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Abstract

This paper studies a new class of semiparametric dynamic panel data models, in which some
of the coefficients are allowed to depend on other informative variables and some of the regressors
can be endogenous. To estimate both parametric and nonparametric coefficients, a three-stage
estimation method is proposed. A nonparametric GMM is adopted to estimate all coefficients
firstly and an average method is used to obtain the root-N consistent estimator of parametric
coefficients. At the last stage, the estimator of varying coefficients is obtained by plugging
the parametric estimator into the model. The consistency and asymptotic normality of both
estimators are derived. Monte Carlo simulations verify the theoretical results and demonstrate

that our estimators work well even in a finite sample.
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1 Introduction

Dynamic panel data models have received a lot of attentions among both theoretical and empirical
economists since the seminal work of Balestra and Nerlove (1966). Based on the early work by
Anderson and Hsiao (1981, 1982), there exists a rich literature on using the generalized method
of moments (GMM) to estimate the dynamic panel data model and discuss the efficiency of the
estimation. For example, Holtz-Eakin, Newey and Rosen (1988) considered the estimation of
vector autoregressions with panel data, Arellano and Bond (1991), Arellano and Bover (1995),
Ahn and Schmidt (1995), Hahn (1997, 1999) and among others discussed how to utilize additional
instruments to improve the efficiency of GMM estimation. Dynamic panel data models have been
widely applied to various empirical studies as well. For example, Baltagi and Levin (1986) estimated
the dynamic demand for addictive commodities, Islam (1995) used dynamic panel data approach
to study growth empirics, and Park, Sickles and Simar (2007) employed dynamic panel data to
analyze the demand between city pairs for some airlines. More references can be found in Arellano
(2003), Hsiao (2003) and Baltagi (2005).

It is well known, however, that the aforementioned parametric dynamic panel data models are
unable to accommodate sufficient flexibility to catch nonlinear structure and suffer from the model
misspecification problem. To deal with this misspecification issue, various nonparametric or semi-
parametric static panel data models have been proposed. For example, Horowitz and Markatou
(1996), Li, Huang, Li and Fu (2002) and Su and Ullah (2006) studied semiparametric estimation
of a partially linear panel data model without including endogenous regressors. Hoover, Rice, Wu
and Yang (1998) considered a smoothing spline and a local polynomial estimation for time-varying
coefficient panel data models. Lin and Ying (2001) and Lin and Carroll (2001, 2006) examined the
semiparametric estimation of a panel data model with random effects. Henderson, Carroll and Li
(2008) considered a partially linear panel data model with fixed effects and proposed a consistent
estimator based on iterative backfitting procedures and an initial estimator. Finally, Qian and
Wang (2011) proposed a marginal integration method to estimate the nonparametric part in a
semiparametric panel data with unobserved individual effects.

In recent years, motivated by the increase in the empirical economic growth literature, many



studies have paid much attention to the dynamic panel data models. For example, Li and Stengos
(1996), Li and Ullah (1998) and Baltagi and Li (2002) considered semiparametric estimation of
partially linear dynamic panel data models using instrumental variable methods. Park, Sickles
and Simar (2007) focused on constructing a semiparametric efficient estimator in a dynamic panel
data model. They considered a linear dynamic panel data model assuming that the error terms
are generating from a normal distribution but specifying other parametric distributions nonpara-
metrically. An efficient estimator was established based on a stochastic expansion. However, they
ignored the endogenous problem in a dynamic panel data model by assuming all the error terms
and the random effect are independent of regressors.

Recently, Cai and Li (2008) proposed a nonparametric GMM estimation of varying-coefficient
dynamic panel data models to deal with the potential endogeneity issue. Varying-coefficient models
are well known in the statistic literature and also have a lot of applications in economics and finance
(Hastie and Tibshirani, 1993; Cai, Fan and Yao, 2000; Cai, Das, Xiong and Wu, 2006; Cai and
Hong, 2009; Cai, Gu and Li, 2009; Cai, Chen and Fang, 2012; among others); see Cai (2010) for
more details in applications in economics and finance. One of the main advantages of the varying-
coefficient models is that it allows the coefficients to depend on some informative variables and
then balances the dimension reduction and model flexibility.

In this paper, we consider a new class of partially varying-coefficient dynamic models. It allows
for linearity in some regressors but for nonlinearity in other regressors. In other words, some co-
efficients are constant but others are varying over some variables. The new class model is flexible
enough to include many existing models as special cases. By extending from Cai and Li (2008)
to a partially varying-coefficient model, we reduce the model dimension without influencing the
degree of the model flexibility, and furthermore, root-N consistent estimation of parametric coef-
ficients can be achieved. We propose a three-stage estimation procedure to estimate the constant
and varying coefficients. At the first stage, all coefficients are treated as varying coefficients and
then the nonparametric GMM proposed by Cai and Li (2008) is adopted. At the second stage,
the constant coefficients are estimated by the average method and the root-N consistency and

asymptotic normality of the estimators are derived. Finally, the estimators at the second stage



are plugged into the original model and then the estimators of varying coefficients are obtained by
employing the nonparametric GMM again. The partially varying-coefficient panel data model can
be applied to various empirical applications. For example, Lin, Huang and Weng (2006) and Zhou
and Li (2011) employed a special case of the partially varying-coefficient models to investigate the
so called Kuznet’s hypothesis which claims an inverted-U relation between inequality and economic
development.

Compared with the existing literature, our three-stage estimation has the following merits.
Firstly, in the existing literature, it is common to adopt the Robinson’s (1988) framework to
estimate a semiparametric panel data model with endogeneity. When endogenous variables ap-
pear in the model, a two-stage estimation is required, where a high dimensional nonparametric
estimation, in which the dimension depends on the number of excluded instruments and included
exogenous variables, is usually employed at the first stage, and then an instrumental variable re-
gression is adopted using first-stage nonparametric estimators as generated regressors. However,
the nonparametric GMM adopted in this paper only requires an one-step relatively low dimensional
estimation. The dimension of the estimation depends on the number of smoothing variables rather
than the included and excluded exogenous variables. Since the nonparametric GMM is adopted
at the first stage, some popular semiparametric estimation methods, such as Robinson’s (1988)
method and profile least squares method, cannot be applied here to estimate the parametric part.
Instead, we propose the average method by taking average of all local estimates to obtain the root-
N consistent estimation of parametric coefficients. Finally, varying coefficients can be estimated
by applying the low dimensional nonparametric GMM using the root-N consistent estimators as
generated regressors.

The rest of the paper is organized as follows. Section 2 introduces the model and estimation
method. We derive the asymptotic results of the proposed estimators in Section 3. Section 4 reports
some Monte Carlo simulations to verify our theoretical results and demonstrates the finite sample
performance of our estimators. Finally, Section 5 concludes. All technical proofs are relegated to

Appendices.



2 The Model and Estimation Procedures

This paper considers a new class of partially varying-coefficient (dynamic) panel data models as

follows:

Yie = X v + X5y oB(Uit) + €, 1<i<N, 1<t<T, (1)

)

where Yj; is a scalar dependent variable, Uy is a scalar smoothing variable,! X it,1 and X0 are
regressors with dy x 1 and ds x 1 dimensions respectively, v denotes dy x 1 constant coefficients
and B(-) denotes do x 1 varying coefficients, and the random error €;; allows to be correlated over
periods t but independent over i. We consider a typical panel data model such that N is large but
T is relatively short. Moreover, let X;; = (X ;t,l’ ;'t,2)/ with dimension d X 1 where d = d; +dy. In
particular, in model (1) X;; may contain lagged variables of Y;; and endogenous variables correlated
with the error term so that the classical dynamic panel model can be regarded as a special case.
Also, the above setup is quite flexible to capture complex dynamic structures in real applications
in economics. For example, Li and Stengos (1996), Li and Ullah (1998) and Baltagi and Li (2002)
considered a special case by assuming that X;;» only contains a constant term. When Xj; o is a
discrete value random variable, the above model reduces to Das (2005). Cai and Li (2008) studied a
varying-coefficient model by ignoring the parametric part. Many semiparametric varying coefficient
literatures such as Fan and Huang (2005) and Lin, Huang and Weng (2006) studied the above model
without dealing with the endogeneity issue.

In model (1), an ordinary least squares estimation cannot be applied since the orthogonality
condition fails, i.e., Elei¢| X, Uir] # 0. Hence, we assume that there exists a ¢ x 1 vector of

instruments W;; that satisfies Ele;|W i, U] = 0.2 By choosing an appropriate vector function

!For simplicity, we only consider the univariate case for the smoothing variable. The estimation procedure and

asymptotic results still hold for the multivariate case with much complicated notation.

Instruments should be highly correlated to the endogenous variables and uncorrelated to the structural errors.
Cai, Fang and Li (2012) and Cai, Fang and Su (2012) studied the instrumental variable estimation using weak
instruments in a panel data model. Berkowitz, Caner and Fang (2008, 2012) investigated the impact on estimation

and testing when instruments are slightly correlated with random errors.



Q(Vi) where Vi = (W!,,U;:)’, we have the following conditional moment conditions,
ElQ(Vi)ew|Vie] = 0. (2)

Instead of using a nonparametric projection of some endogenous components in X;; on Q(V ),
we apply the nonparametric GMM (Cai and Li, 2008) to estimate all varying coefficients at the
first stage. We treat all coefficients to be varying so that v = y(U;;) and 8 = B(U;). We assume
throughout that B(-) and 7(:) are twice continuously differentiable. We apply the local constant
approximations to y(U;) and B(U;:) (Lewbel, 2007; Fang, Ren and Yuan, 2011), then model (1) is

approximated by the following model in a small neighborhood of wg:
Vip~ X3y + e, 1<i<N, 1<t<T, (3)

where 0 = 0(ug) = (7' (uo), B8 (up))" is a d x 1 vector of parameters. Based on the locally weighted
N T

moment conditions Y > Q(V ) (Yii—X',0)Kp, (Ui—ug) = 0,2 the nonparametric GMM estimator
i=1i=1

is given by

0 =0(uo) = (W) '@y, (4)

where Qn = ﬁ %Ui QX Kp, (Uit — up) and ®y = ﬁ %15:1 QitKp, (Uit — uo)Yir. We simply
i=1i= i=11i=
choose instruments @;; to be V;;. Note that we require ¢ > d to satisfy the identification condition,
and also that Kp, (-) = hy 'K (-/h1) where K(-) is a kernel function with a bandwidth hy = hix > 0
which controls the degree of smoothing used in the nonparametric GMM estimation.
At the second stage, in order to take advantage of the full sample information to estimate the
constant parameters 7, we employ the average method to achieve the root-N consistent estimator

of v:

T
. 1 .
Y= NT 2 ;7(Uzt)~ (5)

The 4(Uy) is the first d; components in 6.
The last step is to estimate the nonparametric part, the functional coefficients B8(U;;), by plugging

a root-N consistent estimator 4 into model (1). Define a partial residual Y;; = Y;; — X/, ;4. Hence,

3To obtain a unique @ satisfying the above moment condition, we follow Cai and Li (2008) by pre-multiplying it
by Q.



model (1) can be approximated by
Yi~Pd+er, 1<i<N, 1<t<T, (6)

where § = 8(ug) = (8 (uo), B (uo))’, B(-) denotes the first order derivatives of B(-) with respect

Xit2
to Uy, and Py = " is a (2d2) x 1 vector. Hence, the nonparametric GMM

Xit2 @ (Uit — uo)
estimator of the varying coefficients are given by

A~

6 =8(uo) = (SNSN) 'SNT W, (7)

N T

where SN = NT Z Z QltpthhQ(U ”U,[)) and Ty = ﬁ Z Z QitKhQ(Uit —UO)}QI with KhQ(-) =
i=1i= i=1¢=1

hy 'K (-/hg) and the bandw1dth he = han > 0. Motivated by the local linear fitting, a simple choice

of Qi; suggested by Cai and Li (2008) is a (2¢q) x 1 vector

W
Qit — )
Wit @ (Uit — up)/he

which is used at the last stage.

3 Asymptotic Theories

In this section, we will derive the asymptotic results of both estimators 4 and B (up). The detailed
proofs are relegated to Appendices. Firstly, we give some notations and definitions which will be
used in the rest of the paper. Denote p; = [0 w/ K (u)du and v; = [*°_ w/ K?(u)du with j > 0. Let
o2 (v) = Var(ex|Vi = v), @ = Q(ug) = E(VX',Jug), @ = Qug) = EW Xy 5|ug), ® = ®(ug) =
Var(Vieiluo), 01:(Vir,Vie) = E(ei€ir]Vir, Vie), and G1(Usr, Ui) = E{V aV',01¢|Ui1, Ui }. More-

0
over, define S = S(up) = |- Next, note that ®y = Qn6 + @}, + ¥y + Ay, where

2SR

. 1 N T
q)N = Nizthl it — ta@ta

(=] to)

SN
Uy = M;;K}H( taz% ztaUO ’Lt]7
1 N T
and AN = WZZ taZA ztau() zt]

.
Il
—
o~
I
—



with (Ui, uo) = 0;(uo) (Ui — uo) + $0;(uo) (Ui — uo)? and A;(Ui,ug) = 0;(Usr) — 0j(uo) —

0, (o) (Ui — uo) — 30;(uo) (Uit — ug)?. Substituting it into (4), we have
(6 —6) — (AQN) U TN — (QA2N) ' AyAx = (A Q) 'A% (8)

We will show that the second term on the left side determines the bias, the last term on the left can
be asymptotically ignored, and the term on the right follows the asymptotic normality. To establish
the asymptotic results for the proposed estimators, following assumptions are needed although they

might not be the weakest ones.

Al. {(Wi, Xit,Yit, Ui, €i1)} are independently and identically distributed across the i index for
each fixed t and strictly stationary over ¢ for each fixed i, E||W ;X",||* < oo, E||W W, ||* <
00, E(eit) = 0, and Eley|* < 0o, where || -||? is the standard Lo-norm for a finite-dimensional

matrix.

A2. For each t > 1, G14(U;1,Uy) is continuous at (Ujr,Uy). Also, for each wug, Q(up) > 0 and
f(ug) > 0, which is the density function of U at ug. Further, supi>1|Gie(uo,uo)f(uo)| <
M (up) < oo for some function M (ug). Finally, B(ug) and f(up) are both two times continu-

ously differentiable.
A3. The kernel function K(-) is a symmetric, bounded density with a bounded support region.

A4. The instrumental variable V;; satisfies the instrument exogeneity condition that E(e;|V ) =

0.
A5. hy — 0, hg — 0, Nh; — oo and Nhy — oo as N — oo. Furthermore, hy = o(hz).

To derive the asymptotic properties for 6 and 4, we first prove the following preliminary results.

Proposition 1. Under Assumptions A1-A5, we have

(1)  Qn = f(uo)Q[L + 0p(1)],

f(uo)

. . 9
f(uo) )9 + QB} + Op(hl)’

(i) W =" fluopnl2@ +.0
(iii) Ay = op(hi),

(i) NhVar(@y) — % F(u0)®.

7



Clearly, by Proposition 1 and (8), we can obtain

(0 — 0) — biasg = £ (uo) (XQ) QBN [1 + 0,(1)], 9)

where biasg = %f(uo),ug [2((QQ) Q-+ fg g)0—|—0] +o0p(h?). The next two theorems demonstrate
the consistency and asymptotic normality of 4, respectively.

THEOREM 1. Under Assumptions A1-A5, we have

(6 — ) — biasg = 0,(h?) + Op(——), (10)

1
vV Nhy

which implies the consistency of 6.

Remark 1: As defined earlier, 8 = 0(up) = (7' (uo), 8 (ug))’ so that 4 is the first d; component in

6. Thus, we have

N T
. 1 A , 1
Y-y = M;;e (6(Uie) —6(Ui)) = biase] + O )
1 1
= 7 2 D AUi) = 7(Us) — biasy(uo)] + Op(—=), (11)
NT i=1 t=1 \/ﬁ
where the selection matrix €] = (Ig,,0q, xd,) and biasy(ug) = €} biasg(uo).
THEOREM 2. Under Assumptions A1-A5, we have
. . D 1
VN — v — bias,) = N(0, 75, (12)

where E'Y = E{(:’/l[D(Ult)Q(Ult)D,(Ult)—F% i(T—t—Fl) ( zl)Glt( Z1, )D’(Uit)]el} WlthD(Ult) =

(Q(Ui)2(Uy)) 1 (Uy) and biasy = Ebiasy(Ust)].

Remark 2: As N h‘ll — 0, the bias term in the above theorem shrinks toward zero, which implies
that we need to under-smooth at the first step to reduce the influence of the bias term that may be
brought to the second step, while in the meantime, the effect of the first-step bandwidth selection

on the variance can be smoothed out by using the average method.



Finally, we focus on the nonparametric estimation of 8(ug). Similar to the decomposition of ®,
we have Ty = SyHé +T% + By + Ry where

T?V = NT Z Z th it — ta51t7

i=1 t=1
N T

1
By = i 3 o~ 0] 30—

N T
1
and Ry = NT E E hg Uit — uo taE R] ltauO)XZt2]7
i=1 t=1 j=1

where R;j(Us,uo) = B;(Uit) — aj — b;(Usr — up) — %Bj(uo)(Uit — ug)?. Hence,
H(b —68) — [SySn]'8yBx — [SySn]'8yRy = [SnSn] 1S\ T, (13)

. N T . .

where H = (Id2, hQIdg) and Sy = SNITI-_1 = ﬁ Z E QitP,itth(Uit — UO) with P = H_IPit.
i=1t=1

Similar to Proposition 1, we have the following preliminary results.

Proposition 2. Under Assumptions A1-A5, we have

(i) Sn = f(uo)S[1+ 0,(1)],
o

(i) By = h%f(UO) o + op(h3),
0

(iti) Ry = op(h3),

(tv) NhoVar(Ty) — %f(uo)S*,

voeh®Pes 0
where e, = (I;,04x1) is a selecting matrix, §* = §*(ug) =
0 vaeh®Pey
By Proposition 2 and (12), we can obtain
) N Y . Sy
HG-68) - op(h3) = f~(u0)(8'8)T'S'Ty[1 + 0p(1)]. (14)

0

The next two theorems depict the consistency and asymptotic normality of B (up), respectively.

THEOREM 3. Under Assumptions A1-A5, we have

B-B | 2| nb
DTS2 = o,08) + 0y
N 0

)- (15)



Also, we have the following asymptotic normality,

B-B 0
where 55 = (§'S)~18'8*5(8'S)~".

oy B N0, 17 (o)), (16)

4 A Monte Carlo Study

In this section, Monte Carlo simulations are conducted to verify theoretical results in Section 3 and
demonstrate the finite sample performance of both estimators. The mean absolute deviation errors
(MADE) of the estimators are computed to measure the estimation performance. The MADE is

defined by
1 &
MADE; = = 37150 - 6(u),
i=g

where d(-) is either vy, vz or 8(-) in (17) and {Ug}ngl are the gird points within the domain of Uy;.
Note that for both vy and 7, their MADE becomes the absolute deviation error (ADE).

We consider the following data generating process:

Yie = Y1y + Ziuyz + XuB(Ui) + €, Xit = Wit + it (17)

where the smoothing variable U;; and the exogenous variable Z;; are generated from uniform dis-
tributions U(—3,3) and U(—2,2), respectively. The excluded instruments Wj; is generated inde-
pendently from a uniform distribution U(—2,2). The error terms ¢; and 7;; are generated jointly
from a standard bivariate normal distribution with the correlation coefficient 0.3. The coefficients
are set by 7y = 0.5, vz = 3 and B(Uy) = 1.5e Ui, We fix T = 10 and let N = 200, 500 and
1000 respectively. When generating the series of Y;;, we set the initial value to be zero and drop
the first 100 observations to reduce the impact of initial values. For a given sample size, we repeat
500 times to calculate the MADE. The bandwidth in the first step is undersmoothed and we find
the estimation of v is not very sensitive to the bandwidth selection when it is chosen within a
reasonable range.

Table 1 reports the medians and the standard deviations (in parentheses) of the MADE for dif-

ferent estimators under different sample sizes. When the sample size increases, the medians of ADE

10



values for 4y and 4z shrink from 0.004 to 0.001 and from 0.016 to 0.006, respectively. The standard
deviations also shrink quickly when the sample size is enlarged. For 4y, the standard deviation
shrinks from 0.003 to 0.001, and for 4, it decreases from 0.012 to 0.005. The nonparametric esti-
mator of 5(-) shows similar results. The median of the MADE values decreases from 0.076 to 0.030
when the sample size increases from 200 to 1000. At the same time, the standard deviation of the
estimator also shrinks from 0.014 to 0.006. Compared with parametric estimations in Columns 2
and 3, the convergence speed of nonparametric estimator is relatively slow. All results show that
the estimators proposed in the paper are consistent estimators and all outcomes in the simulations
are consistent with the theoretical results in the previous section.

Figure 1 demonstrates the estimated curve of () with a sample size N = 500 for a typical
sample. The typical example is chosen such that its MADEg value equals to the median of the
500 MADEg values in the repeated experiments of the case N = 500. The solid line represents the
true curve and the dotted line denotes the estimated one. Figure 1 shows that the nonparametric

GMM estimation works very well even in a small sample.

Table 1: Median and standard deviation of the MADE

values.

N 00% vz B(-)

200 | 0.004144002 0.01629416 0.0768469

(0.003479078) | (0.01242114) | (0.01431995)

500 | 0.002379212 0.009720373 0.04487873

(0.002281685) | (0.008604812) | (0.00858833)

1000 | 0.001707388 0.006097411 0.03057437

(0.001506411) | (0.005766932) | (0.006049484)

11



beta_x (N=500)

15

1.0

0.5

Figure 1: Functional Coefficient of 5(-). The solid line represents the true curve and the dotted

line denotes the estimated one.

5 Conclusion

This paper proposes a three-stage estimation procedure for a new class of partially varying coeffi-
cients dynamic panel data models, which, as expected, has many applications in applied economics
particularly in empirical growth literature. The asymptotic properties of both constant and varying
coefficients are established. The Monte Carlo simulations demonstrate that the proposed estima-
tors work very well even in small samples. However, the cross sectional independence may be a
restrictive assumption for some applications in real data. Therefore, it would be an interesting
future research topic to work on a partially varying coefficients dynamic panel data model with

cross sectional dependence.
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Appendix A: Proofs of Propositions
It is clear that ®y = Qn@ + ®% + U + Ay and Ty = SyHS + T + By + Ry. Indeed,

N T
QN0+ 85+ ¥y +Ay = SN Kny (Ui — uo)Wir X6 + i + X,0(Uir) — X7:6]

i=1 t=1

1
NT

N T
1
= NT Z Z K, (Uit — ug)W 1Y

i—1 t=1
and
N T
Fa * 1 / / /
SvHé +TN +By+Ry = NT ZZK’W(U“ —u0)Qit [P0 + i + X3,9(Usr) — Pj,0]
i—1 t=1
, N
= NT SO K, (Ui — u0)QitYa
i=1 t=1
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Proof of Propositions 1(i) and 2(¢). It is clear that

! Z ZVti Uit O)thl(Uit — up)]

- /Q(Uit)(Uith_l 4o )thl(Uit — o) f(Ui)dUy
- mw@+mmn/mwawmm+omm

= Q(uo)f(uo)pj + O(h1)

Hence, we have

EQN) = f(uo)R[L + o(1)].

Now, we consider S ~- Indeed,

N T
~ 1 ~/
Sy = NT Z ZQitPitth(Uit — up)

i=1 t=1
1 N T , o B N T Uzt uo ¢ U
NT z; t; Wit X5, 9 Kn, (Uit — uo) NT Z; t; WiX; it,2" ha he (Uit — uo)
B . X Ztuo X I Uit —up)?
NT Z; tz:lw tXng ,2 th(Uit - UO) NT z; t; 7,tXZt 27%Kh2(Uit — uo)

For any j = 0,1, 2,

1

Elyr ZWtin o O)thz(Uit — )]
=1 t=1
U —UQ .,
= E[WuX, o ) Ky (Uit — o)

- /Q(Uz‘t)(Uith_z B0V Ky (Ut — uo) f (Uin)dUsy

- Mww+mmn/mewmmw+omM

= Q(uo)f(uo)p; + O(ha).

Hence, we have

E(SN) = f(uo)S[1 4 o(1)].

And, for 1 <l <gand1<m <d, let

SN,mj = Z Z Wit Xitm( Ui — B0V 3 (Uit — uo),

zltl
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where h = hyy = hy or h = hy = ho, Wjy is the [th element of W;;, and X, is the mth element

of X;;. Then, by the stationary assumptions, we have

Var(snimg) = Varlgs ZZWzthztm Ui — B0V K (Ui — o))
i=1 t=1

Uit — uo

1 ,
= WVW[Z Wit Xitm ) K (Uit — o))

t=1

= ﬁvar[Withitm(

Uy — uo.,
L uo)]Kh(Uit—UO)]

S

Uir — uo

W Y Kn(Us — o),
N

—t+ 1 COU(WillXilm(
=2

U;
Wit Xistm ( L

N

20V K (Uie — o))

Isl + Is2-

By assumptions and Cauchy-Schwarz inequality, 151 < NL}LN and |Is| < % Thus, Var(sy im;) — 0.

It follows that

N T
%ZZVUX Uit B0V K, (Uit — uo) = R(uo) f (uo)pj + Op(ha)

i=1 t=1
and

B0V Ky (Use — o) = Q(ug) f (o)t + Op(ha).

NT Z Z W’Ltht 2

i=1 t=1

Therefore, we have
Qy = f(uo)Q[L +0p(1)] and Sy = f(ug)S[1 + 0p(1)].
The proof is complete.

Proof of Propositions 1(ii) and 2(i7).

N T d
1
- NT Z ZK’H(U“ 0)Vit Z Uit — uo) + 9 i (uo) (Uit — u0)2]Xitj
1 .
= Z K, (Ui — o)V X},0(Us — 2NT Z Z K, Uzt — o)V X, 0(Usy — u)?
i=1 t=1 i=1 t=1
= \IIJIV + W%,
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Then,

and

Hence,

Now,

BWY) = LEVa(D, X

Ui —u .
hlE[V'tX;'tthilOKhl (U't — ug)]ﬂ

hl/Q zt

hy /[Q(uo) + Q(uo)uh1 + o(hy)|uK (w)[f (uo) + f(uo)uhi + o(hy)]dud

Khl( — ug) f(Ust)dU38

Wi sl f (u0)(uo) + f (u0)(u0)]8 + o(h7),

h Uit —uo

)2 K, (Ust — u0))@

h? Uy — .
= ;/Q(Uit)( thl uo)szu(Uit —up) f(Ui)dU;0

5 2 ;
— 210u0) + O(h)] [ WK (w)dulf(uo) + O(hn)}B

" [Q(uo) 2 f (uo) + O(1))0

2
ny
2
hi 2
?f(u()),ugﬂe + o(h?).

PE2B(EN) = 2 fuo)a2@ + 010 4 0f) 1 o(1).
2 f(uo)

N T
1
= ﬁz K, (Uit — u0)Qit 5 Zﬂg ) ( t—uo) Xit2j

i=1 t=1
Bl e
) NTZZQZthwﬁ uo)( ) K, (Uit — up)
=1 t=1
Lz . ,
h% NT Z:ltz:lwltxzt QIB(UO)( i uo) K, (Uit — uo)

’ ﬁ ; ; Wltht QIB(UO)( )Sth(Uit — up)
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For 5 = 2,3,

1 N T . Uit —UQ . s
El== Y Y WX, 5B (uo)( ) Ky (Uit — o))

NT £ £ ha
= BW X B u0) (S0 K (U — o)
— [ QW Ko (U — o) f(Ui)dUiBwo)
— [©u0) + O(ha)) [ W K(wdulF(uo) + O(ha) o)
— ()8 + Olha).
Hence,
hs* B(Bx) = 3./ (uo) ”:ﬁ +o(1),

Similar to (7), any component of the variance of hl_z\Il N and hy 2B converges to zero. Therefore,
we have
: 1208

;EZO; )0 + Q6] + 0,(h?) and By = hff(ui)) + 0p(h3).
0 0

B3 .
U = L f(uo)pal2(2 + ©

Therefore, this proves the results.

Proof of Propositions 1(iii) and 2(7ii).

N T
1
E(AN) = E[WZZKM(U%_UO)VitX;tA(UitaUO)]

i—1 =1
= EVuX; AUy, uo)Kn, (Uit — uo)]
= /Q(Uit)A(Uit> ug) Kn, (Uit — uo) f(Us)dUy

= [f(uo) + O(h1)] /Q(uO)A(uo + uhy, uo) K (u)du.
And, for any 1 < j < d,

. h2 ..
Aj(UO + uhq, UO) = Hj(uo + uhl) — gj(’LLO) — h19j(u0)u - éej(uO)UQ = O(h?)
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Therefore, Ay = o,(h?), and

RN = K ( ta Z R ’Ltu UD Xit ,275

=1 t=1

I

- g
NERNNE
M% Mﬂ

Qi Xy o R(Uit, uo) K, (U — uo)

NT
=1 t=1
N T
7 Z Z Wit X, o R(Uit, wo) Kny (Uit — uo)
- 1 N } N Ut —u
NT Z Z X iy o R(Uit, o) “4 2 K, (Ui — uo)

For any component in the above vector, j = 0,1,

N T
1 / Uit — uo . ;
E[ﬁ ; ; Wit X 2R (Uit uo)( I ) Ky (Uit — uo)]

= [WZtht 2R( it> Uo) (

U;
= [ QR 1) () Ko (U — o) (Ui

Ui — g,
L0 Ky, (Use — o))

= [7(u0) + Op(h)] [ o) Rl +ha, o) K (u)d
And, for any 1 < j < ds,
Rj(uo + uhs, ug) = B;(ug + uhs) — B;(ug) — haf;(uo)u — hjﬁg (uo)u® = O(h3).
Therefore, Ry = o0,(h3). This completes the proof.

Proof of Propositions 1(iv) and 2(iv). Under the above assumptions, we have

N T
1
NVar(®y) = NhVar|— 3N VieaKn, (Ui — o))

i=1 t=1
h1 hl
= SVar ZVztﬁnKhl(Uzt uo)] = = Var[VieiKn, (Uit — uo)]
=1
20
t (T —t+1)Cov(Virein Kn, (Un — uo), Vir€it Kn, (Uit — uo))
=2
hl
= T [V tvztethhl(U uo)]
2h )
Sy (T —t+ 1) E[VaVieneuKn, (Ui — uo)Kp, (Uit — uo)]
=2
= I3 + I47
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and

N T
NhyVar(Ty) = Nhgvm{— > QueiKn, (Ui — uo)}
i=1 t=1
hQ h2
= VCLT{Z QiteitKn, (Uie —uo)} = 5 Var{Qiveikn, (Uit — uo)}
2h2
+ (T —t+1)Cov(Qir€ir Kn, (Ui — uo), Qit€it Kn, (Uit — uo))
t=2
= I+ 1.
For the first term in (19),
ho
7V arQuei K, (U — uo)] = = EQuQjei K, (Ui — uo)]
[ WG ) WG O )
T

W Wiyt K, (Ui — uo) 420 WaWiyed K, (Ui — ) (P440)?
For any component in the above matrix, j =0,1,2, h = hy = hy or h = hy = ho,

Ui —ug.
EVaV i K5 (U = u0) (=5 —)']

= /q)(Uit)K}%<Uit — UO)(M)jf(Uit>dUit

= () + Ol ) @(uo) + O] [ K2 ()i
N
1

= h—[f(uo)‘l)(uo)Vj + O(hn)].
N

Hence,

1 1
I; — Tf(uo)q) and Is — Tf(uo)s*

For the second term in (19),

T
2h
T—; (T —t+ 1)Cov(Qir€in K, (Ui — uo), Qit€it K, (Ui — uo))
=2
2hy
= T—; (T =t + D) EQuQirei€it Kny (Ui — o) K, (Uit — uo)]
t=2
T Uit—uo
2h W W=
= Z22N(T-t+1)E 2 :
t=2 W i1 —U0 W i1 —Uo Uit —UQ
ha ha  ha
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where W = WiuW/ €€ K, (Uit — uo)Kp, (Uit — up). For any component in the above matrix,

j=0,1andi=0,1, h=~hyx =hi or h = hy = ho,

Ui —uo; Uit —uo,,
oy i toy
UZ’ — U 4
= E[EVaViene|Un, Ui) Kn(Un — uo) Kp(Uir — uo)( ! 0) ( )]
hy hn
Ui —uo; Uit —uo,;
ey Bty

EViuVieneiKp(Uin — uo) Kp(Uir — uo)(

= E[G1(Ui1, Uit) Kn (Uit — uo) Kn (Uit — uo)(

= f(uo,u0)G1¢(uo, uo)vivj + Op(hn).

Hence,
oh T T
1
I, — T2f Z —t+1 G’lt(uo,uo) and IG—> f uUQ Z —t—i—l G’lt(uo,uo)
t=2 t=2
v2ehGii(ug, ug)ea 0
where G5, = G7,(uo, wo) = 062G (o, vo)e: . Therefore,
0 0
L1
NhiVar(®y) — Tf(uo)(b
and
1
NhoVar(Ty) — Tf(u(])S*
Then, the proof is complete.
Appendix B: Useful Lemmas for Theorem 2
By (9), we know that for any Uy,
A L N
O(Uy) — 0(Uy)) — biasg ~ f~1(Uy)D(Uy) ~T ZZ Ui)V jréir,
7=1 k=1
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N T
. 1 .
T=7Y = N7 e1[(0(Uir) — 0(Ust)) — biasg]
NT =1 t=1
1 N N T T
~ T o 2 2 A U DU Ko (U~ UV e
i=1 j=1 t=1 k=1
1 1 T T
- 2 Z 7222[6/1 71(Ult)D(Ult)Kh1(U Uit)V jk€
1<i<j<N t=1 k=1
+ e f T Uie)D(Uj) Ky (Uit — Uj )V e
T
1 1 ~
= 3= 2 lF 2 A U DU AU &) + Zelf Uj) AUy &)
1<i<j<N t=1
N -1
- IN UN?

where €] = (I4,,04, xd,), which is used to extract the parametric part from the estimates of nonpara-

T
metric GMM procedure using local constant fitting scheme, A(Uy, &;) = % > Kn (Uje=Ui)V jrejn,
k=1

and Uy = N(J\2/—1) Y. pn(&, &) is a U-statistic with

1<i<j<N
L I L I

pn (&, &) = qu (Uit)D(Ust)A(Uit, &5) + Zﬁf (Ui )D(Ujk ) A(Ujk, &)
= =

Following Theorem 3.1 in Powell, Stock amd Stocker (1989), we define

On = [TN(&)] = Elpn (&, &5)],
N
Uy =0y + Z rn (&) —

In order to establish the asymptotic normality of Uy, the condition of Lemma 3.1 in Powell,
Stock and Stoker (1989) should be satisfied. It is easy to prove that E[|[pn (&, &5)]|%] = O(h™1) =
O[N(Nhy)~Y. Thus, we haveE[|[pn (&, &5)])?] = o(N) if and only if Nhy — 0o as hy — 0.

Lemma 1: Under assumptions A1-Ab5,

T
v (&) = e’l% Y D(Ui)Viseu[l + o(1)].

t=1
Lemma 2: Under assumptions A1-Ab5,

(i) Elrn(&)] =0,

(ii) Varlry(€)] = =5, [1 + o(1)].

T
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The detailed proofs of the above three lemmas are given in Appendix C.

Appendix C: Proofs of Lemmas

Proof of Lemma 1. Firstly,

Elf N (Ujx)D(Ujr)A(Ujx, &) €]

= Elf '\ Ux)DU

Il
el
M=

~
Il

Il
el
M=

t

I
=l
[M]=

&~
Il

1

1
=l
M=

H
Il
—_

and

E[A(Ulhgj)’fl = ZKhl ik —

By the definition of pn(&;,&;),

Elpn(v,&5)[i]

1 T
= E[Tzeﬁffl
t=1
1 T
= Tzleflf—l
t=

T

1

1

[D(Ult) + 0(1)]Vit€it

D(U)V igeir[1 + o(1)]

Zt7 5‘7

D(Uy)E[A(U, &5)|8i]

= e’ll ZD(Uit)VitEit[l +o(1)].

T
t=1

The proof of the lemma is complete.
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FHUj)D(Uji) K, (Uit
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k)f ;Khl(Uit —

E[f =N (Uj)D(Ujx) Kp, (U;

T
1
Jkﬁjk‘& = § E[Kp, (U
k:l

1

Ujr)Vireit|&i

]k) |£z} it€it

—Uji) [(Ujr)dU;V i€
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Proof of Lemma 2. It is easy to see that

Elrn(&)] = E{EpNn(&,&)IE]}

T
= E{e'l% ZD(Uit)VitEit[l +op(1)]}
t=1

T
1
= E{eﬁf ;D(Uz‘t)E(Vz‘tﬁidUz‘t)[l +op(1)]} =0,
and

Varlry(&)] = Elry(&))?

T T
1 1
= Eleis > DUt )V it €itr 77 > Vi€, D' (Ui, )e][1+ o(1)]
t1=1 to=1

T T
1
= ElB(7 > Y DU Vi, €it, Vits€it, D' (Uin )| Uiy Uiny Jer][1 + o(1)]
t1=1to=1

T
= B[ D W)@U)D (U) + g ST~ t+ D)D(Uin)Gre(Usn, U) D' (Ui)Jer} [1 + (1)

t=2

_ %27[1 +o(1)].

This concludes the proof of the lemma.

Appendix D: Proofs of Theorems

Proof of Theorem 1 and (15) in Theorem 3: By the assumptions, it is easy to see that
E(T%) = 0 and E(®%) = 0. Hence, the proofs are straightforward from Proposition 1(iv)

and 2(iv), (9) and (14). This completes the proof of the theorems.

Proof of Theorem 2: Applying Theorem 3.1 in Powell, Stock and Stoker (1989), we have

1

VN(# — 5 — biasy) = N(0, 7).

This completes the proof of the theorem.

Proof of (16) in Theorem 3: We use the Cramer-Wold device to derive the asymptotic
normality. Denote wy = (8'S) ™1 8'Quveit K, (Ui — o) f~ (o) wi,ie = 1/ Bd'wyy, and wh; =
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T
\/; > wn,it, which only contains the information of individual i. Then,
t=1

/ ! p— rQ\—1 QI 1 ol 1 a *
Nhg f 1(“0)(85) 1ST :ﬁ;;wNﬁ:\/—N;wNﬂu

According to our model setting, the information between individuals are ITD. Hence, wy,
series is an iid series. By Lindeberg-Lévy central limit theorem for iid case, the normality of

V' Nhod'T? is verified. This concludes the proof of the theorem.

26



