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Abstract

Markowitz’s mean-variance (MV) efficient portfolio selection is the one of the most

widely used approaches in solving portfolio diversification problem. However, con-

trary to the notion of diversification, MV approach often leads to portfolios highly

concentrated on a few assets. Also, this method leads to poor out-of-sample per-

formances. Entropy is a well known measure of diversity and also has a shrinkage

interpretation. In this paper, we propose to use cross entropy measure as the ob-

jective function with side conditions coming from the mean and variance-covariance

matrix of the resampled asset returns. This automatically captures the degree of

imprecision of input estimates. Our approach can be viewed as a shrinkage estima-

tion of portfolio weights (probabilities) which are shrunk towards the predetermined

portfolio, for example, equally weighted portfolio or minimum variance portfolio.

Our procedure is illustrated with an application to the international equity indexes.

Key Words: Portfolio selection; Entropy measure; Shrinkage rule; Diversification;

Simulation methods.
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1 Introduction

Markowitz’s (1952) mean-variance (MV) optimization is one of the most common

formulation of portfolio selection problem. However, portfolios constructed from

sample moments of stock returns have proved problematic. The main problems in

optimal MV portfolio are that the portfolios are often extremely concentrated on a

few asset, which is a contradiction to the notion of diversification, and the out-of-

sample performances of the MV portfolios are not very good. It is generally thought

that these drawbacks are due to statistical error in estimating the moments that are

used as inputs in the MV optimization. These errors are known to change optimal

portfolio weights dramatically in such a way that portfolios often involve extreme

positions (Jobson and Korkie, 1980). There have been extensive research on reducing

statistical errors in sample mean and covariance matrix. One alternative is the class

of shrinkage estimators. Frost and Savarino (1986), Jorion (1986), and Ledoit and

Wolf (2003) used shrinkage estimation for the mean and covariance matrix. Shrinkage

estimators compensate for the positive (negative) error that tends to be embedded

in extremely high (low) estimated coefficients by pulling them downward (upward)

and prevent extreme positions in portfolio selection.

Since shrinkage estimators are based on the empirical Bayesian approaches a par-

ticular prior distribution should be assumed to derive those estimators. Although

some prior distributions used in the empirical Bayes estimation are known to work

well, there is no systematic way to choose a prior distribution. For example, Jo-

rion (1986) used an informative conjugate prior and derived the multivariate normal

predictive distribution with the mean of minimum variance portfolio as the target

mean. Frost and Savarino (1986) adapted a normal-wishart conjugate prior and

derived multivariate Student’s t predictive density. In their simulation study, they

assumed that means, variances and correlations for all the assets are the same, so

that their target mean and covariance matrix are those of equally weighted portfolio.

As a result, it is very hard to achieve a certain shrinkage target preferred by asset

managers, for example, a capitalization-weighted portfolio.

We propose a method that ensures shrinkage towards maximum diversification

of portfolio weights using a information theoretic approach. Our objective function,

the Kullback-Leibler information criteria (Kullback and Leibler, 1951) (KLIC) is

defined as pseudo distance between two probability distributions (portfolio weights),

p = (p1, p2, · · · , pN)′ and q = (q1, q2, · · · , qN)′:

KLIC(p,q) =
N∑

i=1

pi ln(pi/qi). (1)
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The KLIC is also known as the cross-entropy (CE) measure (Golan, Judge, and

Miller, 1996, p.29). If one minimizes the CE measure with q as the reference dis-

tribution that satisfies certain constraints, one can get a solution, p̂, closest to q.

If we set q = (1/N, 1/N, · · · , 1/N)′, uniform distribution, then KLIC(p,q) is same

as negative Shannon’s (1948) entropy measure. Since maximizing Shannon’s en-

tropy subject to some moment constraints implies estimating p that is the closest

to the uniform distribution (i.e., equally weighted portfolio), well-diversified optimal

portfolio can be achieved.

In order to incorporate problems of imprecision of sample moments estimates,

we define the confidence interval of maximized expected utility values which lead

to inequality constraints to our optimization procedures. This confidence interval

can be interpreted as the degree of uncertainty for the sample moments estimates,

and can be estimated by resampling methods such as bootstrap or Monte-Carlo

approaches.

There are several advantages in our information theoretic approach: (i) While pre-

vious papers primarily dealt with shrinkage estimators for the mean and covariance

matrix to obtain more well-behaved optimal portfolios, we directly shrink portfolio

composition(p) towards pre-determined target portfolio weights(q) that are of inter-

est to asset managers; (ii) Most asset managers are not allowed to sell short (i.e., the

portfolio weights cannot be negative) in the real world. Since constructed portfolio

weights obtain through the maximum entropy (ME) approach are in the form of

“probabilities,” the weights are certainly non-negative. However, negative portfolio

weights, when they are appropriate, for example, in case of hedge funds, can also be

obtained using the generalized cross entropy (GCE) framework; (iii) Since the mean

and covariance matrix should be estimated, one usually has only partial information.

It is known that if sample sizes of individual returns are not large enough compare

to the number of stocks, sample covariance matrix tends to be very imprecise. By

minimizing the CE (or GCE) measure subject to certain well defined constraints,

one can extract useful information from the sample mean and covariance matrix.

The rest of the paper is organized as follows. In Section 2, we provide a critical

review of the existing methodologies. In Section 3, we discuss portfolio selection

procedures using the ME principle based on the CE measure. In Section 4, the

GCE formalism is proposed to obtain negative portfolio weights when short-selling

is allowed. To illustrate the usefulness of our proposed methodologies, in Section

5, we provide an empirical application using eight international equity indexes with

twelve different asset allocation models. The paper is concluded in Section 6.
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2 Current Approaches To Portfolio Selection

We denote the first two moments of the excess returns R = (R1, R2, · · · , RN)′ =

(r1 − rf , r2 − rf , · · · , rN − rf )
′ on N risky assets as E(R) = (m1, m2, · · · ,mN)′ = m,

and V ar(R) = ((σij)) = Σ, a N × N matrix, where ri and rf denote the return

of the i-th, i = 1, 2, · · · , N and the risk-free assets, respectively. A portfolio π =

(π1, π2, · · · , πN)′ is a vector of weights that represents the investor’s relative allocation

of the wealth satisfying
∑N

i=1 πi = π′1N = 1, where 1N is an N×1 vector of ones. The

mean-variance (MV) problem is to choose the portfolio weight vector π to minimize

the variance of the portfolio return V ar(π′R) = π′Σπ subject to a pre-determined

target, µ0 as expected return of the portfolio, i.e.,

min
π

π′Σπ, s.t. E(π′R) = π′m = µ0, π′1N = 1. (2)

Merton (1972) obtained the Lagrange multipliers corresponding to the two con-

straints in (2), respectively, as

γ =
Cµ0 − A

D
, ν =

B − Aµ0

D
,

where A = 1′NΣ−1m,B = m′Σ−1m, C = 1′NΣ−11N , and D = BC−A2. The solution

to (2) is given by

π̂ =
(µ0

B

)
Σ−1m

at which we have the MV portfolio variance as

σ2
π̂ = π̂′Σπ̂ =

Cµ2
0 − 2Aµ0 + B

D
.

Therefore, we can write

(
D

C

)
σ2

π̂ −
(

µ0 − A

C

)2

=
D

C2
. (3)

For a given mean and covariance matrix, the MV paradigm provide a very elegant

way to achieve an efficient allocation such that higher expected returns can only be

achieved by taking on more risk, as it is clear from the efficient frontier equation (3).

Since the MV portfolio π̂ is derived assuming investor’s trade-off between the mean

and the variance, the MV portfolio can also be obtained from the following expected

utility maximization problem:

max
π
E(π′R)− λ

2
V ar(π′R) s.t. π′1N = 1, (4)
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where λ denotes investor’s degree of relative risk aversion.

There are, however, some drawbacks of the above MV paradigm. First, it is well

known that the MV solution is very sensitive to estimation errors of mean m and

covariance matrix Σ. Jobson and Korkie (1980) and Best and Grauer (1991) showed

that the estimators such as the sample mean and sample covariance do not lend them-

selves to making inference in small sample, and small increase in the mean of just

one asset drives half the securities out of the portfolio. Second, out-of-sample perfor-

mance of the MV portfolio is very poor, as Jorion (1985) and DeMiguel, Garlappi,

and Uppal (2005) showed, it is often even worse than the naive, equally weighted

portfolio. Finally, related to the first point above, the MV optimal portfolio often has

extreme portfolio weights due to statistical errors in mean and covariance estimates,

which contradicts the notion of diversification. Michaud (1989) introduced the con-

cept of “error maximization” because MV optimization overweight (underweight)

those securities that have large (small) estimated returns, negative (positive) corre-

lation and small (large) variance. To resolve these problems, a number of alternative

methodologies have been proposed; some of which are discussed below.

2.1 Bayes-Stein shrinkage estimation

Suppose that the (N×1) return vector R from N assets at time t (t = 1, 2, · · · , T )

follows an IID multivariate normal distribution with mean µ and covariance matrix

Σ, and the investor has an informative conjugate prior for µ

p(µ|µ̄, η) ∝ exp

[
−1

2
(µ− 1N µ̄)′(ηΣ−1)(µ− 1N µ̄)

]
,

where µ̄ and η denote grand mean and prior precision, respectively. Then, the

predictive density function of the vector of future return rate Rf , p(Rf |R, Σ, η), is

multivariate normal with predictive Bayes-Stein mean

µbs = (1− φbs)µ̂ + φbsµmin1N ,

where µ̂ and µmin denote the sample mean and the mean of minimum variance

portfolio, respectively, and φbs = η/(T + η). Jorion (1986) adapted empirical Bayes-

Stein estimation in the sense that he estimated the prior precision parameter, η, from

the data assuming a gamma density for η with mean (N+2)/(µ−1N µ̄)′Σ−1(µ−1N µ̄).

The shrinkage coefficient is estimated by

φbs =

(
η

T + η

)
=

N + 2

(N + 2) + T (µ̂− µmin1N)′Σ̂−1(µ̂− µmin1N)
, (5)
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where Σ̂ is the sample covariance matrix. Note that the non-informative Bayes-Stein

estimator is a special case of (5) when η = 0 such that its mean and variance are

given by µ̂ and (1+1/T )Σ̂, respectively (Zellner and Chetty, 1965; Bawa, Brown and

Klein, 1979). In this case, the sample mean is the predictive mean but the covariance

matrix is inflated by (1+1/T ). Jorion (1986)’s method provides a reasonable strategy

when investor’s degree of belief about the estimated sample mean is weak. In the

similar way, Ledoit and Wolf (2004a, 2004b) proposed shrinkage estimation for the

covariance matrix Σ as

Σ̂bs = δF̂ + (1− δ)Σ̂,

where F̂ is usually chosen as a highly structured shrinkage target estimate. Ledoit

and Wolf (2003) suggested the single-factor matrix of Sharpe (1963) as the shrinkage

target and showed that their method substantially increases the realized informa-

tion ratio of the portfolio manager. Frost and Savarino (1986) proposed shrinkage

estimators for the mean and covariance at the same time. However, they assumed

the same priors for all means, variances, and correlations, and thus the resulting

portfolio weights shrunk towards the equally-weighted portfolio.

2.2 Imposing specific constraints

Frost and Savarino (1988) showed that imposing upper bound constraints or

disallowing short-selling constraints on security weights reduces estimation bias and

improves portfolio performance. On the other hand, Green and Hollifield (1992)

argued that portfolio constraints may arrest the portfolio performance because some

of the off-diagonal elements of Σ can take large negative values. Jagannathan and

Ma (2003) showed that even if Green and Hollifield’s argument is right, imposing

non-negative constraints always helps, and has the same effect of using shrinkage

estimate of Σ. Since shrinkage estimation improves finite sample behavior, imposing

non-negative constraints also improves the portfolio performance.

2.3 Resampling approach

Resampling scheme enable us to evaluate how much MV optimized portfolio

weights are affected by the error in estimating m and Σ. By drawing T observations B

times without replacement from the empirical distribution using bootstrap, we obtain

B new sets of the sample means and the sample covariance matrices {(m̂i, Σ̂i), i =

1, 2, · · · , B}. For each (m̂i, Σ̂i), we get a sequence of optimized portfolio weights

πi = (πi
1, π

i
2, · · · , πi

N)′, i = 1, 2, · · · , B, by solving the MV problem or, equivalently,
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maximizing the expected quadratic utility function. Evaluating (π1, · · · , πB) with

the original inputs (m̂, Σ̂), we have B points of {(m̂πi , σ̂πi), i = 1, 2, · · · , B}, where

m̂πi = πi′m̂ and σ̂πi =
√

πi′Σ̂πi. These B points are statistically equivalent to the

MV optimal efficient portfolio under the original inputs (m̂, Σ̂), and must lie below

its frontier.

Michaud (1998) proposed resampled efficient portfolio using resampling method.

Instead of considering a particular MV portfolio as above, let us consider MV port-

folios on the MV efficient frontiers. By setting ranks for each MV efficient frontier

between minimum variance portfolio (say, rank 1) and maximum return portfolio

(say, rank l), B sets of rank-associated MV efficient portfolios can be calculated us-

ing {(m̂i, Σ̂i), i = 1, 2, · · · , B} at each rank, k = 1, · · · , l, i.e., we have B portfolios

for each rank. The resampled weight for a portfolio of rank k is given by

π̄rs
k =

1

B

B∑

b=1

πb,k, (6)

where πb,k denotes the N × 1 vector of rank-k portfolio for b-th resampling. The

main difference between methods of the resampled efficient portfolio and the em-

pirical Bayes portfolio is that in the former, we first do the optimization and then

calculate final portfolio weights, while in the later optimization procedure is carried

out at the second stage after obtaining the empirical Bayes-Stein estimates of m

and Σ. Since the resampled weights are calculated by sample average of B number

of resampling portfolios, it is well-diversified. However, Scherer (2002) pointed out

that the distribution of weights, πb,k for b = 1, · · · , B is usually skewed so that the

sample mean cannot represent the location of the distribution correctly. In the next

section, we propose our entropy approach to optimal portfolio selection which has

nice interpretations of portfolio diversification and shrinkage effects.

3 Information theoretic approach to portfolio se-

lection

3.1 Entropy measures

A discrete probability distribution p = (p1, p2, · · · , pN)′ of a random variable

taking N values provides a measure of uncertainty (disorder) regarding that random

variable. In the information theory literature, this measure of disorder is called

entropy. Entropy measures have been extensively used in econometrics, and for

more on this see, Maasoumi (1993), Golan, Judge and Miller (1996), Ullah (1996)

and Bera and Bilias (2002).
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A portfolio allocation π = (π1, π2, · · · , πN)′ among N risky assets, with properties

πi ≥ 0, i = 1, 2, · · · , N and
∑N

i=1 πi = 1, has the structure of a proper probability

distribution. We will use the Shannon entropy (SE) measure

SE(π) = −
N∑

i=1

πi ln πi (7)

as a measure of portfolio diversification. When πi = 1/N for all i, SE(π) has its

maximum value ln N . The other extreme case occurs when πi = 1 for one i, and = 0

for the rest, then SE(π) = 0. Therefore, SE that provides a good measure of disorder

in a system or expected information in a probability distribution, can be taken as a

measure of portfolio diversification. In financial applications, portfolios are generally

evaluated in terms of their degree of diversification using the SE measure after port-

folios are obtained using different selection procedures (see for instance, Hoskisson,

Hitt, Johnson and Moesel (1993), Lubatkin, Merchant and Srinivasan (1993) and

Fernholz (2002, p.36)). We put the entropy itself in the objective function so as to

obtain maximum diversity in a portfolio allocation. It is clear that when we max-

imize SE(π) we shrink the portfolio towards an equally weighted portfolio, namely,

N−11 = (1/N, 1/N, · · · , 1/N)′. We will also consider a more general objective func-

tion. Suppose a portfolio weight changes from πi to qi, then the change in entropy is

− ln qi−(− ln πi) = ln(πi/qi). Taking average of ln(πi/qi) with πi’s as weights we end

up with the notion of cross-entropy (CE), CE(π,q) = KLIC(π,q), defined in (1). It

is clear that when q = (1/N, 1/N, · · · , 1/N)′, CE(π,q) =
∑N

i=1 πi ln πi− ln N. There-

fore, maximization of SE in (7) is a special case of CE minimization with respect to

an equally weighted portfolio. In our analysis we will emphasize the minimization of

CE(π,q) for a given q as a reasonable opportunity set for an investor. Thus, starting

from an initial portfolio allocation q, through minimization of CE we can obtain a

more diversified portfolio. Golan, Judge and Miller (1996, p.31) showed that

CE(π,q) =
N∑

i=1

πi ln(πi/qi) ≈
N∑

i=1

1

qi

(πi − qi)
2 for qi > 0. (8)

Thus, we adjust small allocations of the initial portfolio q more than the large

ones, possibly resulting in a more diversified portfolio.

3.2 Preliminary approach

A good starting point for incorporating entropy measure in the portfolio selection

is the dice problem introduced by Jaynes (1963). The dice problem can be stated

as follows: Suppose one is asked to estimate the probabilities π = (π1, π2, · · · , π6)
′
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for each possible outcomes of a fair six-sided die. The only information available

is the mean value of the distribution, say µ0. There are infinite number of sets of

values of π that will lead to the mean value of µ0. Jaynes (1963, p.187) suggested

the need for a measure of the “uncertainty” of the probability distribution that

can be maximized subject to the mean constraint which represents the available

information, and advocated that a correct measure of uncertainty is the SE given

in (7). As we mentioned before, portfolio weights for different financial assets can

be regarded as probabilities: weights are non-negative and they sum to 1. Thus, we

can consider portfolio selection problem such that asset managers are asked to select

portfolio weights π = (π1, π2, · · · , πN)′ for N assets conditional on a given investor’s

preferred mean value of the portfolio, say µ0. This problem, like that of Jaynes’ is

ill-posed since N number of weights need to be determined with only two pieces of

information: mean of portfolio is equal to µ0 and the sum of weights is equal to 1.

Following Jaynes (1963) we can state the optimization problem as [see also Golan,

Judge and Miller (1996, pp.12-14)]

max
{πi}N

i=1

−
N∑

i=1

πi ln πi (9)

subject to
N∑

i=1

m̂iπi = µ0,

N∑
i=1

πi = 1, (10)

where m̂i denotes sample mean of asset i. After setting the Lagrangian function as

L = −
N∑

i=1

πi ln πi − γ

(
N∑

i=1

m̂iπi − µ0

)
− λ

(
N∑

i=1

πi − 1

)
,

we get the solution

π̂i =
1

Ω(γ)
exp [−γm̂i] , i = 1, 2, · · · , N, (11)

where Ω(γ) =
∑N

i=1 exp [−γm̂i] obtained by satisfying
∑N

i=1 πi = 1.

The solution (11) turns out to be a probability mass function that has the form of

an exponential distribution and therefore, it naturally yields no short-selling (π̂i ≥ 0).

Since the objective function (9) is same as the negative of CE(π,q) with q = N−11

plus a constant, we can interpret the solution π̂ as closest to the equally weighted

portfolio (i.e., the most diversified portfolio) conditional on prescribed target mean

µ0. In this sense, resulting portfolio weights are maximum diversified portfolio given

mean constraint. However, this formulation uses information of return (mean) with-
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out considering risk (variance). By including additional side constraint on variance

σ2 = π′Σπ, one can extend the above optimization problem as

max
π

−π′ ln π (12)

subject to

π′m̂ ≥ µ0,
√

π′Σ̂π ≤ σ0, π ≥ 0, and π′1N = 1, (13)

where Σ̂ denotes the sample covariance matrix of asset returns. The inequality

constraints (13) can be interpreted as boundary conditions which an investor might

prefer, i.e., the portfolio mean is not less than µ0 and the portfolio standard deviation

is not greater than σ0. Although the problem (12)-(13) is intuitively simple, it does

not have a simple solution, primarily due to the nonlinear inequality constraint,√
π′Σπ ≤ σ0.

Suppose that an investor is concerned with only mean (µπ = π′m) and stan-

dard deviation (σπ =
√

π′Σπ) of portfolio returns. Then, one way to represent the

inequality constraints in (13) is by the indifference curve of the Leontief utility func-

tion U(σ0, µ0). We can define investor i’s opportunity set due to the constraints in

(13) by Ξi = {(σπ, µπ)|σπ ≤ σ0
i , µπ ≥ µ0

i }. Suppose investors ‘A’ and ‘B’ choose par-

ticular lower bounds, µ0
A and µ0

B, and upper bounds, σ0
A and σ0

B, for portfolio means

and standard deviations, respectively. In Figure 1, UA and UB denote two investors’

indifference curves, and point E corresponds to the equally weighted portfolio. For

each investor i, the maximization problem given in (12)-(13) is the same as choosing

the closest portfolio weights to the equally weighted portfolio with (σπ, µπ) ∈ Ξi.

[Figure 1]

By generating many possible values of m and Σ, we found numerically that port-

folios which solve (12)-(13) lie on the vertical line of the indifference curve if σ0
i < σ0

E

and µ0
i < µ0

E (i.e., investor ‘A’) and on the horizontal line of the indifference curve if

σ0
i > σ0

E and µ0
i > µ0

E. When σ0
i < σ0

E and µ0
i > µ0

E (i.e., ‘B’ investor), the portfolio

solves above optimization problem at the kinked-point i (point B in the case of ‘B’

investor). In the case of ΞE ⊆ Ξi (i.e., when σ0
i > σ0

E and µ0
i < µ0

E), the maxi-

mum diversified portfolio is the equally weighted portfolio. Since the Leontief utility

function is not differentiable it is hard to solve this problem by standard gradient-

based optimization routines. Moreover, this model cannot account for estimation

imprecision such as when we use the sample mean and covariance.

9



3.3 General approach

To incorporate estimation imprecision of the mean and covariance (as in Bayes-Stein

estimation), we need more general constraint than in (13). In general, we consider

the following minimization problem

min
π

CE(π|q) =
N∑

i=1

πi ln(πi/qi) (14)

subject to

EU(π,R, λ) ≥ τ, π ≥ 0, and π′1N = 1, (15)

where U(π, R, λ) is an utility function, λ is the risk aversion parameter, and τ re-

flects investor’s strength of belief in the estimated expected utility values, which we

elaborate further below. We assume that N × 1 random vector R has a distribution

function F (R) with density f(R). To see the significance of τ , we define

ξ ≡ EU(π̌, R, λ), (16)

where π̌ = (π̌1, π̌2, · · · , π̌N) satisfies following expected utility maximization,

π̌ = arg max
π
EU(π, R̃, λ) (17)

subject to

π′1 = 1, and π ≥ 0,

where R̃ is a random sample of size T drawn from the empirical distribution F̂ (R).

As we discussed in Section 2.3, estimation imprecision of the sample moments can

be measured directly by resampling methods. Solving the optimization problem (17)

using B sets of samples leads to B portfolios, π̌b, b = 1, 2, · · · , B. The investor’s

strength of belief parameter τ can also be related to the degree of shrinkage and be

expressed as, say the r-th quantile of the distribution of ξ, 0 < r < 1, i.e.,

τ = G−1(r) ≡ ξr, say,

where G(·) is distribution function of ξ. Thus, the first inequality constraint, EU(π,R, λ) ≥
τ in (15), can be represented as a confidence interval, I = [ξr, ξ

U ], where ξU is the

same as the maximized expected utility of MV efficient portfolio given λ if EU(·) is

the quadratic expected utility function. This is due to the fact that when there is no

estimation error, the maximized expected utility evaluated at these exact moments

dominates all values generated by π̌b, b = 1, 2, · · · , B.

The confidence interval has a nice interpretation as a measure of uncertainty (see
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Bewley, 1988). Suppose an investor has high uncertainty aversion in the portfolio

selection problem. Then, s/he will select relatively low τ , i.e., ξr with a small value

of r, and use a (1 − r)% confidence interval. Since τ ≡ ξr represents an investor’s

strength of belief, we can correspond ξr with a large value of r, with investor who has

less uncertainty in estimation, and vice-versa. Garlappi, Uppal, and Wang (2004)

used the notion of the confidence interval to explain investor’s aversion toward un-

certainty using a multi-prior approach, and showed that their estimated portfolio

weights shrink toward the weights of minimum variance portfolio more than those of

empirical Bayes-Stein portfolio. While recent studies based on the empirical Bayes-

Stein estimator tried to estimate admissible moments at the first stage and then

optimize the portfolio weights by the MV principle, weights achieved by minimizing

CE objective function subject to sets of constraints are shrunk directly to an appro-

priate prior weights, q. Moreover, as Frost and Savarino (1986) emphasized, there

is no certain way to select a particular informative prior in Bayesian decision rules.

One can readily choose alternative informative priors for the Bayes-Stein estimator

and obtain different type of shrinkage estimators for portfolio weights by calculating

somewhat complex predictive density. However, instead of choosing alternative in-

formative priors, one can choose an appropriate prior weight vector q, and minimize

the CE measure to estimate portfolio weights which also has the shrinkage interpre-

tation. Thus, we can say that CE measure works directly as shrinkage estimator of

portfolio weights in asset allocation problem.

The MV criterion has good performance as far as returns are driven by an ellip-

tical distribution, such as, normal, Student’s t and Levy distributions. Chamberlain

(1983) showed that the MV approximation of the expected utility is exact for all

utility functions for an elliptical distribution. Thus, for simplicity, we consider the

maximization of the quadratic expected utility function given in (4), i.e.,

max
π
EU(π,R, λ) = max

π

[
π′m− λ

2
π′Σπ

]
(18)

subject to

π ≥ 0, and π′1N = 1.

One can use bootstrap or Monte-Carlo methods to estimate a distribution of ξ

in (16), i.e., resampling T ×N samples for B times from the empirical distribution,

F̂ (R). Let these resampled series be R̃(b), b = 1, 2, · · · , B. Then, π̌(b) and ξ(b) can be

calculated as follows
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π̌(b) = arg max
π

[
π′m̃(b) − λ

2
π′Σ̃(b)π

]
, (19)

ξ(b) = π̌′(b)m̂− λ

2
π̌′(b)Σ̂π̌(b), (20)

where m̂ and Σ̂ are the sample mean and sample covariance matrix estimated from

original return data R, and m̃(b) and Σ̃(b) are calculated from simulated data R̃(b).

The empirical distribution of ξ can be estimated based on ξ(b), b = 1, 2, · · · , B. Then,

the CE minimization problem can be written as

min
π

N∑
i=1

πi ln(πi/qi) (21)

subject to

π′m̂− λ

2
π′Σ̂π ≥ Ĝ−1(r), π ≥ 0, and π′1N = 1, (22)

where Ĝ(·) denotes the empirical distribution function of ξ. Under the assumption

of smooth expected utility function in (18), it is straightforward to solve the opti-

mization problem minimize (21)-(22) by classical gradient based routine. This is in

contrast to the Leontief utility function discussed in Section 3.2, for which no easy

solution is available.

Using the monthly data given in Michaud (1998, p.14) on eight international

equities, Figure 2 shows the shrinkage effect of minimizing CE portfolio weights when

q is chosen as equally weighted portfolio. Points A, B, and C denote MV efficient,

minimum CE and equally weighted portfolios, respectively, with λ = 0.06. Standard

deviations and means (monthly) associated with these portfolios are (2.599, 1.131),

(3.006, 1.146), and (3.459, 1.168), respectively. Solid line denotes maximized expected

utility indifference curve under MV efficient portfolio, and broken line represents

that of CE portfolio at 0.2 quantile level (r = 0.2). Mixed line is the MV efficient

frontier. Statistically equivalent points, (
√

π̌′(i)Σ̂π̌(i), π̌
′
(i)m̂), i = 1, 2, · · · , 500 for the

MV efficient portfolio are represented by small dots. We note that minimization of

CE shrinks MV efficient portfolio (point A) toward the more diverse equally weighted

portfolio (point C). The degree of shrinkage depends on τ , the investor’s degree of

uncertainty aversion.

[Figure 2]

Figure 3 shows non-parametric kernel density for ξ based on 500 data points. The

shape of the density is clearly negatively skewed. Since ξMV = 1.131 − 0.06/2 ×
2.5992 = 0.928 and ξ0.2 = 0.874, 80% confidence interval is given by [0.874, 0.928].
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It can be checked that ξCE
0.2 = 1.146 − 0.06/2 × 3.0062 ' 0.876, is very close to the

0.2 quantile of ξ from Figure 3. That is, the maximized utility value of point B in

Figure 2 is “almost” the same as 0.2 quantile of ξ.

[Figure 3]

Next we use data from Kenneth French’s website ( http://mba.tuck.dartmouth

.edu/pages/faculty/ken.french/ ). These are monthly equal-weighted returns for

health, utility, and others industry portfolios for the period January 1970 to May

2005. For this data the mean and covariance matrix are given by (1.551, 1.156, 1.215)′

and 


57.298 12.221 33.026

12.221 13.168 11.814

33.026 11.814 27.952


 ,

respectively. Figure 4 shows contour curves of −∑N
i=1 πi ln πi for the three assets

(N = 3) on the monthly portfolio standard deviation-mean plane. We consider every

possible combination of weights π1, π2 and π3, each taking 50 equally spaced values in

(0, 1), and satisfying
∑N

i=1 πi = 1. The upper envelope curve in Figure 4 corresponds

to the set of MV efficient portfolio. The point where
∑N

i=1 πi ln πi takes highest value

represents equally weighted portfolio. The smoothness of each contour curve ensures

existence of a unique solution if we are to solve the minimization problem (21)-(22)

with q = N−11. Figure 5 shows contour curves of −∑N
i=1 πi ln(πi/π

min
i ), where πmin

is portfolio weights for minimum variance portfolio. We can see that the largest value

of the function corresponds to minimum variance portfolio. Since minimum variance

portfolio does not take account of the portfolio mean value, contour graph of Figure

5 is sensitive to the mean values compared to that in Figure 4. Thus, by minimizing

CE with q = πmin, it shrinks toward minimum variance portfolio and at the same

time takes care of the portfolio mean values.

[Figure 4]

[Figure 5]

4 Generalized cross entropy method

When asset managers are allowed to sell short, the models presented in the previous

section cannot be used directly. Eliminating the no-short-selling constraints π ≥
0 from (15) might lead to non-existence of the objective function (14), since the

function ln(·) is defined only for non-negative values. In this situation generalized
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cross entropy (GCE) method proposed by Golan, Judge and Miller (1996, p.77)

can be used allowing for negative portfolio weights for some assets. Let us define

a discrete probability distribution pi = (pi1, pi2, · · · , piM)′ , i = 1, 2, · · · , N over

[l, u], a set of equally distanced discrete points z = (z1, z2, · · · , zM)′. Similarly, let

ωi = (ωi1, ωi2, · · · , ωiM)′ be a discrete prior probability distribution for each prior qi

over z. The portfolio weights, then, can be represented by

π = Zp =




z′ 0 0 0 0

0 z′ 0 0 0

0 0 z′ 0 0
. . .

0 0 0 0 z′







p1

p2

...

...

pN




.

In the quadratic expected utility case, we can consider the following GCE mini-

mization problem instead of the CE minimization problem given in (21)-(22) to allow

for short-selling, i.e.,

min
p∈P

N∑
i=1

M∑
m=1

pim ln(pim/ωim) (23)

subject to

(Zp)′m̂− λ

2
(Zp)′Σ̂(Zp) ≥ Ĝ−1(r)

p′i1M = 1, i = 1, 2, · · · , N,

(Zp)′1N = 1,

where Ĝ(·) is the empirical distribution function of the maximized expected utility

ξ in (16). If we let p̂ be the solution to (23), each π̂i for i-th asset (i = 1, 2, · · · , N)

can be calculated by

π̂i = z′p̂i =
M∑

m=1

zmp̂im.

At this stage, it is worthwhile to mention two important points about GCE

portfolio selection problem. First, one has to set the support [l, u] in such a way that

the solution of GCE portfolio selection problem yields appropriate negative weights.

For example, one can simply set [l, u] = [−1, 1] and consider 11 equally distanced

discrete points, z = (−1.0,−0.8,−0.6, · · · , 0.6, 0.8, 1.0)′. However, it may not lead

to appropriate weights if the support [l, u] is not wide enough to generate the MV

portfolio weights. Since GCE portfolio is equivalent to that of MV efficient portfolio

when input estimates are exact, the MV efficient portfolio should be in the set {π|π =

Zp, p ∈ P}. Note that, theoretically, MV portfolio weights can be any numbers in
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the real line. Thus, the support [l, u] has to be wide enough to generate MV portfolio

weights. Second, ωim in (23) can be interpreted as the given discrete prior for the

original prior qi over z, which should be determined before estimation procedure.

However, only one qi for each i = 1, 2, · · · , N is known before estimation stage, for

example, it can be that of minimum variance or equally weighted portfolio. Thus,

choosing ωim, m = 1, 2, · · · ,M for a qi is not easy. We choose ωi = (ωi1, ωi2, · · · , ωiM)′

using the ME principle, and maximize −∑M
m=1 ωim ln ωim with respect to ωi and side

conditions
∑M

m=1 zmωim = qi and
∑M

m=1 ωim = 1. This ωi provides a most uniform

(largest variance) probability distribution and an uncertainty measure for each of

the qi (i = 1, 2, · · · , N) over z. Therefore, our choice is not so arbitrary, and as we

will see in our empirical application, it works quite well. The unique solution of the

above optimization problem will have expressions similar to those in (11).

5 Empirical application

To illustrate the practical usefulness of our methodology, we consider an application

of maximum entropy portfolio selection approach using eight international equity

indices. The returns are computed from the month-end US dollar value for the

period, December 1969 to July 2005. The indices are for the United States, Canada,

Italy, Japan, United kingdom, Switzerland and Germany. Data are from Morgan

Staney Capital International (MSCI). The number of observation is 428. Summary

statistics for the data are presented in Table 1.

[Table 1]

We compare the performance of the following asset allocation models discussed

earlier: MV efficient portfolio (Markowitz, 1952) (MV); empirical Bayes portfolio

(Jorion, 1986) (EB); Bayes with diffuse prior (BDP); minimum variance portfolio

(MinV); equally weighted portfolio (EQ); resampled efficient portfolio (Michaud,

1998) (RS); two cases of cross entropy (CE) portfolio, one (CE1) with prior weight

vector q corresponding to the equally weighted portfolio and for the other (CE2),

q comes from the minimum variance portfolio. For all models except for EQ both

with- and without-short-sale case are considered. Those with-short-sales, the port-

folios are computed using generalized CE (GCE), and will be denoted by MVs, EBs,

BDPs, MinVs, RSs, CEs1 and CEs2, respectively. Since Frost and Savarino (1986)

and Jorion (1986) used the empirical Bayes procedure with shrinkage toward equally

weighted and minimum variance portfolios, respectively, we expect CE1 and CE2 to

generate similar results to theirs.
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In order to analyze portfolio performance we use “rolling window” scheme. We

consider four window lengths, W = 24, 48, 60, 120, months and estimate parameter

values over each W and all asset allocation models. Using the estimated parameters,

optimal portfolio for each considered model is calculated. The portfolio return for

next period can then be obtained by holding the portfolio with these weights over the

next period. Since we deal with monthly return data out-of-sample holding period

is a month. We repeat this procedure by moving the window for the next period,

i.e., dropping the observation for the beginning month and including the data for

the next month until we reach the last (428th) observation.

To evaluate the performance of each model, we use two evaluation measures,

the Sharpe ratio (SR) and the certainty equivalent return (CEQ). Each evaluation

measure is calculated at both in- and out-of-sample cases. For the in-sample case,

evaluation measures are based on the estimated parameters over the chosen window.

The average of in-sample estimate of the SR is given by

SRin =
1

(T −W )

T∑
t=W

π̂′tm̂t√
π̂′tΣ̂tπ̂t

, (24)

where m̂t, Σ̂t, and π̂t denote, respectively, the estimates of the mean and the covari-

ance matrix, and the portfolio weight vector for the window, [t−W + 1, t]. For the

out-of-sample case the returns of the resulting portfolio depend on the next period

returns of each asset. Following rolling window scheme, the out-of-sample portfolio

return at time t + 1 can be calculated by µ̂t+1 = π̂′tRt+1, where Rt+1 denotes the

returns at time t + 1. The out-of-sample mean, variance, and SR of returns can be

written, respectively, as

m̃ =
1

(T −W )

T∑
t=W

µ̂t, (25)

σ̃2 =
1

(T −W − 1)

T∑
t=W

(µ̂t − m̃)2 , (26)

SRout =
m̃

σ̃
. (27)

For the other evaluation measure, the certainty equivalent return, we assume that

the first and second moments of return can summarize an investor’s preference, and

we define CEQ as

CEQ = π′m− λ

2
π′Σπ, (28)
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where λ is the risk aversion parameter. The CEQ averages for the in- and out-of-

sample cases are given, respectively, by

CEQin =
1

(T −W )

T∑
t=W

(
π̂′tm̂t − λ

2
π̂′tΣ̂tπ̂t

)
, (29)

and

CEQout = m̃− λ

2
(σ̃)2 , (30)

where m̃ and σ̃ are defined in (25) and (26).

We evaluate portfolio performance for five different values of the risk aversion

parameter, namely, λ = 0.07, 0.10, 0.17, 0.51, 1. However, since the qualitative results

regarding the comparison of different portfolio formation techniques are quite similar

for all the values of λ, we present the results only for λ = 0.10. The results for

other values of λ are available from authors. In Table 2, we present the results for

window length W = 24, 48 and the results for W = 60, 120 are given in Table 3.

For each window length there are some interesting common results: (i) when short-

sales are not allowed, MV performs the best in terms of both SR and CEQ among

all considered models for the in-sample case. When short-sales are allowed, MVs

performs better than MV; their out-of sample performances, however, are very poor.

We observe that SR and CEQ of MVs are uniformly lower than any other models for

the out-of-sample case; (ii) EQ has higher values of out-of-sample SR and CEQ than

MVs. This implies that classical MV portfolio’s out-of-sample performances are not

good. These results agree with those of Jorion (1985) and DeMiguel, Garlappi, and

Uppal (2005) who compared the performances of EQ and MVs; (iii) as Frost and

Savarino (1988) and Jagannathan and Ma (2003) demonstrated, imposing short-sales

constraints helps to improve the out-of-sample performance for MV, EB and MinV;

(iv) for CE1 and CE2, as expected, the in-sample SR and CEQ values monotonically

increase with the value of r, i.e., as the degree of investor’s belief for the sample

mean and covariance increases. In-sample SR and CEQ of CE2 are always higher

than those of MinV, and also those of EB for certain high values of r. This is due to

the fact that the degree of shrinkage effects of CE2 at certain high quantile values is

lower than those of EB. For example, since CE2 works as shrinkage rule from MV to

MinV, resulting values of SR and CEQ should be located between those of MV and

MinV. The same argument applies to CE1. SR and CEQ values of CE1 should be

between those of MV and EQ. We can see that for the in-sample case, SR and CEQ

values move toward those of MV as r increases. And as r decreases, SR and CEQ

values of CE1 and CE2 move toward those of EB and EQ, respectively. However,

for the out-of-sample situations, we do not notice any particular orderings.
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As we can see in Tables 1 and 2 the results for CEs1 and CEs2 are very similar to

those of CE1 and CE2. We, therefore, summarize the results for without-short-sale

only. For small window length (W ), mean and covariance estimates are likely to have

large estimation errors. When we have W = 24, the ratio of W to N , W/N = 24/8 =

3, is relatively low, and this case could be thought of as asset allocation problems with

relatively large number of assets (say, N = 500 and W = 1500). As Table 2 shows,

EQ has higher out-of-sample SR and CEQ values than those of MV, and, moreover,

SR values of EQ is even higher than those of EB and MinV. These surprising results

are due to imprecision of sample mean and sample covariance. Indeed, if one assume

all the assets have the same mean, variance and correlation, the resulting optimal

portfolio is EQ portfolio. In such a case, the out-of-sample performance can be

improved by choosing q that of EQ rather than of MinV portfolio.

The out-of-sample CEQ of CE1 for r = 0.5, W = 24 is 0.0722 which is the

second highest value among all considered models. On the other hand, the poor

out-of-sample performance of CE2 shows that choosing MinV portfolio as q is not

enough to improve the performance. As we increase the window length W from 24 to

48, 60 and 120, we find that CEQ values of CE1 are lower than that of MV (Tables

2 and 3). This better performance of MV is due to increased accuracy of the sample

covariance estimates with relatively larger number of observations. For larger value

of W , the performance of CE2 is also much improved due to lower sampling errors

and shrinkage towards the MinV portfolio.

When W = 60, CE2(r = 0.5) has the highest out-of-sample SR and CEQ, and the

difference of CEQ values between CE2(r = 0.5) and EB is 0.3193− 0.3024 = 0.0169.

Also all SR and CEQ values of CE2 are higher than those of CE1. When W = 120,

CE2(r = 0.2) performs the best. The difference of CEQ values between CE2(r = 0.2)

and EB is 0.3197− 0.3145 = 0.0052, which is lower than 0.0169 (for W = 60). This

decrease may be due to reduced in sampling errors resulting from larger window

length.

Michaud (1998)’s resampled efficient portfolio (RS) performs relatively well when

W is small, however, as W increases, the performance becomes worse. Since RS is cal-

culated by taking sample average of resampled portfolios, it leads to well-diversified

allocation, and it shares similar diversification characteristics of CE1. However, since

with larger sample size, the sample covariance can be estimated with high degree of

precision more diversified portfolios may not lead to improved CEQ values. From

Table 3, for W = 120, the CEQ of RS is 0.2364 which is better than the CEQ of CE1

for all values of r but lower than those of CE2. On the other hand, the out-of-sample

performance of RSs are not as good as RS and very similar to MVs for all values of

W .
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Overall, we can say that our CE1 portfolios perform better in terms of SR and

CEQ values than the classical MV and EB procedure with small number of observa-

tions. With relatively large number of observations, we can estimate the covariance

matrix with more precision, and in that case CE2 portfolios perform very well.

[Table 2]

[Table 3]

To get an idea of the structure of portfolios obtained using our CE minimization

technique, we plot the weights that would be assigned to the United States market

over the each out-of-sample period. Four components of Figure 6 represent portfolio

weights of the United States market in case of no short-selling. In Figure 6(i) we

present weights for CE1(r = 0.2, 0.5) and MV models when W = 24. We note that

although the direction of fluctuations of weights are very similar, both the weights of

CE1 are more stable than those of MV which have high fluctuation over the whole

interval [0, 1]. Weights of CE1 vary roughly above 1/8 = 0.125 (the equal weight

with 8 assets), shown by a solid horizontal line in the graph. This leads to higher

SR and CEQ values of CE1. CE1(r = 0.5) weights are relatively more volatile than

for r = 0.2. The later case represents investor’s higher degree of uncertainty that

leads to more shrinkage toward equally weighted portfolio. Other graphs in Figure 6

are self-explanatory. Briefly, CE1(r = 0.5) weights are more stable than EB weights

and are closer to those of RS in (ii). In Figure 6(iii), where we display the graph for

W = 120, we note that with larger window length, MV weights are relatively less

volatile than what we noted in (i) and (ii), compared to those of CE2 for r = 0.2 and

0.1, both of which give almost identical result. Finally, Figure 6(iv) shows that the

weights of EB are almost identical to those of CE2(r = 0.2) as expected, however,

EB has smaller SR and CEQ values than CE2(r = 0.2) as we noted earlier from

Table 3.

In Figure 7, we report generalized cross entropy (GCE) portfolio weights of the

United States market when short-selling is allowed, i.e., without putting positivity

constraints to the portfolio weights. From Figure 7(i) and (ii) with W=24, most of

CEs1 have roughly the same weight as in the equally weighted portfolio, i.e., 0.125.

However, for the MVs, RSs and EBs, the degree of fluctuation of portfolio weights

tends to increase with short-selling. For W = 120 in Figures 7(iii) and (iv), the

weights for GCE portfolios are more stable compared to those of MVs and RSs.

This behavior is quite different from those obtained in Figures 6(iii) and (iv) with

no-short-sale.

[Figure 6]
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[Figure 7]

6 Concluding Remarks

The Markowitz MV portfolio optimization theory is based on exact values of means,

variances and covariances of assets. When the sample mean and covariance matrix

are used to calculate portfolios in MV principle, the portfolio weights have extreme

values and out-of-sample performances are not very good. To take care of these

shortcomings, many empirical Bayes-Stein type estimation approaches have been

proposed in the literature. These are known as shrinkage estimation, and they per-

form relatively better. However, there are many ways to choose the prior. Depending

on chosen prior, resulting predictive densities will be different. And also derivations

and estimations of predictive densities sometimes require complex procedures. We

provide an alternative way of portfolio selection model by introducing cross-entropy

(CE) and generalized CE (GCE) as the objective functions. Since CE and GCE

measures can be also interpreted as shrinkage rule, our methods can be thought of as

direct shrinkage towards any reasonable portfolio. The degree of shrinkage is given

by certain quantile values of resampled maximized (quadratic) expected utility which

is designed to capture the imprecision of the mean and covariance matrix estimates.

Our empirical results demonstrate that the out-of-sample performances of our

suggested portfolio selection procedure, given certain quantile values of maximized

expected quadratic utilities, are superior to those of the classical MV or empirical

Bayes investment rules.

There are two notable aspects of our proposed portfolio selection procedure.

First, the prior (target) portfolio weights can be chosen freely. One can choose

more reasonable prior weights whose efficiency is investment relevant. For example,

a capitalization-weighted prior might be a good candidate in practice. Second, our

method can be immediately extended to the more general utility function that in-

corporates higher moments, such as, asymmetry and leptokurtosis of asset returns.

And that we would like to pursue in our future research.
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TABLES

Table 1: Sample means, variances and the correlation matrix

Country USA Canada Italy France Japan UK Swiss Germany
Mean 0.9707 0.9823 0.7719 1.0347 1.1508 0.9789 1.1886 1.0062

Variance 19.9114 31.0974 53.0035 42.2422 40.6479 40.4327 28.5035 38.2843
Correlation 1.0000

0.7254 1.0000
0.2987 0.3479 1.0000
0.5025 0.4867 0.4949 1.0000
0.3104 0.3281 0.3485 0.3924 1.0000
0.5412 0.5239 0.3791 0.5748 0.3737 1.0000
0.5253 0.4786 0.4095 0.6390 0.4273 0.5793 1.0000
0.4762 0.4154 0.4601 0.6719 0.3634 0.4778 0.6871 1.0000
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Table 2: In- and out-of-sample performance of asset allocation models

W = 24 W = 48
In-Sample Out-of-Sample In-Sample Out-of-Sample
SR CEQ SR CEQ SR CEQ SR CEQ

Short sales not allowed
MV 0.3773 0.5253 0.2333 -0.0300 0.3416 0.4614 0.2359 0.0853
BDP 0.3768 0.5241 0.2339 -0.0190 0.3414 0.4612 0.2362 0.0883
EB 0.3149 0.2535 0.2257 0.0567 0.2872 0.2567 0.2420 0.1463
EQ 0.2201 -0.4728 0.2339 0.0513 0.2177 -0.2108 0.2358 0.0579

MinV 0.2556 0.0253 0.2211 0.0593 0.2676 0.1833 0.2413 0.1386
RS 0.3510 0.3879 0.2452 0.0782 0.3257 0.3914 0.2382 0.1062

CE1 (r = 0.1) 0.2359 -0.3212 0.2340 0.0593 0.2410 -0.0602 0.2328 0.0554
CE1 (r = 0.2) 0.2587 -0.1537 0.2362 0.0712 0.2620 0.0609 0.2314 0.0597
CE1 (r = 0.5) 0.3101 0.1630 0.2379 0.0722 0.2981 0.2537 0.2321 0.0773
CE1 (r = 0.8) 0.3466 0.3655 0.2392 0.0573 0.3220 0.3691 0.2369 0.1016
CE1 (r = 0.9) 0.3583 0.4284 0.2396 0.0480 0.3300 0.4066 0.2394 0.1114
CE2 (r = 0.1) 0.2676 0.0671 0.2162 0.0284 0.2689 0.1879 0.2416 0.1445
CE2 (r = 0.2) 0.2752 0.0996 0.2102 -0.0076 0.2729 0.2028 0.2401 0.1425
CE2 (r = 0.5) 0.3031 0.2208 0.2048 -0.0649 0.2930 0.2787 0.2392 0.1455
CE2 (r = 0.8) 0.3373 0.3711 0.2102 -0.0718 0.3173 0.3702 0.2378 0.1271
CE2 (r = 0.9) 0.3511 0.4286 0.2139 -0.0643 0.3261 0.4058 0.2394 0.1281

With short sales
MVs 0.5544 1.6812 0.1646 -2.1317 0.4335 0.9282 0.1615 -0.7192
BDPs 0.5534 1.6708 0.1671 -1.9446 0.4330 0.9270 0.1632 -0.6844
EBs 0.4306 0.8403 0.1934 -0.2324 0.3271 0.4455 0.2123 0.0106

MinVs 0.2853 0.2428 0.1920 -0.1172 0.2848 0.2879 0.2133 0.0044
RSs 0.5553 1.4152 0.1651 -2.0414 0.4351 0.9065 0.1621 -0.6994

CEs1 (r = 0.1) 0.2201 -0.4728 0.2339 0.0513 0.2177 -0.2108 0.2358 0.0579
CEs1 (r = 0.2) 0.2201 -0.4728 0.2339 0.0513 0.2194 -0.2035 0.2342 0.0528
CEs1 (r = 0.5) 0.2202 -0.4707 0.2337 0.0508 0.2415 -0.0748 0.2230 0.0062
CEs1 (r = 0.8) 0.2625 -0.1305 0.2234 0.0112 0.3014 0.2703 0.2135 -0.0227
CEs1 (r = 0.9) 0.3306 0.2790 0.2174 -0.0469 0.3348 0.4425 0.2130 -0.0241
CEs2 (r = 0.1) 0.2853 0.2428 0.1920 -0.1172 0.2848 0.2880 0.2133 0.0045
CEs2 (r = 0.2) 0.2853 0.2428 0.1920 -0.1172 0.2848 0.2880 0.2133 0.0045
CEs2 (r = 0.5) 0.2853 0.2428 0.1920 -0.1172 0.2889 0.3036 0.2101 -0.0082
CEs2 (r = 0.8) 0.3078 0.3187 0.1856 -0.1589 0.3089 0.3914 0.1972 -0.0569
CEs2 (r = 0.9) 0.3472 0.4964 0.1713 -0.2879 0.3306 0.4814 0.1910 -0.0933

Note: The table represents in-sample and out-of-sample results for λ = 0.10. SR and CEQ denote
Sharpe ratio and certainty equivalence measure, respectively.
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Table 3: In- and out-of-sample performance of asset allocation models

W = 60 W = 120
In-Sample Out-of-Sample In-Sample Out-of-Sample
SR CEQ SR CEQ SR CEQ SR CEQ

Short sales not allowed
MV 0.3366 1.2129 0.2595 0.1961 0.3344 0.5165 0.2742 0.2432
BDP 0.3364 1.2089 0.2600 0.1998 0.3343 0.5165 0.2744 0.2447
EB 0.2890 0.8905 0.2763 0.3024 0.2955 0.3813 0.2819 0.3145
EQ 0.2244 0.7834 0.2625 0.1852 0.2470 0.0828 0.2514 0.1344

MinV 0.2755 0.8370 0.2768 0.3039 0.2891 0.3573 0.2815 0.3118
RS 0.3246 1.1538 0.2651 0.2279 0.3262 0.4830 0.2714 0.2364

CE1 (r = 0.1) 0.2507 0.8729 0.2614 0.1898 0.2769 0.2450 0.2505 0.1409
CE1 (r = 0.2) 0.2698 0.9376 0.2626 0.2033 0.2889 0.3053 0.2535 0.1583
CE1 (r = 0.5) 0.3007 1.0462 0.2654 0.2254 0.3099 0.4079 0.2572 0.1788
CE1 (r = 0.8) 0.3207 1.1253 0.2689 0.2458 0.3239 0.4720 0.2646 0.2099
CE1 (r = 0.9) 0.3271 1.1550 0.2670 0.2366 0.3279 0.4898 0.2674 0.2210
CE2 (r = 0.1) 0.2756 0.8374 0.2767 0.3035 0.2898 0.3598 0.2818 0.3134
CE2 (r = 0.2) 0.2770 0.8434 0.2756 0.2995 0.2921 0.3683 0.2832 0.3197
CE2 (r = 0.5) 0.2938 0.9167 0.2798 0.3193 0.3051 0.4165 0.2815 0.3111
CE2 (r = 0.8) 0.3148 1.0258 0.2775 0.3048 0.3202 0.4715 0.2822 0.3071
CE2 (r = 0.9) 0.3222 1.0759 0.2729 0.2800 0.3252 0.4890 0.2816 0.2994

With short sales
MVs 0.4086 1.7626 0.2076 -0.2586 0.3669 0.6468 0.2401 0.0243
BDPs 0.4083 1.7482 0.2091 -0.2400 0.3667 0.6467 0.2406 0.0289
EBs 0.3112 0.9385 0.2621 0.2425 0.3038 0.4218 0.2785 0.2985

MinVs 0.2862 0.8407 0.2662 0.2573 0.2962 0.3934 0.2798 0.3030
RSs 0.4103 0.7792 0.2113 -0.2498 0.3676 0.6441 0.2404 0.0247

CEs1 (r = 0.1) 0.2244 -0.1300 0.2624 0.1849 0.2511 0.1017 0.2491 0.1247
CEs1 (r = 0.2) 0.2266 -0.1208 0.2588 0.1696 0.2586 0.1422 0.2445 0.1052
CEs1 (r = 0.5) 0.2517 0.0195 0.2457 0.1193 0.2873 0.2947 0.2385 0.0860
CEs1 (r = 0.8) 0.3064 0.3135 0.2454 0.1349 0.3153 0.4307 0.2414 0.1059
CEs1 (r = 0.9) 0.3314 0.4383 0.2423 0.1179 0.3274 0.4870 0.2426 0.1106
CEs2 (r = 0.1) 0.2862 0.3062 0.2662 0.2572 0.2962 0.3934 0.2798 0.3030
CEs2 (r = 0.2) 0.2862 0.3062 0.2662 0.2572 0.2967 0.3953 0.2792 0.3007
CEs2 (r = 0.5) 0.2889 0.3162 0.2611 0.2359 0.3006 0.4099 0.2762 0.2898
CEs2 (r = 0.8) 0.3027 0.3735 0.2465 0.1760 0.3123 0.4546 0.2677 0.2513
CEs2 (r = 0.9) 0.3224 0.4523 0.2398 0.1400 0.3225 0.4932 0.2602 0.2145

Note: The table represents in-sample and out-of-sample results for λ = 0.10. SR and CEQ denote
Sharpe ratio and certainty equivalence measure, respectively.

26



Figure 1: Maximum diversification problem with Leontief utility function
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Figure 2: Shrinkage effects of minimizing cross-entropy
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Note: The MV efficient frontier is illustrated by the mixed line. The 500 statistically equivalent
portfolios associated with a MV efficient portfolio ‘A’ are represented by dot points. ‘B’ and ‘C’

denote minimum CE and equally weighted portfolios, respectively.
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Figure 3: Non-parametric density for ξ
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Note: Non-parametric kernel density for ξ is estimated based on 500 data points in Figure 2, and
using optimal bandwidth = 0.0068.
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Figure 4: Contour curves of −∑N
i=1 πi ln πi

Figure 5: Contour curves of −∑N
i=1 πi ln(πi/π

min
i )
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Figure 6: Weights to the United States: without short-selling
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Figures(i)-(ii) and (iii)-(iv) illustrate portfolio weights assigned to the United States market for
W = 24 and W = 120, respectively, when short-selling is not allowed.
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Figure 7: Weights to the United States: with short-selling
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Figures(i)-(ii) and (iii)-(iv) illustrate portfolio weights assigned to the United States market for
W = 24 and W = 120, respectively, when short-selling is allowed.
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