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Abstract

In this paper we propose a nonparametric kernel-based model specification test that can be used

when the regression model contains both discrete and continuous regressors. We employ discrete

variable kernel functions and we smooth both the discrete and continuous regressors using least

squares cross-validation (CV) methods. The test statistic is shown to have an asymptotic normal null

distribution. We also prove the validity of using the wild bootstrap method to approximate the null

distribution of the test statistic, the bootstrap being our preferred method for obtaining the null

distribution in practice. Simulations show that the proposed test has significant power advantages

over conventional kernel tests which rely upon frequency-based nonparametric estimators that

require sample splitting to handle the presence of discrete regressors.
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1. Introduction

The demand for consistent model specification tests has given rise to a rich literature on
the subject. Bierens (1982, 1990) and Eubank and Spiegelman (1990) consider the problem
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of testing for correct specification of parametric regression models, Robinson (1989, 1991)
considers testing parametric and semiparametric regression models with time series data,
Eubank and Hart (1992), Hong and White (1995), and de Jong (1996) propose series-based
tests for parametric regression models, while Härdle and Mammen (1993) suggest using the
wild bootstrap to better approximate the finite-sample distribution of a kernel test for
parametric regression models. More recently, Fan and Li (2000) discuss the relationship
between smoothing and nonsmoothing tests, and show that smoothing tests are more powerful
than nonsmoothing tests for high frequency alternatives, while Horowitz and Spokoiny (2001)
propose an adaptive rate-optimal test for regression models and suggest using several different
smoothing parameters to compute a kernel-based test in order to ensure that the test has good
power against both the low and high frequency alternatives.1 Most of this literature relies upon
the application of semiparametric and nonparametric methods for detecting relevant structure
that has inadvertently been omitted from a parametric model.

Kernel methods constitute one of the most popular approaches towards both
nonparametric estimation and the construction of consistent model specification tests.
However, to the best of our knowledge, existing kernel-based tests are limited to situations
involving continuous regressors only. This is unfortunate because data in the social
sciences frequently contains discrete regressors such as family size, gender, choices made by
economic agents, and so forth. Consistent model specification tests that are directly
applicable in the presence of discrete regressors would clearly be of value to applied
researchers.

It is widely known that one can readily generalize existing kernel-based tests to admit
discrete regressors by using a conventional frequency estimation method that splits the
sample into subsets (‘cells’). However, when using this frequency approach in finite-sample
applications, there may not be enough observations remaining in each cell to produce
reliable nonparametric estimates which has the undesirable effect of a commensurate loss
in finite-sample efficiency. It is therefore expected that frequency-based procedures would
suffer from low power in the presence of discrete regressors due to such sample splitting.
However, this need not be the case if one were also to smooth the discrete regressors as is
suggested in this paper.

Bierens (1983, 1987) and Ahmad and Cerrito (1994) studied the problem of nonparametric
estimation of regression functions in the presence of mixed discrete and continuous data, and
both works feature the use of kernel smoothing for discrete regressors. However, Bierens did
not consider data driven methods of smoothing parameter selection. Though Ahmad and
Cerrito suggested the use of cross-validation (CV) methods, they did not derive theoretical
results such as rates of convergence of the CV smoothing parameters for the mixed regressor
case. Recently, Hall et al. (2004, 2005), Li and Racine (2004), and Racine and Li (2004) have
analyzed the nonparametric estimation of conditional density and regression functions
involving mixed discrete and continuous regressors where CV methods were used to choose
smoothing parameters, and they derived the rates of convergence of the CV smoothing
parameters to their optimal benchmark values along with the asymptotic distributions of the
resulting estimators. Moreover, Hall et al. (2005) have shown that the CV method has the
1Wooldridge (1992) and Yatchew (1992) are two early papers on the construction of consistent model

specification tests using nonparametric methods. See Andrews (1997), Bierens and Ploberger (1997), Donald

(1997), and Ait-Sahalia et al. (2001) and the references therein for recent developments in consistent model

specification testing.
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rather amazing ability to automatically remove ‘irrelevant regressors’ by oversmoothing such
regressors, a property not shared by other smoothing parameter selection rules (e.g., plug-in
methods). We have found that, for empirical applications involving economic data, irrelevant
regressors are surprisingly common. Li and Racine (2006) have shown in addition that, for a
variety of empirical data sets (e.g., U.S. patent data, crop yield data, female labor force
participation data, marketing data, medical treatment data, etc.), smoothing discrete regressors
often leads to substantially better out-of-sample predictions than those generated from
conventional sample splitting nonparametric methods or commonly used parametric models.
The fact that nonparametric methods can outperform common parametric models simply
underscores the fact that common parametric models are often misspecified which itself argues
for the development of reliable consistent model specification tests that can handle the mix of
discrete and continuous data often present in applied settings.
In this paper we show that the superior performance of the CV nonparametric estimator

in mixed data settings carries over to the model specification test setting. We propose a
kernel-based test that does not use sample splitting in finite-sample settings building on
results found in Racine and Li (2004).2 We use least squares CV methods for selecting the
smoothing parameters for both the discrete and the continuous regressors in the proposed
kernel-based test. We demonstrate that the proposed test is substantially more powerful
than frequency-based kernel tests in finite-sample settings in part because our approach
does not suffer from efficiency losses which arise from the use of sample splitting.
It should be mentioned that, though CV methods are optimal for regression function

estimation, they are not necessarily optimal for testing procedures. Indeed, some recent
literature (e.g., Bierens and Ploberger, 1997) has advocated basing tests on constant
bandwidths (i.e., bandwidths that do not shrink to zero as the sample size increases) which
can have better power for low frequency data generating processes (DGP) than tests based
upon shrinking bandwidths. On the other hand, Fan and Li (2001) clearly demonstrate
that tests based upon shrinking bandwidths may be more powerful for high frequency
DGPs. Horowitz and Spokoiny (1999) propose a general testing procedure that has good
power in the direction of both low and high frequency DGPs. However, when faced with a
mix of discrete and continuous data types, if the number of discrete cells is not very small
relative to the sample size, a non-smoothing (frequency method) testing approach may
have low power when few observations remain in each cell. In such situations, a smoothing
test (at least one that smooths over the discrete regressors) may be advantageous. Also,
using the same CV bandwidths for both estimation and testing can help researchers judge
findings arising from a visual inspection of the fitted data. Therefore, we view the CV-
based tests as complementary to non-smoothing tests.
2. Consistent tests with mixed discrete and continuous regressors

Before we present the proposed test statistic, we introduce some notation and briefly
discuss how one estimates a nonparametric regression function in the presence of mixed
discrete and continuous data.
2Racine and Li’s (2004) approach builds on the work of Aitchison and Aitken (1976) who proposed a novel

method for kernel density estimation with multivariate discrete data (see also Bowman, 1980; Hall, 1981; Hall and

Wand, 1988 for related work).



ARTICLE IN PRESS
C. Hsiao et al. / Journal of Econometrics 140 (2007) 802–826 805
2.1. Kernel estimation with mixed discrete and continuous regressors

We consider the case in which a subset of regressors are discrete and the remainder are
continuous. Although it is well known that one can use a nonparametric frequency method
to handle the presence of discrete regressors (theoretically), such an approach cannot be
used in practice if the number of discrete cells is large relative to the sample size, as this will
result in discrete cells containing insufficient data to meaningfully apply nonparametric
methods (as is often the case with economic data sets containing mixed data types).
Following the approach of Aitchison and Aitken (1976), we smooth the discrete regressors
to avoid this problem. We would like to alert readers who may be unfamiliar with this area
that there is an extensive literature on the kernel smoothing of discrete variables in
statistics (see Fahrmeir and Tutz, 1994; Grund and Hall, 1993; Hart, 1997; Scott, 1992;
Simonoff, 1996 and the references therein for further discussion).

Let xd
i denote a k � 1 vector of discrete regressors, and let xc

i 2 R
q denote the remaining

continuous regressors. We assume that some of the discrete regressors have a natural
ordering, examples of which would include preference orderings (like, indifference, dislike),
health conditions (excellent, good, poor) and so forth. Let ~xd

i denote a k1 � 1 vector (say,
the first k1 components of xd

i , 0pk1pk) of discrete regressors that have a natural ordering
(0pk1pk), and let x̄d

i denote the remaining k2 ¼ k � k1 discrete regressors that do not
have a natural ordering. We use xd

is to denote the sth component of xd
i (s ¼ 1; . . . ; k).

For an unordered regressor, we use a variation on Aitchison and Aitken’s (1976) kernel
function defined by

l̄ðx̄d
is; x̄

d
jsÞ ¼

1 if x̄d
is ¼ x̄d

js;

ls otherwise;

(
(2.1)

where ls 2 ½0; 1� is the smoothing parameter. Note that ls ¼ 0 leads to an indicator
function, and ls ¼ 1 gives a uniform weight function. In this latter case, the x̄d

t regressor
will be completely smoothed out (automatically removed as it will not affect the
nonparametric estimation result).

For an ordered regressor, we suggest using the following kernel:

~lð ~xd
is; ~x

d
js; lsÞ ¼

1 if ~xd
is ¼ ~xd

js;

l
j ~xd

is
� ~xd

js
j

s if ~xd
isa ~xd

js:

8<
: (2.2)

Again, when ls ¼ 0 (ls 2 ½0; 1�), lð ~xd
it; ~x

d
jt; ls ¼ 0Þ becomes an indicator function, and

when ls ¼ 1, lð ~xd
it; ~x

d
jt; ls ¼ 1Þ ¼ 1 is a uniform weight function.3

Let 1ðAÞ denote an indicator function which assumes the value 1 if A occurs and 0
otherwise. Combining (2.2) and (2.1), we obtain the product kernel function given by

Lðxd
i ;x

d
j ; lÞ ¼

Yk1

s¼1

l
j ~xd

is
� ~xd

js
j

s

" # Yk

s¼k1þ1

l
1�1ðx̄d

is
¼x̄d

js
Þ

s

" #
. (2.3)
3Although we do not cover the infinite support discrete variable case theoretically, in practice, infinite support

discrete variables are likely to be ordered discrete variables, so one can use the kernel function introduced in Eq.

(2.2) to handle the presence of infinite support discrete variables.
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We will require a leave-one-out kernel estimator of gðxiÞ given by

ĝ�iðxiÞ ¼ n�1
Xn

j¼1;jai

yjLl;ijW h;ij=f̂ �iðxiÞ, (2.4)

where Ll;ij ¼ Lðxd
i ;x

d
j ; lÞ, W h;ij ¼

Qq
s¼1 h�1s wðxc

is � xc
js=hsÞ is a product kernel function for

the continuous regressor xc (e.g., Gaussian, Epanechnikov etc.), hs is the smoothing
parameter associated with xc

is, and

f̂ �iðxiÞ ¼ n�1
Xn

j¼1;jai

Ll;ijW h;ij (2.5)

is the leave-one-out kernel estimator of f ðxiÞ (f ðxÞ is the density function of x ¼ ðxc;xdÞ).
We choose ðh; lÞ ¼ ðh1; . . . ; hq; l1; . . . ; lrÞ by minimizing the following least squares CV

function

CV ðh; lÞ ¼
1

n

Xn

i¼1

½yi � ĝ�iðxiÞ�
2Mðxc

i Þ, (2.6)

where ĝ�iðxiÞ is the leave-one-out kernel estimator defined in (2.4) and Mð�Þ is a weight
function having compact support. The use of a compactly supported weight function
ensures that CV ðh; lÞ is finite asymptotically and also mitigates boundary bias problems
(e.g., Hall et al., 2005). Let

Hn ¼ ðh1; . . . ; hqÞ 2 R
q
þjn
�ð1��Þp

Yq

s¼1

hspb��; n�cohsonc; s ¼ 1; . . . ; q

( )
. (2.7)

We assume that ðh1; . . . ; hqÞ 2 Hn. This condition basically assume that each hs does not
converge to 0, or to 1, too fast, and that nh1 . . . hq !1. The minimization of the CV
objective function (2.6) is done over ðh1; . . . ; hq; l1; . . . ; lrÞ 2 Hn � ½0; 1�

r. Hall et al. (2005)
show that when a continuous (discrete) regressor, say xc

s (x
d
s ), is irrelevant in the sense that

xc
is is independent of yi, then the CV selected smoothing parameter, say ĥs, will diverge to
þ1 (i.e., Pðĥs4CÞ ! 1 for all C40). Similarly, if xd

s is an irrelevant regressor, then
l̂s ! 1 in probability. Therefore, irrelevant regressors can be automatically (asymptoti-
cally) smoothed out. For expositional simplicity, in the remaining part of this paper, we
will assume that the regressors are relevant ones, or equivalently, one can presume that the
irrelevant regressors are already detected by the CV method and removed from the
regression model.
We use ðĥ1; . . . ; ĥq; l̂1; . . . ; l̂rÞ to denote the CV choices of ðh; lÞ that minimize (2.6).

Racine and Li (2004) and Hall et al. (2005) have derived the rate of convergence of the CV
smoothing parameters to their (non-stochastic) optimal benchmark values. More
specifically, defining h0

s ¼ a0
s n�1=ð4þqÞ and l0s ¼ b0

s n�2=ð4þqÞ, where a0
s is a positive constant

and b0
s is a non-negative constant,4 Racine and Li (2004) (assuming all regressors are

relevant) show that

ðĥs � h0
s Þ=h0

s ¼ Opðn
��=ð4þqÞÞ for s ¼ 1; . . . ; q,
4h0
s (s ¼ 1; . . . ; q) and l0s (s ¼ 1; . . . ; r) minimize the leading term of the non-stochastic objective function

E½CV ðh; lÞ� (see Hall et al., 2005 for details).



ARTICLE IN PRESS
C. Hsiao et al. / Journal of Econometrics 140 (2007) 802–826 807
and

l̂s � l0s ¼ Opðn
�dÞ for s ¼ 1; . . . ; r, (2.8)

where � ¼ minfq=2; 2g and d ¼ minf1=2; 4=ð4þ qÞg.

Note that (2.8) implies that ĥs ¼ Opðh
0
s Þ ¼ Opðn

�1=ð4þqÞÞ and l̂s ¼ Opðl
0
s Þ ¼ Opðn

�2=ð4þqÞÞ.

The bias of the nonparametric estimator is of order Opð
Pq

s¼1ðh
0
s Þ

2
þ
Pr

s¼1l
0
s Þ, and the

variance is of order Opððnh0
1 . . . h

0
qÞ
�1
Þ. The leading terms h0

s and l0s are obtained by

balancing the variance and the bias (squared). Moreover, (2.8) gives the rates of
convergence of the CV smoothing parameters to their optimal benchmark values, which
can be used to derive the asymptotic distribution of the CV-based test proposed in this
paper. However, if one considers the smoothing parameter to be an index and treats the
test statistic as a stochastic process, one can readily establish the asymptotic distribution of
the test statistic using tightness/stochastic equicontinuity arguments which hold under
quite weak conditions (e.g., Mammen, 1992; Ichimura, 2000).5

From a statistical point of view, smoothing the discrete regressors may introduce
some finite-sample bias, but at the same time it will reduce the finite-sample variance.
The CV selection of l can be interpreted as a way of minimizing the finite-sample
mean square error (MSE). Therefore, the reduction in variance more than offsets the
increase in (squared) bias, and, as a result, the finite-sample MSE may be reduced
substantially. The simulation results presented in Racine and Li (2004) reveal that the
nonparametric estimator of gðxÞ based on CV bandwidth selection ðh1; . . . ; hq; l1; . . . ; lrÞ

performs much better than a conventional frequency estimator (which corresponds to
ls ¼ 0) because the former does not rely on sample splitting in finite-sample applications.
Based on this intuition, we expect that the new kernel test outlined in the next subsection,
which uses CV for choosing ðh1; . . . ; hq; l1; . . . ; lrÞ, will be more powerful than a
conventional kernel test that uses ls ¼ 0. This intuition is confirmed in simulations
reported in Section 3.

2.2. A consistent kernel based test

We are interested in testing the null hypothesis that a parametric model is correctly
specified, which we state as

H0 : P½EðyijxiÞ ¼ mðxi;bÞ� ¼ 1 for some b 2 B, (2.9)

where mð�; �Þ is a known function with b being a p� 1 vector of unknown
parameters, where B is a compact subset in Rp. The alternative hypothesis is the negation
of H0, i.e.,

H1 : P½EðyijxiÞ ¼ mðxi;bÞ�o1 for all b 2 B. (2.10)

We consider a test statistic that was independently proposed by Fan and Li
(1996) and Zheng (1996). The test statistic is based on I ¼

def
E½uiEðuijxiÞf ðxiÞ�, where

ui ¼ yi �mðxi; bÞ. Note that I ¼ Ef½EðuijxiÞ�
2f ðxiÞgX0, and I ¼ 0 if and only if H0

is true. Therefore, I serves as a valid candidate for testing H0. The sample analogue
5We are indebted to an anonymous referee who suggested this approach.
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of I is given by

In ¼ n�1
Xn

i¼1

ûiÊ�iðuijxiÞf̂ �iðxiÞ ¼ n�1
Xn

i¼1

ûi n�1
Xn

j¼1;jai

ûjW h;ijLl;ij

( )

¼ n�2
X

i

X
jai

ûiûjKg;ij, ð2:11Þ

where Kg;ij ¼W h;ijLl;ij (g ¼ ðh; lÞÞ, ûi ¼ yi �mðxi; b̂Þ is the parametric null model’s
residual, b̂ is a

ffiffiffi
n
p

-consistent estimator of b (under H0), and Ê�iðuijxiÞf̂ �iðxiÞ is a leave-
one-out kernel estimator of EðyijxiÞf ðxiÞ. In the case where we have only continuous
regressors xc

i and use a non-stochastic value of hs (hs ¼ oð1Þ and ðnh1 . . . hqÞ
�1
¼ oð1Þ), the

asymptotic null (normal) distribution of the In test is derived independently by Fan and Li
(1996) and Zheng (1996).
We advocate the use of CV methods for selecting the smoothing parameter vectors h and l.

We use Î n to denote our CV-based test, i.e, Î n is defined the same way as In given in (2.11) but
with ðh1; . . . ; hq; l1; . . . ; lrÞ replaced by the CV smoothing parameters ðĥ1; . . . ; ĥq; l̂1; . . . ; l̂rÞ.
The asymptotic distribution of our CV-based test is given in the next theorem.

Theorem 2.1. Under Assumptions (A1)–(A3) given in the appendix, we have
(i)
 nðĥ1 . . . ĥqÞ
1=2Î n ! Nð0;OÞ in distribution under H0, where O ¼ 2E½s4ðxiÞf ðxiÞ��

½
R

W 2ðvÞdv�.
A consistent estimator of O is given by

Ô ¼
2ðĥ1 . . . ĥqÞ

n2

X
i

X
jai

û2
i û2

j W 2
ĥ;ij

L2
l̂;ij
. (2.12)

Hence, we have ffiffiffiffip

(ii)
 Ĵn ¼

def
nðĥ1 . . . ĥ

q
Þ
1=2Î n= Ô! Nð0; 1Þ in distribution under H0.
The proof of Theorem 2.1 is given in the appendix.
It can be easily shown that the Ĵn test diverges to þ1 if H0 is false; thus it is a consistent

test. When there are only continuous regressors and with the use of non-stochastic
smoothing parameters h1; . . . ; hq, Zheng (1996) shows that the Ĵn test can detect Pitman
local alternatives that approach the null model at the rate ðnðh1 . . . hqÞ

1=2
Þ
�1=2. A sequence

of Pitman local alternatives is defined as:

H1L : P½EðyijxiÞ ¼ mðxi; bÞ þ dnlðxiÞ� ¼ 1 for some b 2 B.

Using similar derivations as in Zheng (1996), one can show that, if dn ¼

ðnðh0
1 . . . h

0
qÞ

1=2
Þ
�1=2, then

Ĵn ! Nðm; 1Þ in distribution,

where m ¼ E½l2ðxiÞf ðxiÞ�=
ffiffiffiffi
O
p

, O is defined in Theorem 2.1. Therefore, our CV based Ĵn test
can detect Pitman local alternatives that approach the null model at the rate
ðnðh0

1 . . . h
0
qÞ

1=2
Þ
�1=2
¼ n�ð4þq=2Þ=½2ð4þqÞ� (because h0

s�n�1=ð4þqÞ for s ¼ 1; . . . ; q). Hence, the
local power property of our smoothing Ĵn test is the same as the case considered by Zheng
(1996) with only continuous regressors, and it is also the same as the case with mixed
discrete and continuous regressors but where one uses the conventional frequency method
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to deal with the discrete regressors. Therefore, when all regressors are relevant, smoothing
the discrete regressors does not lead to power gains asymptotically. This is not surprising
because, asymptotically, ls ! 0 for all s ¼ 1; . . . ; q, and our smoothing test statistic and a
frequency based test statistic should be close to each other when n is sufficiently large. This
being said, however, in finite-sample applications, we expect the smoothing (discrete
regressors) test to be more powerful than a frequency-based test because, by smoothing
discrete regressors, we obtain more accurate estimates of the unknown conditional mean
function in the MSE sense. This conjecture is confirmed in simulations reported in Section 4.

It can be shown that the above local power property is the same for tests based upon other
nonparametric methods such as series-based tests (e.g., Hong and White, 1995) and k-
nearest-neighbor-based (k-nn) tests (e.g., Li, 2005). However, when some of the regressors
are in fact independent of the dependent variable (i.e., are irrelevant regressors), then the Ĵn

test will (asymptotically) automatically remove these regressors (e.g., Hall
et al., 2005). In this case, our smoothing test will be more powerful than a frequency
based test, both in finite-samples and asymptotically. The finite-sample power gains can be
substantial as evidenced by the simulations reported in Section 4. In the case of irrelevant
regressors, we also expect that our kernel CV-based test is more powerful than series-based
or k-nn-based tests because, even with data-driven methods for selecting the number of series
terms for a series-based test and for selecting k in k-nn-based tests, it is unclear how to
construct series based and k-nn based tests that can automatically remove irrelevant
regressors (asymptotically). We would like to emphasize here that the ability to remove
irrelevant continuous regressors xc is a special feature associated with the local constant
(Nadaraya–Watson) kernel method when coupled with the least squares CV method. If one
were to use local linear methods to estimate EðuijxiÞ (e.g., Liu et al., 2001), the irrelevant
continuous regressors cannot be smoothed out.6 That is, the local linear estimation method
coupled with the least squares CV method can detect linearity (in the continuous regressor
xc), but it cannot detect irrelevant regressors in xc (e.g., Li and Racine, 2004).

Theorem 2.1 is valid asymptotically. Numerous simulations have revealed that the
asymptotic normal approximation performs poorly in finite-sample settings for the Jn test
in the case with only continuous regressors (e.g., Li and Wang, 1998, also see Härdle and
Mammen, 1993 who employ a slightly different statistic). In fact, Li and Wang (1998) show
that the Ĵn test with only continuous regressors (and with non-stochastic h) approaches the
asymptotic standard normal distribution at the rate Opððh1 . . . hqÞ

1=2
Þ. When q ¼ 1 with

h�n�1=5, this yields the rate of Opðn
�1=10Þ which is an extremely slow rate of convergence.

Simulations reported in Li and Wang show substantial size distortions for the Ĵn test. Our
simulations for the CV test (Ĵn) also show that the asymptotic normal approximation does
not work well in finite-sample settings. Therefore, we suggest using bootstrap methods as a
viable alternative for approximating the finite-sample null distribution of the CV-based
test statistic Ĵn.

We advocate using the residual-based wild bootstrap method to approximate the null
distribution of Ĵn. The wild bootstrap error u�i is generated via a two point distribution
u�i ¼ ½ð1�

ffiffiffi
5
p
Þ=2�ûi with probability ð1þ

ffiffiffi
5
p
Þ=½2

ffiffiffi
5
p
�, and u�i ¼ ½ð1þ

ffiffiffi
5
p
Þ=2�ûi with

probability ð
ffiffiffi
5
p
� 1Þ=½2

ffiffiffi
5
p
�. From fu�i g

n
i¼1, we generate y�i ¼ mðxi; b̂Þ þ u�i for i ¼ 1; . . . ; n.

fxi; y�i g
n
i¼1 is called the ‘bootstrap sample’, and we use this bootstrap sample to obtain a

nonlinear least squares estimator of b (a least squares estimator if mðxi; bÞ ¼ x0ib, the prime
6The local linear CV method can detect and remove discrete irrelevant regressors (see Li and Racine, 2004).
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denoting transpose), while we let b̂� denote the resulting estimator. The bootstrap residual
is given by û�i ¼ y�i �mðxi; b̂

�
Þ. The bootstrap test statistic Ĵ�n is obtained from Ĵn with ûi

being replaced by û�i . Note that we use the same CV selected smoothing parameters ĥ and l̂
when computing the bootstrap statistics. That is, there is no need to rerun CV with the
bootstrap sample. Therefore, our bootstrap test is computationally quite simple. In
practice, we repeat the above steps a large number of times, say B ¼ 399 times, the
original test statistic Ĵn plus the B bootstrap test statistics give us the empirical distribution
of the bootstrap statistics, which is then used to approximate the finite-sample null
distribution of Ĵn.
We will use the concept of ‘convergence in distribution in probability’ (e.g., Li et al.,

2003) to study the asymptotic distribution of the bootstrap statistic Ĵ�n.
7 The next theorem

shows that the wild bootstrap works for the CV-based Ĵn test.

Theorem 2.2. Under Assumptions (A1)–(A3) given in the appendix, we have

sup
z2R

jPðĴ�npzjfxi; yig
n
i¼1Þ � FðzÞj ¼ opð1Þ, (2.13)

where Ĵ�n ¼ nðĥ1 . . . ĥqÞ
1=2Î

�

n=
ffiffiffiffiffiffi
Ô
�

p
, Fð�Þ is the cumulative distribution function of a standard

normal random variable.

The proof of Theorem 2.2 is given in the appendix.

3. Monte Carlo results

In this section we report some Monte Carlo simulations which were designed to examine
the finite-sample performance of the proposed bootstrap test. We adopt slightly different
notation in this section, and for clarity we will use xi to denote discrete regressors and zi to
denote continuous ones.
The null model that we consider is

DGP0: yi ¼ b0 þ xi1b1 þ xi2b2 þ zib3 þ z2i b4 þ ui, (3.1)

where, for t ¼ 1; 2, xit takes values in f0; 1g with Pðxti ¼ lÞ ¼ 0:5 for l ¼ 0; 1, zi�Nð0; 1Þ and
ui�Nð0; 1Þ. We choose ðb0;b1;b2;b3;b4Þ ¼ ð1; 1; 1; 1; 1Þ.
We consider three alternative models,

DGP1: yi ¼ b0 þ xi1b1 þ xi2b2 þ zib3 þ z2i b4 þ z3i b5 þ ui (3.2)

with b5 ¼ 0:25,

DGP2: yi ¼ b0 þ xi1b1 þ xi2b2 þ zib3 þ z2i b4 þ xi1zib5 þ x2iz
2
i b6 þ ui (3.3)

with b5 ¼ b6 ¼ 0:5, and

DGP3: yi ¼ b0 þ xi1b1 þ xi2b2 þ zib3 þ z2i b4 þ ðxi1 þ x2iÞ sinð4pziÞb6 þ ui (3.4)

with b6 ¼ 1:0.
7In the literature, the concept ‘convergence in distribution with probability one’ is used to describe the

asymptotic behavior of bootstrap tests. ‘Convergence in distribution in probability’ is much easier to establish

than ‘convergence in distribution with probability one’, and runs parallel to that of ‘convergence in probability’

and ‘convergence with probability one’.
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Compared with the null model DGP0, DGP1 is a low frequency alternative that has an
extra cubic term, DGP2 is a low frequency alternative that has additional interaction terms
between the continuous and discrete regressors, and DGP3 is a high frequency alternative.

For all simulations we use a Gaussian kernel for W ð�Þ, while the discrete regressor kernel
Lð�; �; �Þ is defined in (2.3). We consider samples of size n ¼ 100, 200, and 400. The number
of Monte Carlo replications is 1,000, and the empirical distribution of the test statistic is
computed from the 399 wild bootstrap test statistics generated under the null model. We
compare bootstrap size and power performance for four test statistics: (i) the proposed CV
based test Ĵn; (ii) a test using CV h and l ¼ 0; (iii) an ad hoc plug-in method for selecting h,
h ¼ zsdn�1=5, and l ¼ 0; and (iv) an ad hoc plug-in method for selecting both h and l with
h ¼ zsdn�1=5 and l ¼ xj;sdn�2=5, where zsd, xj;sd are the sample standard deviation of fzig

n
i¼1

and fxj;ig
n
i¼1 (j ¼ 1; 2), respectively. Both (ii) and (iii) are frequency-based tests and are

expected to be less powerful than our proposed test Ĵn. The ad hoc selection of h in (iii) is
suggested in Li and Wang (1998), while the choice of (iv) was suggested by an anonymous
referee. We compute empirical rejection frequencies for conventional significance levels
a ¼ 0:01, 0:05 and 0:10. The results are reported in Table 1. For brevity we will refer to: (i)
as the proposed CV test; (ii) as the CV h/frequency (with l ¼ 0) test; (iii) as the ad hoc h/
frequency test; and (iv) as the ad hoc h=l test. Tables 2 and 3 summarize the behavior of
the CV bandwidths for the discrete regressors.

Examining Table 1, we first note that all the (CV and the frequency) tests have empirical
sizes that do not differ significantly from their nominal sizes (entries associated with
DGP0). Next, for the low frequency alternative DGP1, all three tests are quite powerful,
with our proposed CV test and the ad hoc h=l test being the most powerful ones. To see
the power improvement due to smoothing the discrete regressors, we compare our CV test
Table 1

Empirical rejection frequencies for DGP0, DGP1, DGP2, and DGP3 (CV indicates cross-validation, AH means

ad hoc)

a CV l; h CV h, l ¼ 0 AH h, l ¼ 0 AH h, AH l

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

n ¼ 100

DGP0 0.010 0.048 0.100 0.007 0.034 0.087 0.005 0.033 0.076 0.002 0.027 0.080

DGP1 0.346 0.631 0.737 0.103 0.317 0.447 0.117 0.308 0.433 0.277 0.532 0.635

DGP2 0.193 0.473 0.585 0.155 0.417 0.570 0.181 0.443 0.573 0.200 0.455 0.560

DGP3 0.257 0.432 0.475 0.051 0.212 0.303 0.009 0.038 0.104 0.009 0.034 0.090

n ¼ 200

DGP0 0.004 0.047 0.105 0.009 0.060 0.115 0.005 0.061 0.107 0.009 0.045 0.112

DGP1 0.669 0.920 0.963 0.436 0.741 0.831 0.459 0.770 0.856 0.668 0.893 0.942

DGP2 0.543 0.794 0.884 0.506 0.797 0.874 0.550 0.835 0.902 0.578 0.813 0.887

DGP3 0.802 0.820 0.831 0.653 0.781 0.810 0.006 0.043 0.087 0.006 0.036 0.092

n ¼ 400

DGP0 0.013 0.060 0.110 0.009 0.061 0.107 0.007 0.056 0.114 0.005 0.056 0.111

DGP1 0.867 0.988 0.998 0.804 0.965 0.989 0.850 0.978 0.989 0.912 0.991 0.997

DGP2 0.948 0.991 0.995 0.932 0.993 0.998 0.958 0.996 0.997 0.956 0.988 0.993

DGP3 0.982 0.985 0.985 0.979 0.984 0.984 0.003 0.040 0.087 0.004 0.046 0.086
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Table 2

l̂1: Lower quartile, median, and upper quartile values of the CV smoothing parameters for the discrete regressors

DGP P25 P50 P75

n ¼ 100

DGP0 0.081 0.141 0.210

DGP1 0.086 0.150 0.226

DGP2 0.095 0.175 0.291

n ¼ 200

DGP0 0.070 0.106 0.145

DGP1 0.083 0.118 0.164

DGP2 0.088 0.133 0.185

n ¼ 400

DGP0 0.053 0.077 0.100

DGP1 0.063 0.089 0.116

DGP2 0.066 0.094 0.125

Table 3

l̂2: Lower quartile, median, and upper quartile values of the CV smoothing parameters for the discrete regressors

DGP P25 P50 P75

n ¼ 100

DGP0 0.084 0.143 0.210

DGP1 0.085 0.144 0.225

DGP2 0.091 0.170 0.282

n ¼ 200

DGP0 0.070 0.106 0.145

DGP1 0.083 0.118 0.164

DGP2 0.088 0.133 0.185

n ¼ 400

DGP0 0.054 0.076 0.099

DGP1 0.061 0.087 0.115

DGP2 0.066 0.094 0.121
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with the CV h/frequency (with l ¼ 0) test. Considering the case of n ¼ 100, at the 1% level
the power of our CV test is triple that of the CV h/frequency test, while at the 5% level the
power of the CV test is double that of the CV h/frequency test. This is consistent with our
theoretical analysis, as the frequency test splits the sample into four parts (x1 and x2 each
assume two values leading to four subsets or ‘cells’) when estimating the regression
function nonparametrically, which results in a loss of efficiency thereby leading to a loss of
power. Tables 2 and 3 reveal that l̂1 and l̂2 indeed converge to 0 as n!1; however, there
appears to be a fair bit of smoothing occurring across cells in finite-samples. The CV test
significantly dominates the frequency-based test in terms of its ability to detect departures
from the null in the presence of mixed discrete and continuous data.
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We observe that for DGP3, the ad hoc h/frequency (with l ¼ 0) test and the ad hoc h=l
test have almost no power at all for the sample sizes considered. This may at first glance
appear surprising, particularly in light of the good power demonstrated by the other two
tests. The intuition underlying the lack of power of the ad hoc h (and ad hoc l for test (iv))
test is in fact straightforward. The ad hoc bandwidth, h, is too large for the high frequency

alternative DGP3. That is, it dramatically oversmooths the data, thereby completely
obscuring the deviations from the null model present in the data (roughly 500% larger
than that selected via CV). In contrast, the CV method automatically selects a much
smaller value of h resulting in a more powerful test. Our proposed CV test is also
significantly more powerful than the CV h/frequency (with l ¼ 0) test, again due to the fact
that we do not split the sample into discrete cells in finite-sample applications.

The main purpose of this paper is to construct a consistent model specification test which
can be applied in the presence of mixed discrete and continuous data. However, even for the
case with only continuous regressors, our CV based test is new in the literature. With
continuous data it is known that, in order to obtain a kernel-based test having high power, one
should use a relatively large value of h for low frequency data and a relatively small value of h

with high frequency data (e.g., Fan and Li, 2000). Recently, Horowitz and Spokoiny (2001)
propose using a range of smoothing parameters in a kernel-based test to guard against low
power in the direction of either low or high frequency alternatives. Horowitz and Spokoiny
show that their proposed test is adaptive and rate optimal. The intuition behind the adaptive
test is that, when the DGP deviates from the null model and is a high frequency type, one
should use a relatively small h in order to have high power against a high frequency alternative.
On the other hand, if the DGP is a low frequency type, one should use a relatively large value
of h in the kernel test (see Fan and Li, 2000 for a more detailed discussion).

Our CV based test is not adaptive or rate optimal in the sense of Horowitz and
Spokoiny. However, it does have the ability to select a relatively large smoothing
parameter for low frequency data and a relatively small smoothing parameter for high
frequency data in finite-sample applications. Thus, even in the simple case with only
continuous regressors, our CV based test is expected to have much better finite-sample

power than a number of existing tests based on ad hoc smoothing parameter selection (e.g.,
Zheng, 1996; Li and Wang, 1998). Below we consider a DGP similar to the one found in
Horowitz and Spokoiny (2001) having only one continuous regressor. We show that our
CV smoothing parameter h tends to assume relatively large values for low frequency DGPs
and relatively small values for high frequency ones. Consequently, our test is more
powerful than a test which uses ad hoc bandwidth selection.

We consider a DGP similar to that used in Horowitz and Spokoiny (2001). The null
DGP is given by

DGP4: yi ¼ 1þ zi þ ui,

where zi�Nð0; 25Þ is truncated at its 5th and 95th percentiles,8 and where ui�Nð0; 4Þ. The
alternative models have the form

DGP5: yi ¼ 1þ zi þ ð5=tÞfðzi=tÞ þ ui,

where zi and ui are the same as in DGP4, fð�Þ is a standard normal density function, and
t ¼ 0:25 or 1. t ¼ 0:25 corresponds to a high frequency alternative, and t ¼ 1 corresponds
8Horowitz and Spokoiny (2001) consider a fixed set of fzig
n
i¼1. Here, we consider the case of random fzig

n
i¼1.
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Table 4

Empirical rejection frequencies for DGP4 and DGP5

Horowitz–Spokoiny ~Jn (ad hoc h) Ĵn CV-test

a ¼ 0:01 0.05 0.10 a ¼ 0:01 0.05 0.10 a ¼ 0:01 0:05 0:10

DGP4 (size) 0.013 0.055 0.108 0.013 0.055 0.109 0.015 0.060 0.112

DGP5 (t ¼ 0:25) 0.551 0.821 0.891 0.324 0.585 0.710 0.504 0.801 0.882

DGP5 (t ¼ 1) 0.460 0.685 0.779 0.406 0.638 0.760 0.498 0.728 0.818
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to a low frequency one. The sample size is n ¼ 100. For the adaptive test we first select
h ¼ f2:5; 3; 3:5; 4; 4:5g, the values used by Horowitz and Spokoiny in their simulation using
a similar DGP. Surprisingly, we find that the resulting adaptive test has lower power than
the CV test for both t ¼ 0:25 and 1. We then examine the values of h selected by the CV
test. For t ¼ 0:25, the median value of hCV (over 1,000 replications) is 0.551, and for t ¼ 1,
the median value of hCV is 0:956, both of which are less than the smallest h used in the
adaptive test. We therefore recompute the adaptive test using h ¼ f0:5; 1; 1:5; 2; 2:5g. The
resulting power of the adaptive test is now slightly better than the CV test for t ¼ 0:25.
This result suggests that it is important to choose the correct range for h in computing the
adaptive test, and that the CV method can be used as a guide to help identify the range of
h’s to be used for the adaptive test.
For the ad hoc h test we use a popular ad hoc rule to select h, h ¼ zsdn�1=5. We use ~Jn to

denote the ad hoc h test. The estimated size and power of the three tests for DGP4 and
DGP5 are reported in Table 2 below (the Ĵn and the ~Jn tests are based on a bootstrap
approximation of the null distribution).
From Table 4 we observe that both the CV-based test and the adaptive test are more

powerful than the ~Jn test. The ad hoc bandwidth selection rule ðh ¼ zsdn�1=5Þ ignores high
and low frequency features present in the data. For the low frequency alternative, our CV h

is, on average, twice as large as the h for the high frequency alternative. The simulation
results also show that our CV test, in the case with only continuous regressors, provides a
complement to the adaptive test of Horowitz and Spokoiny in finite-sample applications,
and it can help identify the ranges of h’s to be used when computing the adaptive test.
Moreover, in the case when there exist irrelevant regressors, our CV-based test can
(asymptotically) automatically remove the irrelevant regressors, while Horowitz and
Spokoiny’s test does not possess this property. Finally, our approach can also be applied
to the mixed discrete and continuous regressor case in a straightforward way. While one
can generalize the adaptive test to the mixed data type case by using the frequency
estimator to deal with the presence of discrete regressors, it will suffer finite-sample power
loss due to sample splitting (especially when there exist irrelevant discrete regressors). It
might be possible to generalize the adaptive test to cover the mixed regressor case by
smoothing the discrete regressors, however this extension seems quite challenging and lies
beyond the scope of the present paper.

3.1. Hypothesis testing in the presence of irrelevant regressors

We now examine the finite-sample performance of the test when there exist irrelevant
regressors by adding an irrelevant binary and an irrelevant continuous regressor to
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Table 5

Empirical rejection frequencies in the presence of irrelevant regressors ðn ¼ 400Þ

DGP CV l; h CV h, l ¼ 0 ad hoc h, l ¼ 0

a ¼ 0:01 0.05 0.10 a ¼ 0:01 0.05 0.10 a ¼ 0:01 0.05 0.10

DGP0 0.016 0.071 0.121 0.017 0.070 0.123 0.012 0.063 0.121

DGP1 1.000 1.000 1.000 0.894 0.960 0.979 0.642 0.793 0.858

DGP2 0.999 0.999 0.999 0.987 0.994 0.997 0.016 0.082 0.138

Table 6

l̂1, l̂2, l̂3: Lower quartile, median, and upper quartile values of the CV smoothing parameters for the discrete

regressors (relevant, n ¼ 400)

DGP l̂1 l̂2 l̂3

P25 P50 P75 P25 P50 P75 P25 P50 P75

DGP0 0.062 0.073 0.075 0.060 0.071 0.073 0.646 0.986 1.000

DGP1 0.062 0.078 0.103 0.056 0.080 0.105 0.642 0.982 1.000

DGP2 0.058 0.079 0.103 0.057 0.080 0.103 0.731 1.000 1.000
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DGP0–DGP2. That is, yi is still generated by DGP0–DGP2, but we overspecify the null
model and estimate a model for which yi is linear in ðx1i;x2i; x3i; zi; z2i ; z2iÞ, where x3i 2 f0; 1g
and z2i�Nð0; 1Þ are the irrelevant regressors. The test statistic involves nonparametric
kernel estimators having five regressors (e.g., Ê�iðuijx1i;x2i; x3i; zi; z2iÞ). The results of Hall
et al. (2005) imply that the smoothing parameters for the irrelevant regressors should
converge to their upper extremities (ls ! 1 and hs !1 as n!1 for irrelevant discrete
and continuous regressors xd

s and xc
s) so that these irrelevant regressors are effectively

removed.9 Empirical rejection frequencies are given in Table 5. As this setting involves
nonparametric regression with five regressors, we only conduct simulations with n ¼ 400, a
small sample size by nonparametric standards given the number of regressors involved.
Table 6 summarizes the behavior of the CV bandwidths for the discrete regressors.

The key feature highlighted by this simulation is the relative performance of the various
versions of the test. In particular, were one to use ad hoc plug-in rules or use the
conventional frequency approach ðl ¼ 0Þ with cross-validatory choices of h, the power of
the test would be dramatically reduced relative to the case in which all regressors are
relevant, while the proposed approach retains much of its power in either setting. This
arises due to the ability of CV to remove irrelevant regressors by oversmoothing the
irrelevant regressors through selecting large bandwidths for irrelevant regressors while
delivering optimal bandwidths for the relevant regressors. Table 6 reveals that bandwidths
for the relevant discrete regressors l̂1 and l̂2 are small (and are converging to 0 as n!1);
however, for the irrelevant regressor, l̂3 tends to assume values at or near its upper bound
value of 1, underscoring the ability of CV to remove irrelevant regressors by
oversmoothing.
9Hall and Wehrly (1992) observed a similar phenomenon with only continuous regressors.
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4. Testing for correct specification for wage equations

In this section, we examine the behavior of the proposed test relative to its frequency-
based counterpart, the latter being obtained by setting the smoothing parameters for the
discrete regressors equal to zero in the proposed test ðl ¼ 0Þ. In addition, we compute the
conventional frequency-based test when ad hoc plug-in methods are used to select the
bandwidths for the continuous regressors. We also investigate the ability of the proposed
test to help guide applied researchers in their search for data-consistent parametric models.
By way of example we offer a labor application and consider testing for correct

specification of a wage equation, the most popular being quadratic in age (see, for example,
Lanot and Walker, 1998). These models are often estimated at the industry level, and also
are estimated on sub-groups of data such as, say, male unionized high school graduates.
They are also frequently estimated using an additive dummy variable specification to
model the discrete data types. Data was obtained from the 2000 CPS-ORG data files
compiled by Hirsch and Macpherson which is a rich source of industry-level data.10

We consider a common specification incorporating additive dummy regressors for the
discrete regressors given by

logðW iÞ ¼ b0 þ b1F i þ b2Ei þ b3Ui þ b4Ai þ b5A
2
i þ �i, (4.1)

where W is hourly wage, F sex (Male ¼ 0, Female ¼ 1), E education (High School
Graduate ¼ 0, College Graduate ¼ 1), U union status11 (Non-union ¼ 0, Union ¼ 1), and
A age ð16pAp64Þ. All workers were full time employees. However, model (4.1) is
restrictive since it does not allow interaction terms among the discrete regressors and the
age variable. It is therefore unlikely that model (4.1) will be an adequate description of the
true relationship between the explanatory regressors and the dependent variable,
log(wage). This conjecture is confirmed by our specification test.
The full sample size for this data is 64,138 which is computationally costly for using our

CV-based test. Moreover, when we try a sample size larger than 2000, almost all tests reject
the null of a simple linear regression model. We treat this large sample as a population and
we know that the linear model is not true for this population. We then randomly selected a
sample size of 500, 1000 and 1500 to compare the power performance of different tests.
The purpose of this exercise is to show that the CV based smoothing test is more powerful
than frequency-based tests with empirical data. To conduct the test, 399 bootstrap
replications are used to obtain p-values. For the CV-based tests, the bandwidths are
selected via leave-one-out CV, and the search algorithm is restarted ten times from
different initial random values in an attempt to ensure that the search process does not
become ensnared in local minima.
We consider sample sizes of n ¼ 500 through 1500 in increments of 500 to examine the

test’s power properties. For a given model we conduct 21 tests, one for each of seven
industries for each of the three sample sizes considered. For this specification we also
10We are indebted to Barry Hirsch for his generous help and for providing access to these data.
11We recognize the potential endogeneity of wages and union status. Given the controversy surrounding

selectivity corrections in this setting, we ignore this issue and focus solely on functional form (see Freeman and

Medoff, 1984 for well-known ‘dismissals’ of selection models for estimating union wage differentials). However,

estimates of wage differentials generated from these ‘unadjusted’ wage equations are frequently reported and

compared to ‘adjusted’ differentials (selectivity-adjusted), so we present these simply as tests for correct

specification of unadjusted wage equations.



ARTICLE IN PRESS

Table 7

p-Values for testing correct specification of the quadratic model

Industry Sample size

500 1000 1500

Proposed CV Ĵn test

Construction 0.028 0.006 0.000

Manufacturing 0.106 0.000 0.000

Transportation/communication/public utilities 0.000 0.000 0.000

Wholesale/retail trade 0.833 0.000 0.000

Finance/insurance/real estate 0.056 0.009 0.000

Service 0.039 0.018 0.000

Professional/related services 0.004 0.007 0.004

CV h with l ¼ 0

Construction 0.879 0.074 0.004

Manufacturing 0.534 0.000 0.000

Transportation/communication/public utilities 0.008 0.005 0.000

Wholesale/retail trade 0.811 0.000 0.000

Finance/insurance/real estate 0.294 0.001 0.006

Service 0.099 0.302 0.005

Professional/related services 0.693 0.042 0.033

Ad hoc Plug-in h with l ¼ 0

Construction 0.887 0.024 0.007

Manufacturing 0.302 0.000 0.000

Transportation/communication/public utilities 0.008 0.585 0.014

Wholesale/retail trade 0.529 0.000 0.000

Finance/insurance/real estate 0.138 0.084 0.007

Service 0.474 0.836 0.050

Professional/related services 0.498 0.074 0.015
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generate results for the conventional frequency-based test and for the frequency-based test
using ad hoc plug-in bandwidth selection methods. Results are summarized in Table 7 in
the form of the empirical p-values for each test (using the wild bootstrap procedure to
approximate the null distribution of the tests).

First, we note that our proposed test appears to be more powerful than the conventional
frequency-based test (l ¼ 0). The p-values tabulated in Table 7 indicate that this quadratic
additive specification is rejected at all conventional levels by the proposed Ĵn for n ¼ 1; 000,
while it is also rejected by the other frequency-based tests when n ¼ 1500.

A popular alternative specification, based in part on the seminal work of Murphy and
Welch (1990), is quartic in age, given by

logðW iÞ ¼ b0 þ b1Fi þ b2Ei þ b3Ui þ b4Ai þ b5A2
i þ b6A3

i þ b7A
4
i þ �i. (4.2)

Results for the proposed Ĵn test are summarized12 in Table 8. While the quartic
specification is not rejected quite as frequently as the quadratic, it is evident that the
12We do not include results for the frequency-based tests listed in Table 7 for space considerations, but these

results are available from the authors upon request.
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Table 8

p-Values for testing correct specification of the quartic model

Industry Sample size

500 1000 1500

Construction 0.842 0.882 0.000

Manufacturing 0.806 0.000 0.000

Transportation/communication/public utilities 0.000 0.000 0.000

Wholesale/retail trade 0.814 0.000 0.000

Finance/insurance/real estate 0.528 0.002 0.000

Service 0.359 0.084 0.084

Professional/related services 0.919 0.012 0.005
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proposed test strongly suggests that neither (4.1) nor (4.2) appears to be appropriate for
the data at hand.
In principle, it is always possible to get a good statistical fit by adding higher order

polynomial terms in Ai. However, it is another matter altogether to render meaningful
economic interpretations of the coefficients of higher order polynomials in Ai. Moreover,
often a higher order polynomial equation will provide a good within-sample fit but will
yield disastrous post-sample predictions. As an alternative, we consider the specification of
a quadratic model with interaction among all regressors. Such a model not only provides
more flexibility but also is consistent with human capital theory, which predicts that
education, gender, union status, and experience all have an impact on one’s wage rate, not
just additively, but mutually reinforcing each other.
The results for testing the specification of a quadratic model with interaction among all

regressors is given in Table 9. The p-values reported in Table 9 indicate that, at any
conventional level for all industries but the manufacturing industry, we cannot reject the
null hypothesis of correct specification for the model with all interaction terms between the
dummy variables, Ai, and A2

i . It appears that by considering the interaction terms, a log
wage equation with a quadratic experience term not only produces a close approximation
to the underlying DGP, but is also sufficiently simple to provide an economically
meaningful interpretation of the data.
Parametric models involving the quadratic and quartic formulations often have linear

additive dummy variables for various attributes, as in the studies of union wage
differentials, sex-based discrimination and the like. Common parametric specifications
focus mainly on nonlinearity present in age while often maintaining linear additive dummy
variables for attributes. Using current industry-level data, our proposed specification
soundly rejects these two common parametric specifications. Our specification test
supports the alternative specification, which includes interaction terms between all
regressors found in the standard quadratic specification.
The application considered here suggests that, in parametric settings where there may be

an insufficient number of continuous regressors to capture the variation of a continuous
dependent variable, it may be more fruitful to focus on interaction terms rather than
focusing on potentially omitted higher-order polynomial terms in age. On the basis of
findings reported above, we would recommend that applied researchers include such
models in their list of candidate specifications.
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Table 9

p-Values for testing the specification with all the interaction terms

Industry Sample size

500 1000 1500

Construction 0.692 0.804 0.856

Manufacturing 0.029 0.074 0.181

Transportation/communication/public utilities 0.762 0.854 0.912

Wholesale/retail trade 0.829 0.825 0.848

Finance/insurance/real estate 0.747 0.829 0.852

Service 0.735 0.800 0.866

Professional/related services 0.826 0.801 0.887
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5. Concluding remarks

In this paper we propose using cross-validation (CV) methods for choosing smoothing
parameters when constructing a consistent kernel-based model specification test with both
discrete and continuous data. Simulations demonstrate that the proposed test enjoys a
substantial power advantage over frequency-based tests in the presence of discrete data.
This methodology can be applied to a number of other model diagnostic situations such as
nonparametric significance tests (omitted variable tests) or testing a semiparametric null
regression model with mixed discrete and continuous regressors.
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Appendix A. Proofs of Theorems 2.1 and 2.2

We first list the assumptions that will be used to prove Theorems 2.1 and 2.2.

Assumption A1. (i) ðyi;xiÞ, i ¼ 1; 2; . . . ; n, are independent and identically distributed as
ðy1;x1Þ. (ii) rmðx; :Þ and r2mðx; :Þ are continuous in xc and dominated by functions with
finite second moments, where rmðx; :Þ and r2mðx; :Þ are the p� 1 vector of first order
partial derivatives and the p� p matrix of second order partial derivatives of m with
respect to b respectively. (iii) y has finite fourth moment. gðxÞ, f ðxÞ, sðxÞ ¼ Eðu2

i jxi ¼ xÞ,
and m4ðxÞ ¼ Eðu4

i jxi ¼ xÞ all satisfy some Lipschitz type conditions: jHðxc þ v;xdÞ �

Hðxc;xdÞjpGðxc; xdÞkvk with E½G2ðxiÞ�o1 for all xd 2 D, where k:k is the Euclidean norm
and D is the domain of xd.
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Assumption A2. The univariate kernel function wð�Þ: Rq ! R is non-negative, bounded,
symmetric and compactly supported with

R
wðvÞdv ¼ 1, and

R
wðvÞkvk4 dvo1. Also, wð�Þ

satisfies a Lipschitz condition: jwðv0Þ � wðvÞjpGðvÞkv0 � vk with GðvÞ is bounded and
integrable. Further, wð0Þ4wðdÞ for all d40.

Assumption A3. The smoothing parameters ðh1; . . . ; hq; l1; . . . ; lrÞ 2 Hn � ½0; 1�
r, where Hn

is defined in (2.7).

Assumption A1 is quite mild, requiring only some smoothness (for the continuous
variables) and some moment conditions for the regression and density functions. Many
commonly used kernels (say, kernels with bounded range) satisfy condition A2.
Assumption A2 can be relaxed to allow for the Gaussian kernel, but we will not pursue
this generality in this paper. Assumption A3 requires that each hs does not converge to 0,
or to1, too fast. Therefore, we allow for the existence of irrelevant regressors. However,
by the result of Hall et al. (2005), we know that irrelevant regressors will be smoothed out
by the CV method. Therefore, we only need to deal with relevant regressors in deriving the
asymptotic distribution of our test statistic.
Because hs�n�1=ð4þqÞ for all s ¼ 1; . . . ; q and ls�n�2=ð4þqÞ for all s ¼ 1; . . . ; r, for

expositional simplicity, in the appendix we will assume that h1 ¼ � � � ¼ hq ¼ h and
l1 ¼ � � � ¼ lr ¼ l. Hence, ĥ1 ¼ � � � ¼ ĥq ¼ ĥ and l̂1 ¼ � � � ¼ l̂r ¼ l̂. We use h0 and l0
denote the non-stochastic smoothing parameters such that ĥ=h0 � 1 ¼ opð1Þ and l̂=l0 �
1 ¼ opð1Þ (e.g., Racine and Li, 2004).

Proof of Theorem 2.1. We first prove the case for a linear model, i.e., mðxi;bÞ ¼ x0ib. Using
ûi ¼ ui � x0iðb̂� bÞ we have (recall that g ¼ ðh; lÞ)

Î n ¼
1

n2ĥ
q

X
i

X
jai

uiujK ĝ;ij � 2
1

n2ĥ
q

X
i

X
jai

uix
0
jK ĝ;ij

" #
ðb̂� bÞ

þ ðb̂� bÞ0
1

n2ĥ
q

X
i

X
jai

xix
0
jK ĝ;ij

" #
ðb̂� bÞ

� I1n � 2I2nðb̂� bÞ þ ðb̂� bÞ0I3nðb̂� bÞ, ðA:1Þ

where the definition of I1n (l ¼ 1; 2; 3) should be apparent.

The proof will be done in two steps. In step one, we show that: (i) nh
q=2
0 I1nðh0; l0Þ !

Nð0;OÞ in distribution; (ii) I2nðh0; l0Þ ¼ Opðn
�1=2Þ; (iii) I3nðh0; l0Þ ¼ Opð1Þ; and (iv)

Ôðh0; l0Þ ¼ Oþ opð1Þ. These results together with b̂� b ¼ Opðn
�1=2Þ prove the result of

Theorem 2.1 for the case with ðh; lÞ ¼ ðh0; l0Þ.
In the second step we show that: (i) nĥ

q=2
I1nðĥ; l̂Þ � nh

1=2
0 I1nðh0; l0Þ ¼ opð1Þ; (ii)

I2nðĥ; l̂Þ � I jnðh0; l0Þ ¼ opðn
�1=2Þ; (iii) I3nðĥ; l̂Þ � I3nðh0; l0Þ ¼ opð1Þ; and (iv) Ôðĥ; l̂Þ�

Ôðh0; l0Þ ¼ opð1Þ. Steps one and two complete the proof of Theorem 2.1. &

Step one’s results are proved in Lemma A.1. Below we prove step two.

Proof of step two (i). nĥq=2I1nðĥ; l̂Þ � nh
1=2
0 I1nðh0; l0Þ ¼ opð1Þ.

Note that h0 ¼ a0n
�1=ðqþ4Þ, and l0 ¼ b0n

�2=ðqþ4Þ. Write ĥ ¼ ĉ1n
�1=ðqþ4Þ, and

l̂ ¼ ĉ2n
�2=ðqþ4Þ, and denote c0 ¼ ða0; b0Þ

0 and ĉ ¼ ðĉ1; ĉ2Þ
0. From ĥ=h0! 1 and l̂=l0! 1

(in probability), we know that kĉ� c0k ! 0 in probability.
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Let h ¼ c1n�1=ðqþ4Þ and l ¼ c2n
�2=ðqþ4Þ. Define AnðcÞ ¼ Anðc1; c2Þ ¼ nhq=2I1nðh; lÞ, and

BnðcÞ ¼ AnðcÞ � Anðc0Þ. Then Anð�Þ and Bnð�Þ are both stochastic processes indexed by c.
Then (i) becomes BnðĉÞ ¼ opð1Þ, i.e., we want to show that, for all �40

lim
n!1

Pr½jBnðĉÞjo�� ¼ 1. (A.2)

For d40, denote the d-ball centered at c0 by Cd ¼ fc : kc� c0kpdg. By Lemma A.2 we
know that Anð�Þ is tight. By the Arzela–Ascoli Theorem (see Theorem 8.2 of Billingsley,
1968, p. 55) we know that tightness implies the following stochastic equicontinuity
condition: for any �40, Z140, there exist a d (0odo1Þ and an n1, such that

Pr sup
kc0�ckod

jAnðc
0Þ � AnðcÞj4�

" #
oZ1 (A.3)

for all nXn1

Eq. (A.3) implies that

Pr jBnðĉÞj4�; ĉ 2 Cd½ �pPr sup
c2Cd

jBnðcÞj4�

" #
oZ1 (A.4)

for all nXn1.
Also, from ĉ! c0 in probability we know that for any Z240 and for the d given in

(A.4), there exists an n2 such that

Pr½ĉeCd� � Pr½kĉ� c0k4d�oZ2 (A.5)

for all nXn2.
Therefore,

Pr½jBnðĉÞj4�� ¼ Pr½jBnðĉÞj4�; ĉ 2 Cd� þ Pr½jBnðĉÞj4�; ĉeCd�

oZ1 þ Z2 ðA:6Þ

for all nXmaxfn1; n2g by (A.4) and (A.5), where we have also used the fact that
fjBnðĉÞj4�; ĉeCdg is a subset of fĉeCdg (if A is a subset of B, then PðAÞpPðBÞ).

Eq. (A.6) is equivalent to (A.2) because �, Z1 and Z2 can all be arbitrarily small. This
completes the proof of (i). &

Proof of step two (ii)–(iv). Proof of (ii). I2nðĥ; l̂Þ ¼ Opðn
�1=2Þ.

Write h ¼ c1n
�1=ðqþ4Þ and l ¼ c2n

�2=ðqþ4Þ. Then by using the same proof as Lemma A.2,
one can show that J2nðcÞ ¼

def ffiffiffi
n
p
½n�2

P
i

P
jai uix

0
jh
�qKg;ij� ¼ Opð1Þ for any c, and J2nðcÞ, as a

stochastic process (indexed by c), is tight under the sup-norm. The remaining arguments
are the same as in the proof of (i) above; one can show that J2nðĉÞ � J2nðc0Þ ¼ opðn

�1=2Þ.
Therefore, J2nðĉÞ ¼ OpðJ2nðc0ÞÞ ¼ Opðn

�1=2Þ by Lemma A.1(ii).
Proof of (iii). I3nðĉÞ ¼ Opð1Þ, and (iv): ÔðĉÞ � Ôðc0Þ ¼ opð1Þ.
Similarly, one can show that I3nðcÞ is tight, and that I3nðĉÞ ¼ I3nðc0Þ þ opð1Þ ¼ Opðn

�1Þ

because I3nðc0Þ ¼ Iðh0; l0Þ ¼ Opðn
�1Þ by Lemma A.1. The proof of (iv) follows the same

argument as (iii). &

Lemma A.1.
(i)
 nh
q=2
0 I1nðh0; l0Þ ! Nð0;OÞ in distribution,
(ii)
 I2nðh0; l0Þ ¼ Opðn
�1=2Þ,
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(iii)
 I3nðh0; l0Þ ¼ Opð1Þ, and
(iv)
 Ôðh0; l0Þ ¼ Oþ opð1Þ.
Proof of (i). I1nðh0; l0Þ ¼ ðn2h
q
0Þ
�1P

i

P
jai uiujW ðx

c
i � xc

j =h0ÞLðx
d
i ;x

d
j ; l0Þ is a second order

degenerate U-statistic; its asymptotic variance is ðn2h
q
0Þ
�1
fE½s2ðxiÞf ðxiÞ��

½
R

W 2ðvÞdv� þOðh2
0 þ l0Þg ¼ ðn2h

q
0Þ
�1
fOþ oð1Þg. We also need to check the conditions

for Hall’s (1984) Theorem 1 (a central limit theorem (CLT) for a degenerate U-statistic).
Define Hnðz1; z2Þ ¼ uiujKg0;ij , where Kg0;ij ¼W h0;ijLl0;ij , and Gðz1; z2Þ ¼ E½Hnðz1; z3Þ
Hnðz2; z3Þjz3�. Define W ij ¼ hqW h0;ij �W ððxc

i � xc
j Þ=h0Þ. Then it is easy to verify that

E½H2
nðzi; zjÞ� ¼ E½s2ðxiÞs2ðxjÞW

2
ijL

2
l0;ij � ¼ Oðh

�q
0 Þ,

E½H4
nðzi; zjÞ� ¼ E½s4ðxiÞs4ðxjÞW

4
h0;ij

L4
l0;ij� ¼ Oðh

�3q
0 Þ, and E½G2

nðzi; zjÞ� ¼ Oðh
�q
0 Þ. Hence,

E½G2
nðz1; z2Þ� þ n�1E½H4

nðz1; z2Þ�

fE½H2
nðz1; z2Þ�g

2
¼ Oðh

q
0 þ ðnh

q
0Þ
�1
Þ ¼ oð1Þ. (A.7)

Thus, by Hall’s (1984) Theorem 1 we have

nh
q=2
0 I1nðh0; l0Þ ! Nð0;OÞ in distribution: & (A.8)

Proof of (ii)–(iv). Straightforward calculations show that E½kI2nk
2� ¼ Oðn�1Þ and

E½kI3nk� ¼ Oð1Þ, which imply that I2n ¼ Opðn
�1=2Þ and I3n ¼ Opð1Þ. These together with

b̂� b ¼ Opðn
�1=2Þ imply that the last two terms at the right-hand side of Eq. (A.11) are

smaller that I1n, the first term, when h ¼ h0 and l ¼ l0.
Finally, it is easy to see that replacing û2

i (û2
j ) by u2

i (u2
j ) in Ôðh0; l0Þ yields the leading

term of Ô. Let this leading term be denoted Ô. Straightforward calculation shows that
EðÔÞ ¼ Oþ oð1Þ, and Ef½Ô�2g ¼ oð1Þ. Therefore, Ôðh0; l0Þ ¼ Ôþ opð1Þ ¼ Oþ opð1Þ.
For the general nonlinear regression case, we can prove the results by using the Taylor

expansion of mðxi; b̂Þ ¼ mðxi;bÞ þ rmðxi; bÞðb̂� bÞ þ ð1=2Þðb̂� bÞ0r2mðxi; ~bÞðb̂� bÞ,
where ~b is in the line segment between b̂ and b. Using the fact that b̂� b ¼ Opðn

�1=2Þ,
the proof carries though to the general case in a straightforward way. &

Lemma A.2. Let AnðcÞ ¼ nhq=2I1nðh; lÞ, where h ¼ c1n
�1=ðqþ4Þ, l ¼ c2n�2=ðqþ4Þ, c ¼ ðc1; c2Þ,

cj 2 ½Cj;1;Cj;2� with 0oCj;1oCj;2o1 ðj ¼ 1; 2Þ.
Then the stochastic process AnðcÞ indexed by c is tight under the sup-norm.

Proof. Let Kc;ij denote Kg;ij with h ¼ c1n1=ðqþ4Þ and l ¼ c2n�2=ðqþ4Þ. Then Kc;ij ¼

W ðX j � X i=c1n
�1=ðqþ4ÞÞLðXd

j ;X
d
i ; c2n

�2=ðqþ4ÞÞ. Also, letting d ¼ q=ð4þ qÞ, then hq
¼

cqn�q=ðqþ4Þ ¼ cqn�d. Note that h ¼ c1n
�d, and l ¼ c2n

�2d. Thus, h�q=2Kc;ij ¼ c
�q=2
1 n�d=2

W c1;ijLc2;ij. Also note that jLc0
2
;ij � Lc2;ijjpjðc02Þ

dxi ;xj � c
dxi ;xj

2 jpjc02 � c2j we have

ðh0Þ�q=2Kc0;ij � h�q=2Kc;ij

¼ nd=2fðc01Þ
�q=2W c0

1
;ijLc0

2
;ij � c

�q=2
1 W c1;ijLc2;ijg

¼ nd=2fðc01Þ
�q=2W c0

1
;ij ½Lc0

2
;ij � Lc2;ij� þ ½ðc

0
1Þ
�q=2W c0

1
;ij � c

�q=2
1 W c1;ij �Lc2;ijg

pD1 ðh
0
Þ
�q=2W c0

1
;ijjc
0
2 � c2j þ h�q=2G

xj � xi

h

� �
jc01 � c1j

n o
, ðA:9Þ
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where D140 is a finite constant. In the last equality we used jLc2;ijjp1 and Assumption
(A2). We also replaced one of the ðc01Þ

�q=2 by c
�q=2
1 , because c1; c01 2 ½C1;1;C1;2�, are all

bounded from above and below. The difference can be absorbed into D1.
Using (A.9), we have

Ef½Anðc
0Þ � AnðcÞ�

2g

¼
2ðn� 1Þ

n
E s2ðxiÞs2ðxjÞn

d 1

ðh0Þq=2
Kc0 ;ij �

1

hq=2
Kc;ij

" #28<
:

9=
;

p4D1E s2ðxiÞs2ðxjÞ ðh
0
Þ
�qW 2 xj � xi

h0

� �
jc02 � c2j

2 þ h�qG
xj � xi

h

� �
jc01 � c1j

2
h in o

¼ 4D1

Z
f ðxiÞ

2s4ðxiÞ

Z
W 2ðvÞdvþOðn�2dÞ

� �
ðc02 � c2Þ

2

�

þ

Z
GðvÞ2 dvþOðn�2dÞ

� �
ðc01 � c1Þ

2

�
pDkc0 � ck2, ðA:10Þ

where D is a finite positive constant, and the Oðn�2dÞ terms come from Oðh2
Þ and Oððh0Þ2Þ.

Therefore, Anð�Þ and Bnð�Þ are tight by Theorem 15.6 of Billingsley (1968, p. 128), or
Theorem 3.1 of Ossiander (1987). &

Proof of Theorem 2.2. The proof of Theorem 2.2 is almost identical to that of Theorem
2.1. We will only prove the linear null model case, as the general nonlinear regression
model case follows in a straightforward manner. Using û�i ¼ y�i � x0ib̂

�
¼ u�i � x0iðb̂

�
� b̂Þ,

b̂� � b̂ ¼ Opðn
�1=2Þ, and using arguments similar to the proof of Theorem 2.2, one can

show that

Î
�

n ¼
1

nðn� 1Þ

X
i

X
jai

u�i u�j K ĝ;ij � 2
1

nðn� 1Þ

X
i

X
jai

u�i x0jK ĝ;ij

" #
ðb̂� � b̂Þ

þ ðb̂� � b̂Þ0
1

nðn� 1Þ

X
i

X
jai

xix
0
jK ĝ;ij

" #
ðb̂� � b̂Þ

¼ I�1n � 2I2nðb̂
�
� b̂Þ þ ðb̂� � b̂Þ0I�3nðb̂

�
� b̂Þ. ðA:11Þ

The proof parallels that of the proof of Theorem 2.1. We will show that
(i)
 nĥ
q=2

I�1n=
ffiffiffiffiffiffi
Ô
�

p
jfxi; yig

n
i¼1! Nð0; 1Þ in distribution in probability,
(ii)
 I�2n ¼ Opðn
�1=2Þ,
(iii)
 I�3n ¼ Opð1Þ, and
(iv)
 Ô
�
¼ Ôþ o�pð1Þ, where An ¼ O�pð1Þ means that E�½jAnj

2� � E½jAnj
2jfxi; yig

n
i¼1� ¼ Opð1Þ

and that An ¼ o�pð�Þ is defined as E�½jAnj
2� ¼ opð1Þ.
We first prove (i). Using û�i ¼ u�i þ x0iðb̂� b̂�Þ and noting that b̂� b̂� ¼ O�pðn
�1=2Þ, it is

easy to show that I�1n ¼ U�n þO�pðn
�1Þ, where U�n ¼ 2=nðn� 1Þ

P
i

P
j4i u�i u�j W h0ðx

c
i�

xc
j =h0ÞLðx

d
i ;x

d
j ; l0Þ. Obviously, conditional on the random sample fxi; yig

n
i¼1, u�i are mean
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zero and mutually independent and have variance û2
i . Hence, nĥ

q=2
U�n is a degenerate

U-statistic with conditional variance 2ĥ
q
=½nðn� 1Þ�

P
i

P
jai û2

i û2
j W 2

ĥ
ðxc

i � xc
j =ĥÞLðxd

i ;

xd
j ; l̂Þ ¼ Ô. It is easy to check that E�ðÔ

�
Þ ¼ Ôþ opð1Þ, and var�ðÔ

�
Þ ¼ opð1Þ. Thus,

nĥ
q=2

U�n=
ffiffiffiffiffiffi
Ô
�

p
has mean zero and conditional variance 1þ opð1Þ.

To show that U�n has an asymptotic normal distribution conditional on the random
sample, we define U�n;ij ¼ 2=nðn� 1ÞH�nðz

�
i ; z
�
j Þ, where H�nðz

�
i ; z
�
j Þ ¼ u�i u�j K ĝ;ij. Then,

U�n ¼ 2=nðn� 1Þ
P

i

P
j4i H�nðz

�
i ; z
�
j Þ. We apply the CLT of de Jong (1987) for generalized

quadratic forms to derive the asymptotic distribution of U�njfxi; yig
n
i¼1. The reason for using

de Jong’s CLT instead of the one in Hall (1984) is that in the bootstrap world, the function
H�nðz

�
i ; z
�
j Þ depends on i and j, because z�i ¼ ðxi; y�i Þ. By de Jong (1987, Proposition 3.2) we

know that U�n=S�n ! Nð0; 1Þ in distribution in probability if G�I , G�II and G�IV are all opðS
�4
n Þ,

where S�2n ¼ E�½U�2n �; G�I ¼
P

i

P
j4i E

�½U�4n;ij �, G�II ¼
P

i

P
j4i

P
l4j4i ½E

�ðU�2n;ijU
�2
n;ilÞþ

E�ðU�2n;jiU
�2
n;jlÞ þ E�ðU�2n;liU

�2
n;ljÞ�, and G�IV ¼

1
2

	 
P
i

P
j4i

P
s

P
t4s E

�ðU�2n;isU
�2
n;sjU

�2
n;tiU

�2
n;jsÞ.

Now,

E�½H�2n ðz
�
i ; z
�
j Þ� ¼ E�½u�2i u�2j K2

ĝ;ij � ¼ K2
ĝ;ij û

2
i û2

j .

Hence,

S�2n ¼
4

n2ðn� 1Þ2

X
i

X
j4i

E�½Hnðz
�
i ; z
�
j Þ

2
� ¼

4

n2ðn� 1Þ2

X
i

X
j4i

K2
ĝ;ij û

2
i û2

j

¼
1

nðn� 1Þðĥ1 . . . ĥqÞ
Ô ¼ Opððĥ1 . . . ĥqÞn

2Þ.

Therefore,

1=S�2n ¼ Opðn
2ðĥ1 . . . ĥqÞÞ and 1=S�4n ¼ Opðn

4ðĥ1 . . . ĥqÞ
2
Þ.

Next, E�½H�4n ðz
�
i ; z
�
j Þ� ¼ cK4

ĝ;ij û
4
i û4

j , where c is a finite positive constant. Therefore,

G�I ¼
16

n4ðn� 1Þ4

X
i

X
j4i

E�½U�4n;ij � ¼
c16

n4ðn� 1Þ4

X
i

X
j4i

K4
ĝ;ij û

4
i û4

j

¼ Opðn
�6ðĥ1 . . . ĥqÞ

�3
Þ.

From the above calculation it should be apparent that the probability orders of G�I , G�II
and G�IV are solely determined by the factor of n’s and ðĥ1 . . . ĥpÞ’s through Kij;ĝ. Therefore,
tedious but straightforward calculations show that

G�II�n�8
X

i

X
j4i

X
s4j4i

½K2
ij;ĝK

2
is;ĝ þ K2

js;ĝK
2
ji;ĝ þ K2

si;ĝK
2
sj;ĝ� ¼ Opðn

�5ðĥ1 . . . ĥqÞ
�2
Þ,

G�IV�n�8
X

i

X
j4i

X
s

X
t4s

½Ksi;ĝKsj;ĝKti;ĝKtj;ĝ� ¼ Opðn
�4ðĥ1 . . . ĥqÞ

�1
Þ.

Therefore, G�k=S�4n ¼ opð1Þ for all k ¼ I; II; IV, and by de Jong’s (1987) CLT for
generalized quadratic forms, we know that

U�n=S�n ! Nð0; 1Þ in distribution in probability. (A.12)
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Next, it is easy to see that

Ô
�

n;ĝ ¼
2ðĥ1 . . . ĥqÞ

nðn� 1Þ

X
i

X
jai

û�2i û�2j K2
ĝ;ij

¼
2ðĥ1 . . . ĥqÞ

nðn� 1Þ

X
i

X
jai

û2
i û2

j K2
ĝ;ij þ o�pð1Þ

¼ Ôþ o�pð1Þ. ðA:13Þ

Eqs. (A.12), (A.13) and S�2n ¼ 1=nðn� 1Þĥ1 . . . ĥqÔ lead to

nðĥ1 . . . ĥqÞ
1=2U�n=

ffiffiffiffiffiffi
Ô
�

p
! Nð0; 1Þ in distribution in probability,

completing the proof of (i). &

Similarly, one can show that E�½kI�2nk
2� ¼ Opðn

�1Þ and E�½kI3nk� ¼ Opð1Þ. Hence, I�2n ¼

O�pðn
�1=2Þ and I�3n ¼ O�pð1Þ. Therefore, we conclude that nðĥ1 . . . ĥqÞ

1=2Î
�

n=
ffiffiffiffiffiffi
Ô
�

n

q
has the same

asymptotic distribution as that of nðĥ1 . . . ĥqÞ
1=2U�n=

ffiffiffiffiffiffiffiffi
Ô
�

n;ĝ

q
. Hence,

nðĥ1 . . . ĥqÞ
1=2Î

�

n=
ffiffiffiffiffiffiffiffiffi
V̂
�

n;ĝ

q
! Nð0; 1Þ in distribution in probability. (A.14)

Since Nð0; 1Þ is a continuous distribution, by Polyā’s Theorem (Bhattacharya and Rao,
1986), we know that (A.14) is equivalent to (2.13). This finishes the proof of Theorem 2.2.
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