 0.11a

(7.86)
0.11a

(7.95)
0.11a

(7.85)
ln Csti 0.05a 0.08a 0.00a 0.03a 0.01c

(1.62)
0.01c

(1.63)
0.01
(1.60)

∑S
m¼1Vsm ln Y=Lð Þmti 0.08a

(11.74)
0.09a

(8.27)
−0.03a

(11.74)
∑S

m¼1Vsm ln K=Lð Þmti −0.02
(0.70)

−0.01
(−0.68)

0.02
(0.68)

∑S
m¼1Vsm ln G=Lregion

� �
mti 0.04a

(9.15)
0.05a

(8.59)
0.07a

(9.14)
∑S

m¼1Vsm lnCmti 0.05a

(3.32)
0.04a

(3.17)
0.05a

(3.33)
φ 0.08a

σ2 1.42 1.14 0.75 0.49 0.61 0.60 0.61
R2 0.29 0.32 0.22 0.24 0.75 0.76 0.36
Corr^2 0.33 0.33 0.31
LR-lag 3412.68a 4152.82a 871.35a 977.87a 400.53a 333.71a

rob. LM-lag 3547.70a 4202.83a 1035.75a 1070.20a

Wald-lag 387.05a 452.46a 100.46a

LR-error 89.85a 153.89a 19.99a 9.82a 46.76a 11.81a

rob. LM-error 224.86a 203.90a 184.40a 102.14a

Wald-error 45.79a 42.49a 69.73a

Hausman 157.96a

LR 1818.03a 3484.05a

a Significant at 1%.
b Significant at 5%.
c Significant at 10%.
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5.1. Hypothesis A (non-inter-sectoral models vs. inter-sectoral models)

Result 1. From LR and LM tests, H0
A has to be rejected. The inference based on conventional (non-inter-sectoral) regressions may

generate an endogeneity bias since it omits spillover created during inter-sectoral transactions.

To test whether the interdependencies among sectors influence productivity, we perform LR and LM tests with the null
hypotheses H0

A:δ=θ1=θ2=θ3=0 on Eq. (3).
ln Y=Lð Þsti ¼ δ∑
S

m¼1
Vsm ln Y=Lð Þmti þ α ln K=Lð Þsti þ β ln G=Lregion

� �
sti

þ γ lnCsti

þθ1∑
S

m¼1
Vsm ln K=Lð Þmti þ θ2∑

S

m¼1
Vsm ln G=Lregion

� �
mti

þ θ3∑
S

m¼1
Vsm lnCmti þ ξs þ λt þ εsti

ð3Þ
Hypothesis A implies that a non-inter-sectoral model as Eq. (2) is the best model and that productivity is not influenced by
intersectoral interaction. Different versions of Eq. (2) are reported in Columns 1 through 4 of Table 2. The selection of models
using LM and LR tests is conceptualized by Baltagi, Egger, and Pfaffermayr (2006). The results in Column 2 (LR test 1818.03, with
36 degrees of freedom, pb0.01) indicate that the null hypothesis that the inter-sectoral fixed effects are jointly insignificant must
be rejected. The results in Column 3 suggest that the null hypothesis that the time fixed effects are jointly insignificant must be
rejected (LR 3484.05, with 372 degrees of freedom, pb0.01). Therefore, inter-sectoral panel models have to be used in order to
tackle bias and to generate consistent estimates.

5.2. Hypothesis B (ILM VS. IDM) and hypothesis C (IEM VS. IDM)

Result 2. From Wald and LR tests, H0
B and H0

C have to be rejected. IDM is considered to be more robust than ILM and IEM.

The 5th–7th columns of Table 2 present results from fitting different versions of Eq. (3). By imposing hypothesis B and
hypothesis C, we can compare inter-sectoral models (ILM, IEM and IDM), and compare fixed effect models and random effects
models. The 5th column gives the results when using the direct approach, which will yield an inconsistent parameter. Column 6
gives unbiased coefficients when controlling for unobserved time-invariant inter-sectoral heterogeneity. Column 7 reports the
results when μi is treated as a random variable rather than as a set of fixed effects.

Beginning with Column 5, we apply the common factor test and impose the theoretical constraint H0
B:θ1=θ2=θ3=0 on

Eq. (3). The results (Wald-lag 387.05, with 3 degrees of freedom [df], pb0.01; or LR-lag 400.53, 3 df, pb0.01) indicate that the
hypothesis that the inter-sectoral Durbin model (IDM) can be simplified to the inter-sectoral lag model (ILM) must be rejected.

By the same token, we use Wald-error and LR-error to test the theoretical constraint H0
C:(θ1,θ2,θ3)'+δ(α,β,γ)'=0 on Eq. (3).

The results (Wald-error: 45.79, 3 df, pb0.01; LR-error: 46.76, 3 df, pb0.01) indicate that the hypothesis that the inter-sectoral
Durbin model can be simplified to the inter-sectoral error model (IEM) must be rejected. The rejection of the two null hypotheses
implies that IDM constitutes a better representation of inter-sectoral dependence than ILM or IEM.

5.3. Selection between random effects and fixed effects

Result 3. Hausman test and φ test prove that fixed effects are preferred to random effects.

Column 7 of Table 2 shows Hausman test and φ value (φ2 in Baltagi, 2005) which are measures of random effects. Random
effects allow the estimation of time—invariant endogenous variables. However, estimators provided by random effects
specification might be similar to those obtained with a fixed effects specification. The Hausman test (157.96.04, with 7 degrees of
freedom [df], pb0.01) indicates that the random effects do not greatly differ from fixed effects. Another way to test the random
effects model against the fixed effects model is to estimate the φ value, which measures the weight attached to the cross-sectional
component of the data. The small φ value 0.08 with pb0.01 leads us to accept fixed effects.

5.4. Productivity spillover

Result 4. The inter-sectoral linkages shorten the economic distances among sectors and are an important channel through which
growth in a sector can boost aggregate economic growth in the rest of an economy.

Inter-sectoral spillover arises from changes in the independent variables that result in benefits accruing to other sectors.
Above-mentioned subsections indicate that the coefficients in Column 6 of Table 2, “sectoral and time fixed effects bias-corrected”,
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are most consistent and should be used to analyze the pivotal role played by inter-sectoral linkages. The inter-sectoral lagged
dependent variable ∑S

m¼1Vsm ln Y=Lð Þmti is positive and significant (0.09), which implies the presence of inter-sectoral
dependence: labor productivity in a sector is associated with labor productivity in related sectors. As stated in Section 2.1., the
productivity-enhancing effects taking place through inter-sectoral linkages may come from cheaper inputs, more funds,
external knowledge, new economic norms, or higher labor quality. Our findings are broadly consistent with Paz's (2012) result
that inter-sectoral productivity spillover accounts for 70% of the increase in productivity. Our findings are also in line with the
result from Moretti (2004) that productivity spillover is stronger across plants that are ‘close’ in both the geographic and the
technological senses. Another example is a study by the European Commission (2007), in which the strongest inter-sectoral
linkages are displayed in energy, food and textiles.

Y-axis of Fig. 1 is the coefficients on productivity spillover from other sectors∑S
m¼1Vsm ln Y=Lð Þmti to each sector, which is listed

in Column 3 of Table 3. The x-axis is the rank in value of economic distance, which is measured by a sensitivity-of-dispersion
index. This indexmeasures the increase in the production of sector s, driven by a unit increase in the final demand for all sectors in
the national economic system, and can be interpreted as a measure of forward linkage. The higher the power of dispersion, the
smaller is the rank and distance. A linear fitted line is superimposed. The slope (standard error) of the fitted line is −0.01 (0.00),
R2 is 0.36. Fig. 1 shows that productivity spillover and economic distance move in opposite directions. This finding is supported
by, among others, Moretti (2004) and Greenstone et al. (2010).
5.5. Infrastructure spillover

Result 5. Spillover effect of infrastructure, which is omitted in the non-spatial panel regression, takes place through intersectoral
linkages.

The direct impact includes the feedback effects that arise as a result of impacts passing through related sectors, and back to the
typical sector itself. Since the elasticity of infrastructure per region ln(G/Lregion) in the non-inter-sectoral model (reported in Column
4 of Table 2) is 0.16, the elasticity of ln(G/Lregion) (reported in Column 6 of Table 2) is 0.11, and the direct effect of ln(G/Lregion)
(reported in Column 1 of Table 4) is 0.10, the feedback of ln(G/Lregion) is −0.01, and the elasticity of ln(G/Lregion) in the
non-inter-sectoral model is overestimated by 0.06 or 60% of the direct effect. Given that infrastructure generates direct impact, it is
reassuring to see that at the margin infrastructure fosters economic growth.

The indirect impact captures the influence among sectors which do not directly conflate with each other. The indirect impact
of infrastructure per region ln(G /Lregion) reported in Column 2 of Table 4 is 0.09, which is very close to its direct impact 0.10. The
ratio of the indirect effect to the direct effect in the inter-sectoral Durbin model is 90% for ln(G /Lregion). If infrastructure per region
shared by one sector changes, the result is a change in not only the productivity of this sector, but also productivity in related
sectors. The ratio of the productivity change in its related sectors to the productivity change in the sector itself is 1 to 1.1 in the
Fig. 1. The spillover of productivity in Chinese sectors by distance.



Table 3
The spillover of productivity in Chinese sectors by distance.

Sector Distance rank ∑S
m¼1Vsm ln Y=Lð Þmti

Medicines 1 0.10c

Smelting and pressing of ferrous metals 2 0.13c

Artwork and supply of electric and heat power 3 0.13c

Textile 4 0.11a

Non-metallic mineral products 5 0.12
Extraction of petroleum and natural gas 6 0.07c

Smelting and pressing of non-ferrous metals 7 0.05
Communication equipment, computers 8 0.04
General purpose machinery 9 0.05c

Petroleum, coking, processing of nuclear fuel 10 0.06
Mining and washing of coal 11 0.10
Paper and paper products 12 0.08c

Metal products 13 0.04c

Measuring and cultural instruments 14 0.09c

Transport equipment 15 0.06
Electrical machinery 16 0.08
Rubber 17 0.04a

Mining and processing of non-ferrous metal ores 18 0.01
Special purpose machinery 19 0.04
Leather, fur, feather and related products 20 0.02
Timber, manufacture of wood, bamboo 21 0.09c

Processing of food from agricultural products 22 0.01
Mining and processing of ferrous metal ores 23 0.07c

Mining and processing of nonmetal ores 24 0.04
Plastics 25 0.06c

Furniture 26 0.05
Printing, reproduction of recording media 27 0.07b

Textile wearing apparel, footwear and caps 28 0.04c

Chemical fibers 29 0.05
Food 30 0.05
Production and supply of water 31 0.01
Raw chemical material and chemical products 32 0.05c

Tobacco 33 0.05
Beverages 34 0.01c

Production and supply of gas 35 0.06c

Articles for culture, education and sport 36 0.03c

a Significant at 1%.
b Significant at 5%.
c Significant at 10%.
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case of ln(G /Lregion). The change in related sectors moves in the same direction. To the degree that sectoral transactions are
nationally mobile and connected, infrastructure shared by one sector, through its effects on production cost and business
environment, may have important impacts on resource allocation and economic growth in other sectors. This sectoral multiplier
effect usually happens during the process of industrialization (Park, 1989). Due to the existence of linkages, key sectors lead the
national economy as a whole (Hirschman, 1958). Here we complement Eberts and McMillen's (1999) finding that one of the
external sources of productivity is infrastructure.

The infrastructure shared by other sectors∑S
m¼1Vsm ln G=Lregion

� �
mti in Column 6 of Table 2 is 0.05 and significant. It is possible

that sector s in one region is less developed than its related sectors in other regions where local governmental investment on
Table 4
Direct impact VS indirect impact of intersectoral model (Eq. (6)).

Explanatory variables Sectoral and time fixed effects bias-corrected

Direct effect
(1)

Indirect effect
(2)

Total effect
(3)

ln(K/L) 0.51a

(41.85)
−0.01a

(3.93)
0.50a

(25.73)
ln(G/Lregion) 0.10a

(7.17)
0.09a

(7.56)
0.19a

(14.85)
lnC 0.02c

(1.67)
0.02a

(2.89)
0.04a

(3.17)

a Significant at 1%.
b Significant at 5%.
c Significant at 10%.
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technological infrastructure facilitates technology development and linkages (Dahlman, 2007). As sector s employs intermediate
goods in the process of production of the final goods from its related sectors, technological progress can be transferred from its
related sectors and economic ties become more important than geographic ties. This result is somewhat in line with an earlier
theory by Dembour & Wauthy (2009) that spatial externalities and the public nature of infrastructure make the firms less
sensitive to their physical location.

To conclude, the contribution of inter-sectoral spillover stems not only from its direct impact of capital and infrastructure, but
more importantly from extensive indirect effects of infrastructure on various sectors.
5.6. Sectoral agglomeration

Result 6. The contribution of sectoral agglomeration to productivity is low. This might be because of agglomeration diseconomies,
which can be reduced partially by positive infrastructure spillover among sectors.

Since the elasticity of sectoral agglomeration C in the non-inter-sectoral model (reported in Column 4 of Table 2) is 0.03, the
elasticity of sectoral agglomeration C in the two-way fixed effects inter-sectoral Durbin model (reported in Column 6 of Table 2) is
0.01, and the direct effect of agglomeration (reported in Column 1 of Table 4) is 0.02, the feedback effect of lnC is −0.01, and the
overestimated elasticity of lnC in the non-inter-sectoral model is 0.01 or 50% of the direct effect. These results indicate that the
inter-sectoral Durbin model is able to add some interesting insights on the patterns of productivity growth across sectors. Our
finding is supported by the result in Martinez et al. (2007) that doubling employment density raises average labor productivity in
the industrial sector by between 3 and 5%.

In Column 2 of Table 4, the indirect impact of sectoral agglomeration lnC is 0.02. The ratio of the indirect effect to the direct
effect in the inter-sectoral Durbin model is 100% for lnC. If the agglomeration degree of one sector changes, the result is a change
in not only the sectoral productivity of this sector, but also the sectoral productivity in the related sectors. The ratio of the
productivity change in its neighboring areas to the productivity change in the region itself is 1 to 1 in the case of lnC. Theoretically,
the indirect effect should be smaller than the direct effect. However, other scholars have also found the indirect impact surpasses
the direct impact. In Lesage (2008), the indirect impact of population density (0.1021) is larger than its direct impact (0.0031),
and the indirect impact of in-migration (0.2319) is larger than its direct impact (0.1331). In Pijnenburg and Kholodilin (2011), the
indirect impact of physical capital (0.31) is larger than its direct impact (0.13).

Considering the statistically significant and negative coefficient of ∑S
m¼1Vsm lnCmti in Column 6 of Table 2, it is reasonable to

assume that infrastructure and knowledge spillover offset agglomeration diseconomies through inter-sectoral linkages, as shown
in Fig. 2. Agglomeration diseconomies such as congestion, pollution and over-competition increase cost, reduce market
opportunities and deter investment. Due to these negative effects, locational proximity becomes less important than economic
cooperation among sectors. An increasing body of literature in sectoral agglomeration suggests that linked sectors do not totally
relocate from one location to another (e.g., Kranich, 2011). The negative effects of agglomeration is offset by positive effect and
infrastructure spillover. For example, investments in wastewater infrastructure can reduce pollution; infrastructure investment
on transportation sectors can reduce cost associated with congestion and make transportation networks greener; infrastructure
investment on ICT sectors allows firms to access to foreign market, thus relieving competition in the domestic market.
5.7. Other

The inter-sectoral lagged independent variable∑S
m¼1Vsm ln K=Lð Þmti in Column 6 of Table 2 is negative and insignificant (−0.01).

In some previous studies (e.g. Elhorst & Zigova, 2011), a negative and insignificant lagged independent variable is interpreted as lack
of cross-fertilization effects across nearby units.
agglomeration of 
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cooperation 
among sectors
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Fig. 2. Agglomeration and linkages.
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The indirect impact of ln(K /L) reported in Column 2 of Table 4 is −0.01 and not statistically different from 0. The result is
consistent with the studies of Lesage & Fischer (2008), who found the indirect impact of physical capital on the income level of a
typical region is −0.02, that the indirect impact of income is −0.3774 and that a 1% increase in the initial level of income of all
other regions would decrease the income level of a typical region by 0.37%.

6. Estimates of spatial distance

For comparison with inter-sectoral models, spatial models are estimated in this section. The 1st–4th columns of Table 5
disclose whether non-spatial panel data models are better than spatial models. The results in Column 2 (LR test: 3021.21, with 31
degrees of freedom, pb0.01) indicate that the null hypothesis that the spatial fixed effects are jointly insignificant must be
rejected. The null hypothesis that the time fixed effects are jointly insignificant must be rejected (LR 1469.33, with 432 degrees of
freedom, pb0.01). In a word, non-spatial models must be rejected.

Columns 5, 6, and 7 of Table 5 help us to select the best model among the spatial Durbin model, the spatial lag model and the
spatial error model, and to choose between random effects and fixed effects. Column 5 gives the results when using the direct
approach, which yields an inconsistent parameter. Wald-lag, LM-lag, Wald-error and LM-error results indicate that both the
spatial error model (SEM) and the spatial lag model (SLM) must be rejected in favor of the spatial Durbin model.

Some cases using spatial methods find the Durbin model is not always dominant over a lag model and an error model.
Kalenkoski and Lacombe (2011) created a model which incorporates SDM, SLM and SEM, and used the LR test to prove that SDM
can be simplified to SLM in the analysis of minimumwages and teen employment. Glass, Kenjegalieva, and Sickles (2012) pointed
out that SEM better captures spatial dependence than SDM and SLM with regard to disaggregated data.

Column 6 gives unbiased coefficients when controlling for unobserved time-invariant spatial heterogeneity. Column 7 reports
the results when μi is treated as a random variable rather than as a set of fixed effects. The Hausman test result and φ value in
Column 7 imply that random effects are rejected in favor of fixed effects. Therefore, we should only adopt the coefficients in
Column 6.

In Column 2 of Table 6, the indirect effect of infrastructure is negative. This might be because that infrastructure makes a
region more attractive to firms than other regions, exerting negative influence on other regions. This result contrasts somewhat
Table 5
Conventional model, spatial lag model, spatial error model and spatial Durbin model.

Eq. (9): dependent variable: industrial output per worker ln(Y/L)its

Without spatial interaction effects With spatial interaction effects

Pooled
OLS
(1)

SPATIAL fixed
effects
(2)

Time fixed
effects
(3)

Spatial and time
fixed effects
(4)

Spatial and time
fixed effects
(5)

Spatial and time fixed
effects bias-corrected
(6)

Random spatial effects,
fixed time effects
(7)

Intercept 1.06a

ln(K/L)its 0.57a 0.51a 0.68a 0.58a 0.57a

(69.47)
0.57a

(68.32)
0.57a

(69.44)
ln(G/Lregion)its 0.20a 0.29a 0.18a 0.27a 0.25a

(31.80)
0.25a

(31.36)
0.25a

(31.86)
ln Cits 0.02a −0.01b 0.02b 0.03a 0.03a

(3.43)
0.03a

(3.39)
0.0298a

(3.41)
Wij ln(Y/L)jts 0.23a

(−3.56)
0.02c

(1.75)
−0.04a

(−3.25)
Wij ln(K/L)jts −0.01

(−0.65)
−0.02a

(−2.60)
−0.01
(−0.80)

Wij ln(G/Lregion)jts −0.05a

(−3.53)
−0.07a

(−4.53)
−0.06a

(−3.80)
Wij ln Cjts 0.00

(0.15)
0.00
(0.05)

0.00
(0.13)

φ 0.06a

σ^2 1.64 0.89 1.36 0.63 0.82 0.85 0.83
R^2 0.33 0.30 0.36 0.34 0.67 0.67 0.62
Corr^2 0.36 0.36 0.37
LM-lag 97.57a 358.29a 0.88a 6.57a 14.57a 14.57a

rob. LM-lag 331.63a 650.19a 9.83a 7.31a

Wald-lag 13.33a 29.52a 15.69a

LM-error 45.93a 40.12a 13.56a 1.29a 28.84a 28.84a

rob. LM-error 280.00a 332.02a 22.51a 2.03a

Wald-error 28.60a 25.98a 31.03a

Hausman 667.04a

LR 3021.21a 1469.33a

a Significant at 1%.
b Significant at 5%.
c Significant at 10%.



Table 6
Direct impact VS indirect impact of spatial model.

Explanatory variables Spatial and time fixed effects bias-corrected

Direct effect
(1)

Indirect effect
(2)

Total effect
(3)

ln(K/L) 0.57a

(66.52)
−0.02b

(2.04)
0.55a

(28.26)
ln(G/Lregion) 0.25a

(31.41)
−0.06a

(−4.22)
0.18a

(10.79)
lnC 0.02a

(3.39)
0.00

(0.05)
0.03c

(1.53)

a Significant at 1%.
b Significant at 5%.
c Significant at 10%.
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with an earlier theory by Dembour and Wauthy (2009) that spatial externalities and the public nature of infrastructure make the
firms less sensitive to the physical location.

The coefficient of spatial distance ∑N
j¼1Wij ln Y=Lð Þjts is 0.02 in Table 5, while the coefficient of intersectoral distance

∑S
m¼1Vsm ln Y=Lð Þmti is 0.09 in Table 2. Our results confirm the result by Moretti (2004) that spillover among sectors that are

economically close is larger than spillover among sectors that are economically distant.
7. Conclusion

This paper adopts a novel method to explore how key sectors can fuel productivity growth in other sectors through
inter-sectoral spillover. Specifically, economic distance, which is represented by supplier and customer linkages, is integrated
with a spatial Durbin model in measuring productivity spillover. The inter-sectoral spillover is further dissected into the
indirect effect which captures interdependencies among sectors, and the direct effect which encompasses the feedback effects
from other sectors to a typical sector (Table 4). The model departs from the literature because spatial econometric models
mainly consider geographic concentration of sectors, and omit links between geographically distant but economically close
sectors.

Our major findings can be briefly summarized as follows. First, the productivity for any sector is not only determined by
production factors (such as capital) in that sector, but also is conditional on other linked sectors. With product as a carrier of
innovation, the input–output dependencies transfer knowledge among sectors, so that sectors can accelerate and deepen
their innovation process. Along with knowledge spillover, factor demand linkages among sectors are likely to amplify the
effect of cost reduction, pecuniary externalities, the standardization of rules, and the improvement of labor quality. Economic
distance is negatively correlated with productivity spillover, and is more important than spatial distance in transmitting
productivity spillover. As an attempt to make use of productivity spillover among sectors, many countries have adopted the
policy of pushing forward the development of pillar sectors, such as mining, energy and ICT. Our findings shed light on the
puzzle of whether productivity spillover varies as a function of economic distance (see evidence in Greenstone et al., 2010).
Our result also sheds light on why supplier and customer linkages are the strong Marshallian forces (see evidence in Ellison et
al., 2010).

Second, investment in public capital generates strong and positive spillover effects on both the level of per capita income and
growth rates. Infrastructure promotes sectoral factor mobility, leads to specialization and enlarges production possibility
frontiers. Infrastructure such as the information highway and transportation increases the connections among sectors. In turn,
with linkages, the policy of investing limited public capital in key sectors promotes the development of related sectors and
improves systemic competitiveness.

Third, the sectoral agglomeration degree exhibits low output elasticity. This is best explained in terms of agglomeration
diseconomies. Local competition fosters the rapid adoption of technologies and the economic scale of a firm's geographical
location enhances its productivity. However, the magnitude of the productivity spillover depends weakly on the geographic
proximity of sectors. Besides, there exist sectoral agglomeration diseconomies, which can be partly offset by the benefit brought
by linkages and infrastructure.
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Appendix A. Sectoral matrix

This approach is supported by Greenstone et al. (2010) who prove that transactions among industries can represent economic
distance and agglomeration spillovers. The calculation can be expressed:
Vij ¼

dij

∑
i
dij

þ dij

∑
j
dij

2
; ∑

i
dij≠0;∑

j
dij≠0

e row index, j is the column index. dij is an element of the transaction matrix, ∑
i
dij is the column sum of intermediate

d and the input that sector i uses from other sectors in its production process.∑d is the row sum of intermediate demand

i is th
deman

j
ij

and the material sector i provides to other sectors. The matrix Vij is the economic distance matrix and represents how each sector
is woven into the structure of the economy. The exercise that is most closely related to ours is European Commission (2007),
which uses a similar method to measure the relationship between sectors. But the European Commission (2007) ignores
intermediate transactions that score below 10%.

The steps are as follows:

Step 1. Categorize intermediate producers into S industries according to the ‘Chinese Statistic Yearbook’ and ‘National Economic
Industrial Classification’.

Step 2. Make an S×Smatrix V, (in the paper, S=36). The columns in the matrix reveal the quantity of product each industry buys
from other sectors.

Step 3. Divide sector's shares of intermediate uses by the sector's total intermediate outputs to obtain dij

∑
i
dij

. For instance, 13.62%

of total intermediate inputs of the Textile industry come from Rubber products (backward linkages effect).
Step 4. Divide sector's shares of intermediate uses by the sector's total intermediate inputs to obtain dij

∑
j
dij

. For instance, 50.64% of

total intermediate outputs of the Rubber industry are delivered to the Textile industry (forward linkages effect)
Step 5. Average the two figures obtained from step 3 and step 4. In this case, the flow index is 32.13%

One could object to our methodology by arguing that a transaction matrix cannot replace a spatial matrix. Yet, such a criticism
is not valid. First, there is no endogeneity problem.We do not use the transactionmatrix in the current year to make the economic
matrix. The inter-sectoral transaction matrices are refined based on data for three periods, each period covering 3 to 5 years, so
that each element of the matrices is not determined by any variables in a particular year.

Second, a transaction matrix is able to encapsulate as much information as a spatial matrix, such as ‘economic distances’ and
economic proximity. A spatial matrix depicts the proximity and geographic distribution of spatial units. Its values disclose
pair-wise distances of the observations to each other. Similarly, the inter-sectoral transaction table describes sectoral interactions
where labor, capital, goods or services are readily moveable among sectors. Its values represent the interaction of sectors with
other sectors. The larger the value a sector has, the more of its products are purchased by other sectors, and the larger is the
mutual influence between it and other sectors.

Third, neighboring relationships should be extended from geographic neighbors to economic neighbors. Technology and
material flows contained in sectoral interactions provide the very foundation of commodity market equilibria. Sectoral interaction
brings about economic spillovers and innovation diffusion (Park, 2004; Malerba, Mancusi, & Montobbio, 2007). Ignoring sectoral
linkages means ignoring one of the main sources of productivity growth.

Appendix B. 31 provinces in China

Table 7. 31 provinces in China.
No Province

1 Beijing
2 Tianjin
3 Hebei
4 Shanxi
5 Inner Mongolia
6 Liaoning
7 Jilin
8 Heilongjiang
9 Shanghai
10 Jiangsu
11 Zhejiang



(continued)

No Province

12 Anhui
13 Fujian
14 Jiangxi
15 Shandong
16 Henan
17 Hubei
18 Hunan
19 Guangdong
20 Guangxi
21 Hainan
22 Chongqing
23 Sichuan
24 Guizhou
25 Yunnan
26 Tibet
27 Shaanxi
28 Gansu
29 Qinghai
30 Ningxia
31 Xinjiang
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