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Options are believed to contain unique information on the risk-neutral moment

generating function (MGF) or the risk-neutral probability density function (PDF) of the

underlying asset. This paper applies the wavelet method to approximate the implied

risk-neutral MGF from option prices. Monte Carlo simulations are carried out to show

how the risk-neutral MGF can be obtained using the wavelet method. With the

Black–Scholes model as the benchmark, we offer a novel method to reveal the implied

MGF, and to price in-sample options and forecast out-of-sample option prices with the

estimated MGF.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

In the early 1970s, Black and Scholes (1973) published the seminal Black–Scholes option pricing formula, one of the
most important advances in option pricing. However, since the 1987 stock market crash there is growing empirical
evidence that the market differs systematically from the Black–Scholes paradigm. There are mainly two stylized facts:
(1) The Black–Scholes model assumes that the volatility of the underlying security is constant. However, empirical
evidence shows the implied volatilities of traded options vary across strike prices and exhibit a smile or skewed shape
across moneyness, the ratio between strike and underlying asset price. (2) The Black–Scholes model assumes that the stock
price follows geometric Brownian motion, thus the risk-neutral probability density function (PDF) of the stock price is
lognormal. However, researchers observe excess kurtosis and negative skewness of unconditional returns of the underlying
security, which is inconsistent with the lognormality assumption. The first abnormality is related to the second one, since
statistics such as skewness, and kurtosis can be derived if we know the entire risk-neutral PDF. Therefore, the central
empirical issue in option pricing is what distributional hypothesis is consistent with underlying asset prices and traded
option prices.

In this paper we are interested in estimating the implied risk-neutral moment generating function (MGF) of the
underlying asset from option prices. Little attention has been paid to this area in the literature, in contrast to the
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interest and development in extracting the risk-neutral PDF from option prices (see Section 2 and Taylor, 2005
for an excellent review). We try to back out the risk-neutral MGF using the wavelet method and price options
based on the pricing formula derived by Ma (2006b). Details of the MGF, the wavelet method, and the option
pricing formula of Ma (2006b) will be provided in the following sections. The contributions of this paper are as
follows.
1.
P
Jo
Although there is a one-to-one relationship between the MGF and the PDF, the MGF is more tractable in some cases. For
instance, when there are random jumps in the price process, the PDF will not have a closed form while for the MGF we
may expect an analytical expression (Ma and Vetzal, 1995).
2.
 The implied risk-neutral MGF obtained from our model is continuous while the implied risk-neutral PDF obtained from
methods such as the smooth spline method is discrete.
3.
 With the estimated risk-neutral MGF, out-of-sample options with different time-to-maturity, different strike prices and
even different underlying security prices can be calculated easily. This is contrary to existing risk-neutral distribution
(RND) estimation methods that can only be used to infer the distribution for a specific time. Therefore, the estimated
PDF can only be used to price out-of-sample options with a fixed expiry date. From a practical point of view, estimating
the risk-neutral MGF is more appealing.
4.
 It is well known that option prices contain rich information on the implied volatility, the preference parameter, the jump
process and the higher moments of the distribution. Based on the model of Ma (1992, 2006b), we are able to obtain the
statistical moments of the underlying asset distribution direct from the risk-neutral MGF. The preference parameter of
the utility function can also be revealed (Ma, 2006a).
5.
 There is no need for restrictions on the stochastic process of the underlying asset or prior assumptions on
the implied risk-neutral MGF. This ensures flexibility of the method. Furthermore, wavelet functions which can
represent any square integrable functions are used to approximate the MGF. This is very flexible compared
with the restrictive assumptions underlying a number of methods including the polynomial and the cubic spline
method.
6.
 Contrary to the kernel estimation method of Ait-Sahalia and Lo (1998) or the neural network method of Hutchinson
et al. (1994) and Garcia and Genc-ay (2000), the wavelet method does not require a large collection of data for a
reasonable level of accuracy. We need only a small sample of options to estimate the MGF. For example, we can use only
nine options with different strike prices on the same underlying asset with certain time-to-maturity to obtain a
reasonably accurate risk-neutral MGF. We note that the kernel estimation and neural network methods require several
thousand data points to obtain a reasonable level of accuracy.
7.
 Our technique avoids ill-posed inverse problems. According to Breeden and Litzenberger (1978), the
risk-neutral PDF gðXÞ can be obtained by differentiating the option pricing formula twice with respect to
the strike prices X. For example, suppose there are three European call option prices c1, c2, and c3 with
time to maturity t and strike prices of K � d, K , and K þ d, respectively. Let the riskfree interest rate be r. The
estimate of gðXÞ at the point X ¼ K is given by gðKÞ ¼ ertðc1 þ c3 � 2c2Þ=d

2 provided that d is small enough.
However, a major problem associated with this method is that the second derivative of the estimated call
pricing function may not be a good estimator for the second derivative of the true function. This is because
the option prices used for estimation are subject to perturbations and small errors of option prices will be
magnified when the denominator d2 is infinitely small. With the model in Ma (2006b), we avoid the problem by
transforming it into a least square evaluation and estimating the parameters of a linear series which make up the risk-
neutral PDF.
One may ask why the wavelet method is chosen instead of Fourier analysis. One of the reasons is that ‘in some cases
(e.g. fingerprints) wavelet analysis is much better than Fourier analysis in the sense that fewer terms suffice to
approximate certain functions’ (Bachman et al., 2002, p. 411). In addition, the Fourier series are a linear combination
of a series of sine and cosine functions, which are defined over the entire real axis. Due to the periodic properties
of the component sine and cosine functions, Fourier analysis is appealing in representing periodic functions.
However, for non-periodic functions such as financial time series, the Fourier methodology is less suitable since
there is little repetition within the sampled region. Therefore, wavelets, which are not restricted to a fixed shape or
position, are more effective in dealing with non-periodic functions or non-stationary data series such as financial time
series.

Wavelets as a mathematical analysis tool have been broadly applied in engineering including data-compression,
de-noising, edge-detection, earthquake prediction, and so on. However, the use of wavelets in finance and economics is
only a recent phenomenon. Despite this, wavelets are a very useful tool in financial and economics analysis as the examples
in the following sections demonstrate.

The rest of the paper is organized as follows. The next section provides an overview of existing methods to reveal the
risk-neutral PDF. We introduce wavelets in Section 3. Section 4 offers theoretical primitives on the risk-neutral MGF and
wavelets. Section 5 describes the model and methodology of the wavelet option pricing. Simulation and experimental
results are given in Section 6. Finally, Section 7 concludes.
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2. Revealing the risk-neutral PDF

The existing methods for revealing the risk-neutral PDF can be grouped mainly into two categories: parametric and non-
parametric ones. We start first with parametric methods.
1.
P
Jo
The first parametric approach is to fit the option pricing function or the implied volatility smile parametrically. The risk-
neutral PDF is then derived following the result of Breeden and Litzenberger (1978). To implement this approach, one
needs strike prices varying from zero to infinity continuously. However, option contracts are only traded at discrete
strike prices over a limited range. Therefore, most efforts have been focused on interpolating option prices within the
range of strike prices and extrapolating outside the range to estimate the entire distribution. See for instance, Shimko
(1993), Malz (1997), Bates (1991), and Bliss and Panigirtzoglou (2002).
2.
 An alternative approach is to specify a parametric stochastic process for the underlying asset price and the parameters
can be recovered using observed market option prices. The risk-neutral PDF can then be inferred from the stochastic
process. For instance, the classic Black and Scholes model assumes that the stock prices follow the geometric Brownian
motion with a constant risk-free rate and constant volatility implying a lognormal distribution for the stock prices.
Other examples include Duffie et al. (2000) and Bates (2000) for the jump-diffusion process and stochastic volatility
model.
3.
 The third approach assumes a parametric form for the risk-neutral PDF of the underlying asset directly, and the
parameters of the risk-neutral PDF can be estimated by minimizing the distance between the observed option prices
and the fitted prices based on the model. For example, Melick and Thomas (1997) assume a mixture of three lognormal
distributions for the implied PDF, and the estimation is carried out using the bounds on the American option prices. The
method is claimed to be flexible, general and direct.

Another strand of the literature utilizes non-parametric methods. Non-parametric methods are considered more flexible
since there is no prior restriction on the stochastic process of the underlying asset prices, the option pricing function, or the
return distributions. For example, Rubinstein (1994) proposes establishing a prior distribution as a guess of the risk-neutral
probabilities. The implied probability is inferred by minimizing the distance between the implied distribution and the prior
distribution. The approach is non-parametric in that any probability distribution is a possible solution. This method
requires a large amount of options so that the implied risk-neutral PDF is not dependent on the prior guess distribution.
Ait-Sahalia and Lo (1998) provide an option pricing formula non-parametrically with kernel regression and the
corresponding risk-neutral PDF is obtained numerically by differentiating option prices twice with respect to the strike
price. Neural networks have also been used in non-parametric option pricing in Hutchinson et al. (1994), Garcia and Genc-
ay (2000), and Genc-ay and Gibson (2007).

In summary, parametric methods need to make certain assumptions on the relations between variables or statistical
properties of the asset return distribution. This inevitably makes parametric methods more rigid. Non-parametric methods
are often more flexible. However, non-parametric methods are usually data intensive, requiring a large sample of traded
option prices in order to achieve a reasonable level of estimation accuracy. As will be discussed in the following sections,
the non-parametric wavelet option pricing model that we propose is very flexible but needs only a small sample of option
prices.

3. Wavelets: a brief overview

In this paper we propose an alternative to the methods reviewed above. We estimate the implied risk-neutral MGF
instead of the risk-neutral PDF and we utilize wavelets to approximate the implied MGF.

Although wavelets have not been widely applied in the financial and economic area, there is a growing literature in this
regard. Ramsey (1999) provides an extensive review on applying the wavelet analysis to financial and economic data. The
following are a few examples.
1.
 The first area of application is multi-resolution analysis or time-scale analysis (also known as time-scale
decomposition), which is powerful in revealing the relationship between economic variables and improving
forecasts. An early key article is Davidson et al. (1998), in which the authors apply multi-resolution analysis
on US commodity price behavior and obtain information on both the time location and the time scale of price
movements. In the paper, the authors propose that wavelet analysis may help forecast price movements. This point was
proven in Murtagh et al. (2004), whereby the authors examine several wavelet applications in time series prediction.
After studying wavelet-based multi-resolution autoregression models and single resolution approaches, the authors
conclude that wavelet-based multi-resolution approaches outperform the traditional single resolution approach in
forecasting. Ramsey and Lampart (1998a) use wavelets to analyze the relationship between the expenditure and income
at six different time scales and find that the relationship varies across time scales. Furthermore, the authors confirm that
(page 23) ‘the time-scale decomposition is very important for analyzing economic relationships and that a number of
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anomalies previously noted in the literature are explained by these means’. Ramsey and Lampart (1998b) conduct a
similar analysis on the relationship between money and domestic product. In a subsequent paper, Connor and
Rossiter (2005) carry out a wavelet-based scale approach to analyze commodity prices motivated by the fact
that ‘the dynamics of commodity markets have always been influenced by the interactions of traders with different
time horizons, who react to the arrival of new information in a heterogeneous manner’. Mitra (2006) also exploits
wavelets to perform multi-resolution analysis on the econometric relationship between money, output and price in the
Indian macroeconomy. More examples can be found in Genc-ay et al. (2002), Capobianco (2002), and Yousefi et al.
(2005).
2.
 The second area of application is de-noising financial time series data to reveal market trends. Gao and Ren (2005) use
wavelets to analyze the highly erratic Shanghai Stock Market Index and consider it effective in suppressing the noise in
the market index. Similarly, Antoniou and Vorlow (2005) apply wavelets to de-noise the FTSE-100 stock returns time
series and find evidence of ‘non-periodic cyclical dynamics’. More examples can be found in Genc-ay et al. (2002).
3.
 The third application concerns the estimation of growth models and function approximations. For example, Esteban-
Bravo and Vidal-Sanz (2007) propose a wavelet-based methodology for solving boundary value problems in growth
models. Their results show that the wavelet method provides a very good approximation. Wavelets are also well known
for their remarkable ability in approximating any function that belongs to L2

ðRÞ. In Park et al. (2005), a wavelet-based
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Fig. 1. Dilation and translation to the Haar mother wavelet.
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Bayesian method is exploited in function estimation. The authors conclude that ‘the wavelet procedure appears to do a
very good job at estimating both the function and the other parameters of the model, for all directions and noise levels
considered in the study’. A comparison with other existing methods suggests that the wavelet-based Bayesian method
outperforms the splines-based Bayesian approach in Antoniadis et al. (2004).
While wavelets have many useful properties, in this paper we are interested in one of the most basic features of the
wavelets, i.e. function approximation. Each wavelet function has its characteristic and is suitable to approximate different
types of functions. In our research, we consider a number of wavelets, including the Haar wavelet (Fig. 1), the Franklin hat
function (Fig. 2), and the Shannon wavelet (Fig. 3). We find that the Franklin hat function requires the smallest number of
terms to approximate the MGF at the same level of goodness of fit. Therefore, we use the Franklin hat function to derive the
risk-neutral MGF from option prices. With the estimated MGF, we will further carry out out-of-sample tests to demonstrate
the capability of the wavelet method in approximating functions of unknown forms.
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4. Theoretical primitives

4.1. MGF

The MGF of a continuous random variable x is defined as the bilateral Laplace transform of the PDF of the variable,

MðsÞ ¼

Z 1
�1

pðxÞe�xs dx, (1)

where pðxÞ is the PDF of x and s is a complex value in the complex plane. The PDF is uniquely determined by the inverse
Laplace transform of the MGF. In the risk-neutral world, the same relationship also holds. The definitions of the Laplace
transform and the inverse Laplace transform are provided in Appendix A.

4.2. The wavelet method

As the name suggests, a wavelet is a wave-like function. It is localized over a short interval and is zero except on that
short interval. The wavelet function oscillates around its average value (zero) over a short distance, and damps out very fast
outside the interval. A wavelet function must satisfy three criteria. (1) A wavelet must be square integrable; (2) the Fourier
transform ĉðf Þ of the wavelet function cðtÞ must satisfy the condition (Addison, 2002, p. 9):

R1
0 ðjĉðf Þj

2=f Þdfo1; and (3)
the wavelets integrate to zero, which ensures their oscillatory shape.

Unlike Fourier series, which have only sine and cosine basis functions, there is a large family of different wavelet basis
functions. Consider the simple case of a Haar wavelet. The Haar mother wavelet is defined as follows:

cðtÞ ¼
1 if 0pto1

2;

�1 if 1
2pto1;

0 otherwise:

8><
>: (2)

The function looks like a square wave. It has non-zero values over the short interval [0,1] and it disappears outside this
range. Two types of manipulations can be performed on the mother wavelet to change its shape and position to generate
other wavelets. The first type of manipulation is dilation (scaling), which squeezes or stretches a wavelet. The second type
is translation, which shifts the wavelets horizontally. In Fig. 1, the wavelet on the top is the mother Haar wavelet. In the
middle row, the mother wavelet is squeezed to half and stretched to twice the original width, respectively. In the bottom
row, the wavelet is shifted to the right and left, respectively. These wavelets are called generations of the mother wavelet
cðtÞ. For any arbitrary wavelet function cð�Þ 2 L2

ðRÞ, the generations cl;kð�Þ are given by cl;kðtÞ � 2l=2cð2lt � kÞ; l; k ¼

0;�1;�2; . . . . The parameter l determines the level of dilation or contraction and the parameter k governs the movement of
the wavelet along the horizontal axis.

The wavelet functions cl;kðtÞ can be chosen to be orthogonal to each other and are normalized. Therefore, cl;kðtÞ form an
orthonormal wavelet basis for L2

ðRÞ. Having defined the wavelet basis, we can represent any square integrable function xðtÞ

by adding up wavelet basis functions cl;kðtÞ over all integers l and k:

xðtÞ ¼
X1

l¼�1

X1
k¼�1

Tl;kcl;kðtÞ, (3)

where Tl;k are the wavelet coefficients and they can be obtained through multiplying the function xðtÞ with the basis
function cl;kðtÞ as follows:

Tl;k ¼

Z 1
�1

xðtÞcl;kðtÞdt. (4)

It may seem challenging to estimate the unknown function xðtÞ since we need to add up an infinite number of functions to
avoid information loss. Fortunately, the coefficients Tl;k converge to zero quickly as the parameters l and k increase so that
we can truncate the coefficients at some point. All we need from the wavelet series is a good MGF approximation that
captures enough information to allow us to price and forecast option prices.

As we have mentioned before, the Franklin hat function will be used in this paper. Although Franklin mother wavelets
are complicated, they can be deduced from a simple hat function defined as follows:

hðtÞ ¼
ð1� jtjÞ if � 1pto1;

0 otherwise;

(
(5)

with its Laplace transform mhðsÞ ¼ ððe
s=2 � e�s=2Þ=sÞ2. The dilated and translated versions of the hat function are given by

hl;kðtÞ � 2l=2hð2lt � kÞ; l; k ¼ 0;�1;�2; . . . . As a result, we can approximate function xðtÞ in terms of the Franklin hat function
hl;kðtÞ. Note that the Franklin hat function does not integrate to 0.

There exists a huge family of wavelet functions. Most of the wavelet literature seems to concur upon the position that
there is no best wavelet for a particular application. Most of the wavelet functions are probably able to approximate the
MGF under a trade-off between the level of accuracy and the length of computation time. Here, we follow the advice of
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Mallat (1999) who remarks: ‘The design of (the wavelet) must. . . be optimized to produce a maximum number of wavelet
coefficients that are close to zero.’ (Mallat, 1999, p. 241). We want fast computation since we deal with option prices and
the Franklin hat function delivers on this criterion. Furthermore, it has the properties of being symmetric, smooth, and
piecewise continuous, and it closely emulates the PDF of asset returns. We find that amongst the three types of wavelets we
have mentioned, the Franklin hat function provides for the best trade-off between accuracy and computation intensity. For
a detailed review on wavelets, see Hubbard (1998) and Chui (1992). A more formal and thorough treatment on wavelet
theory can be found in Daubechies (1992) and Bachman et al. (2002).
5. The model and methodology

5.1. The model

The model in this paper is based on Ma (2006b). The author derives a closed form formula for European call options in a
particular parameterization of the economy, which generalizes a number of option pricing models in the existing literature.
Assuming that the MGF for the logarithm of time T asset price ln ST is well defined, the option pricing formula is as follows:

CtðSt ;X; TÞ ¼ Xe�rðT�tÞL�1
fFT�tðsÞg ln

X

St

� �
, (6)

where t is the current time; the operation symbol L�1 denotes the bilateral inverse Laplace transform operator (see
Appendix A for more details); Ct is the time-t equilibrium price of the European call option; St is the underlying asset price
at time t; X is the strike price; T is the maturity date; r is the continuously compounded risk free interest rate; and
FT�tðsÞ � YT�t

ðsÞ=sðsþ 1Þ, where s is a complex value with ReðsÞ 2 ðx�;�1Þ and �x� is the highest defined statistical moment
for the underlying asset distribution, and YT�t

ðsÞ is the risk-neutral MGF of the logarithmic return ln ST=St . When T � t ¼ 1,
YðsÞ is the risk-neutral MGF for the rate of return per unit of time.

This model can be derived as follows (Ma, 2006b). Let y denote ln ST , GðeyÞ denote option payoff GðeyÞ ¼ ðey � XÞþ, and
pðyÞ denote the risk-neutral PDF for y. We have

erðT�tÞCtðSt ;X; TÞ ¼

Z
R

pðyÞGðeyÞdy

¼

Z
R
L�1
fS�s

t YT�t
ðsÞgðyÞGðeyÞdy

¼

Z 1
ln X
ðey � XÞ

1

2pi

Z sþi1

s�i1
YT�t
ðsÞeðy�ln StÞsds

" #
dy

¼
1

2pi

Z sþi1

s�i1
S�s

t YT�t
ðsÞ

Z 1
ln X

esyðey � XÞdy

� �
ds

¼
1

2pi

Z sþi1

s�i1
S�s

t YT�t
ðsÞ

Xsþ1

sðsþ 1Þ

" #
ds

¼
X

2pi

Z sþi1

s�i1
FT�tðsÞ

X

St

� �s

ds

¼ XL�1
fFT�tðsÞg ln

X

St

� �
; s 2 ðx�;�1Þ. (7)

The second equality follows from the fact that the MGF for y ¼ ln ST is given by S�s
t YT�t

ðsÞ, where YT�t
ðsÞ is the MGF for

ln ST=St . The sixth equality follows from the definition FT�tðsÞ � YT�t
ðsÞ=sðsþ 1Þ.

Note that because the time to maturity T � t is the power of the risk-neutral MGF YðsÞ, it can be modified arbitrarily to
T 0 � t0 for a different expiry date or different time to maturity in the out-of-sample forecast. In doing so, we assume that
stock returns are independent and identically distributed (iid) and that volatility is constant. These assumptions are valid
descriptions of the market for short time intervals. This flexibility is a unique feature of using the MGF representation for
the option pricing formula. It cannot be exploited when the risk-neutral PDF approach is employed.

Note also the fifth equality in (7) is valid only for s with ReðsÞo� 1. If the real part of s is greater than �1, the inverse
Laplace transform does not converge to the option prices.

As a special case, the Black–Scholes formula with a constant dividend-equity ratio l can be obtained by substituting the
risk-neutral MGF

YðsÞ ¼ e�ðr�l�s2=2Þsþðs2=2Þs2
(8)

for the rate of annual return into Eq. (6), where r represents the drift, and s stands for the volatility of the underlying stock
price.
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5.2. Methodology

In this section, we explain how we use Monte Carlo simulations to approximate the risk-neutral MGF with wavelets.
Option prices are first simulated according to the benchmark Black–Scholes model. We approximate the risk-neutral MGF
for the simulated option prices using the wavelet method outlined in Ma (2006b). The inferred MGF is then substituted into
the option pricing function (6) so that we can compare the fitted option prices with those from the Black–Scholes model.
Note that our model does not assume that the Black–Scholes model correctly describes the market. Instead the
Black–Scholes model is employed as a benchmark to demonstrate the effectiveness of the wavelet method. Therefore, even
if the traded option prices are determined by some unknown model, we can still back out the MGF with wavelets as we do
not make prior assumptions.

The experiments are conducted as follows:
1.
P
Jo
For an underlying asset with price St at time t, N different strike prices X ¼ fX1;X2; . . . ;XNg with a common time-to-
maturity T, the riskfree interest rate r, and volatility s, generate corresponding option prices Cbs

¼ fCbs
1 ;C

bs
2 ; . . . ;C

bs
N g

using the Black–Scholes formula.

2.
 Given a set of scale and shift parameters, estimate the risk-neutral MGF ŶðsÞ of the annual logarithmic return of the

underlying asset from the data set {St , X, T , Cbs} using wavelet analysis. We calculate option prices using Eq. (6) with the
derived MGF ŶðsÞ. Let Cw

¼ fCw
1 ;C

w
2 ; . . . ;C

w
N g denote the fitted wavelet-based option prices. Compare Cw with Cbs to

assess the in-sample goodness of fit.

3.
 To test the out-of-sample forecast ability, select another data set {S0t , X0, T 0,Cbs0}. Calculate the wavelet-based option

prices Cw0 with the derived risk-neutral MGF ŶðsÞ and compare Cw0 with Cbs0 to assess the out-of-sample forecast
deviation.

Among the three steps above, Step 2 is the key so we discuss this step in detail below. The algorithm used to find the
wavelet coefficients that fit the data Cw to Cbs is suggested in Ma (2006a). The following explains how we use wavelets to
approximate the risk-neutral MGF.

As we have stated before, the mother wavelet function cð�Þ 2 L2
ðRÞ can be chosen such that its generation

cl;kðxÞ � 2l=2cð2lx� kÞ; l; k ¼ 0;�1;�2; . . . (9)

forms an orthonormal basis for L2
ðRÞ. Let mcðsÞ and ml;kðsÞ denote the Laplace transform of cðxÞ and cl;kðxÞ, respectively,

where l; k ¼ 0;�1;�2; . . . . We have ml;kðsÞ ¼ 2�l=2e�ks=2l

mcðs=2l
Þ; l; k ¼ 0;�1;�2; . . . .

Assuming that the PDF pðxÞ of a random variable x belongs to L2
ðRÞ, we can expand pðxÞ in terms of the orthonormal

wavelet basis:

pðxÞ ¼
X

l

X
k

alkcl;kðxÞ. (10)

Perform a Laplace transform on both sides of Eq. (10) and we obtain YðsÞ ¼
P

l

P
k alkml;kðsÞ; ReðsÞ 2 ðx�;0�; where YðsÞ is

the risk-neutral MGF of the random variable x and it is equal to the Laplace transform of the risk-neutral PDF pðxÞ.
To estimate the risk-neutral MGF with simulated data set fSt ;Xi; T ;C

bs
i g; i ¼ 1;2; . . . ;N, we may follow the procedures

below:
1.
 For positive integers L and K , truncate the coefficients by setting alk ¼ 0 for all jlj4L and jkj4K. Set yL;K � falkglpL;jkjpK :
2.
 Given the data set, we estimate the unknown coefficients yL;K by minimizing the average of squared errors between the
true option prices Cbs

i and estimated prices Cw
i obtained by substituting ŶðsjyL;K Þ into formula (6).P
3.
 Go to step 1 with L! Lþ 1 and K ! K þ 1 until i ðC
bs
i � Cw

i Þ
2o�, for any arbitrary �40.

However, there are several issues in the above procedures. First, with increasing scale and shift parameters L and K , the
computation time for iteration increases dramatically as the number of iterations increases geometrically. Second, the
increasing number of parameters requires more data for the optimization. So during the iteration process it always runs out
of data before reaching the optimum. Therefore, we fix the scale parameter l say at l ¼ L ¼ 3; and let shift parameters k

change from �K to K. We moderate Step 3 above accordingly into
�
 Go to step 1 with K ! K þ 1 until
P

i ðC
bs
i � Cw

i Þ
2o� for any arbitrary �40.
�
 If the fitting result improves very little with the increase of K ! K þ 1 so that the optimization process does not
terminate within a reasonable time duration, increase L! Lþ 1 and repeat the above steps until a satisfactory result is
obtained. This optimization process yields an estimate of the risk-neutral MGF

ŶðsÞ ¼
X
jlj¼L

X
jkjpK

âlkmlkðsÞ. (11)
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Now we face another issue of how to quickly and effectively search the scale and shift parameters l and k for the wavelet
series. According to the relationship between the PDF and the MGF, the estimated coefficients âlk and corresponding
wavelet function can be used to form the risk-neutral PDF of the annual logarithmic return of the underlying asset.
Therefore, we may be able to select the appropriate initial scale and shift parameters according to the interval of annual
logarithmic returns x ¼ lnðS1=S0Þ, which lies typically over the interval ½�0:7;0:7�. Wavelets have non-zero values for a
small region. For the Franklin hat function it has a closed and bounded interval between ½�1;1�, and is zero otherwise.
Hence, according to Eq. (9), for cl;kðxÞ to be effective in composing the PDF, we need to calibrate the scale and shift
parameters to ensure that �1p2lx� kp1. Assume that we have chosen a suitable scale parameter l, the shift parameters k

should lie in the interval [2lxmin � 1;2lxmax þ 1]. We let xmin ¼ �0:7 and xmax ¼ 0:7 and these give

k 2 ½�0:7	 2l
� 1;0:7	 2l

þ 1�. (12)

Note that the scale parameter determines the resolution of the estimated risk-neutral MGF. The larger the scale parameter,
the finer the estimated risk-neutral MGF provided that the shift parameters are appropriately chosen. According to Eq. (12),
on the one hand we need more shift parameters k to perform the approximation but this will be time consuming. On the
other hand, we may obtain a feasible solution with least square estimation within several minutes with a small scale
parameter l. However, this is obtained at the cost of approximation accuracy.
6. Simulations and experimental results

We perform constrained least square estimation in this section. There are several restrictions on the call pricing function

CðSt;X; t; rÞ ¼ e�rt
Z 1

X
ðST � XÞpðST jSt;t; rÞdST . (13)

First, the probability density must be non-negative. Second, the integral of the probabilities over the possible terminal asset
price should be one. Third, the call option pricing function should be monotonically decreasing with respect to the strike
price, implying that the first derivative of the pricing function with respect to the strike price should be negative. And
fourth, the call pricing function should be convex with respect to the strike prices, implying that the second derivative of
the pricing function with respect to the strike price should be positive.

The optimization process with four restrictions requires long computing time. In our case, the latter two restrictions can
be inferred from the first two as shown below. Differentiating the above call price function with respect to strike price

qC

qX
¼ �e�rt

Z 1
X

pðST jSt;t; rÞdST . (14)

As

pðST jSt;t; rÞX0 (15)

and Z 1
0

pðST jSt;t; rÞdST ¼ 1 (16)

we have 0p
R1

X pðST jSt;t; rÞdSTp1 and this leads to the third constraint

�e�rtp
qC

qX
p0. (17)

Twice differentiate the call price function

q2C

qX2
¼ e�rtpðXjSt;t; rÞX0. (18)

This is non-negative since both e�rt and pðST jSt;t; rÞ are non-negative and this leads to the fourth restriction.
To summarize, the first two constraints in Eqs. (15) and (16) ensure that the PDF is non-negative and integrates to 1,

respectively. They are also sufficient conditions to ensure monotonicity in Eq. (17) and convexity in Eq. (18) of the call price
function. Therefore, we need to impose only the first two constraints on the wavelet estimator. We use a constrained
optimizer in Matlab to find the minimum mean squared errors between the wavelet option prices based on Eq. (6) and
simulated option prices based on the Black–Scholes model. We use initial value of 1 for all the coefficients âlk. The
optimization converges rapidly. When we repeat the optimization using the estimated coefficients as initial values, it
always converges to very similar values that typically differ from the third decimal point.

Below we carry out three experiments by generating historic option prices with time-to-maturity of one year, one
month, and six months, respectively.
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6.1. Time-to-maturity: one year

Let fX1;X2; . . . ;XNg denote a strike price sample of size N. We assume that we observe nine call options written on a non-
dividend-paying stock at S ¼ 100, and the strike prices are evenly spaced between 80 and 120 with increment of 5. Other
variables include: time to maturity T ¼ 1, risk-free interest rate r ¼ 0:0559, and volatility s ¼ 0:2. Let Cbs and Cw denote,
respectively, the true option prices based on the Black–Scholes model and the wavelet estimated option prices. Given the
information above, we perform wavelet analysis to estimate the risk-neutral MGF. We find that we are able to estimate the
MGF with only nine Franklin hat functions with scale parameter l ¼ 3 and shift parameters varying from k ¼ �4 : 4.

The pricing errors are reported in Table 1, Panel A. The mean squared errors between Cbs and Cw is 1:6046	 10�5 and
mean absolute pricing error is 0.0037. As a matter of fact, pricing errors reported in Panel A are all very small
and close to zero. Fig. 4 plots the true and fitted option prices. It is evident that the differences between the true and fitted
Table 1
In-sample and out-of-sample pricing errors for options with one-year to maturity

T cBS Mean Min Max Std. deviation

Panel A. In-sample fit

Squared errors

365 12.2257 1:6046	 10�5 2:3132	 10�6 3:8171	 10�5 1:2081	 10�5

Absolute errors

365 12.2257 0.0037 0.0015 0.0062 0.0015

Panel B. Out-of-sample forecast ðTÞ

Squared errors

28 6.1368 0.0341 0.0017 0.1489 0.0518

84 7.2201 0.0449 0.0048 0.1584 0.0496

168 8.8083 0.0239 0.0012 0.0879 0.0277

252 10.3156 0.0054 4:5616	 10�5 0.0250 0.0081

Absolute errors

28 6.1368 0.1425 0.0415 0.3859 0.1247

84 7.2201 0.1859 0.0692 0.3980 0.1079

168 8.8083 0.1322 0.0346 0.2965 0.0848

252 10.3156 0.0573 0.0068 0.1583 0.0491

Panel C. Out-of-sample forecast ðT ;KÞ

Squared errors

28 5.6946 0.0293 3:7812	 10�6 0.1489 0.0407

84 6.8440 0.0407 2:2375	 10�5 0.1584 0.0419

168 8.5008 0.0215 2:1009	 10�5 0.0879 0.0235

252 10.0524 0.0047 4:8679	 10�7 0.0250 0.0067

Absolute errors

28 5.6946 0.1310 0.0019 0.3859 0.1114

84 6.8440 0.1739 0.0047 0.3980 0.1036

168 8.5008 0.1249 0.0046 0.2965 0.0780

252 10.0524 0.0543 0.0007 0.1583 0.0429

Panel D. Out-of-sample forecast ðT;K; SÞ

Squared errors

28 6.3313 0.0355 1:9469	 10�4 0.1500 0.0475

84 7.7913 0.0517 0.0016 0.1402 0.0512

168 9.8596 0.0272 8:2177	 10�6 0.0846 0.0286

252 11.7720 0.0057 2:1060	 10�5 0.0242 0.0077

Absolute errors

28 6.3313 0.1539 0.0140 0.3873 0.1156

84 7.7913 0.1970 0.0402 0.3744 0.1206

168 9.8596 0.1416 0.0029 0.2908 0.0899

252 11.7720 0.0612 0.0046 0.1556 0.0464

Panel A reports in-sample pricing errors. Panel B reports out-of-sample forecast for options with different time-to-maturity. Panel C reports out-of-sample

forecast for options with different time-to-maturity and strike price. Panel D reports out-of-sample forecast for options with different time-to-maturity,

strike price, and underlying asset price.
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option prices are so small that they cannot be distinguished easily. The wavelet coefficients are fâlkg ¼ ½0:0482 0:2034
0:33em0:0554 0:5405 0:7500 0:6005 0:4971 0:0220 0:1112�.

The Black–Scholes MGF YðsÞ and the approximated MGF ŶðsÞ for the annual logarithmic return lnðS1=S0Þ are plotted in
Fig. 5. This figure is produced by calculating the value of the functions for complex values s ranging from �2� 20i to
�2þ 20i with imaginary unit i as the increment. As we discussed in Section 5.1, the value of the real part of s does not
matter as long as it is less than �1 to allow the inverse Laplace transform to converge. We plot the true and approximated
MGF with the real part on the X-axis and the imaginary part on the Y-axis. Fig. 5 shows that the shape of the estimated risk-
neutral MGF is close to the true one.

The Black–Scholes model assumes that the stock prices follow a lognormal distribution. Therefore, we have the
following distribution for the annual logarithmic return x ¼ lnðS1=S0Þ : PðxÞ ¼ ð1=s

ffiffiffiffiffiffi
2p
p
Þe�ðx�ðm�s

2=2ÞÞ2=2s2
. In Fig. 6, we plot

the lognormal distribution with m ¼ 0:0559; and s ¼ 0:2 in the starred curve and the fitted risk-neutral PDF, obtained from
coefficients fâlkg: p̂ðxÞ ¼

P
l

P
k âlkcl;kðxÞ in the dotted curve. Both densities integrate to one. To examine the goodness-of-fit

of the estimated PDF, we carry out the Kolmogorov–Smirnov test between the true and fitted densities. The test statistic is
0.090 with p-value of 0.739 indicating that the difference between the two densities is not statistically significant.
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The first derivatives of the approximated call pricing function with respect to the strike price are all negative and lie
within the area ð�0:9;�0:2Þ. Since �e�rt ¼ �0:9456 for r ¼ 0:0559 and t ¼ 1, the region that the first derivative falls in is in
line with the constraint (Eq. (17)) above. The second derivative of the approximated call pricing function with respect to the
strike price is positive, indicating that the call pricing function is convex.

Having obtained the estimated risk-neutral MGF, we are interested in pricing out-of-sample options. This is done for
three groups of options. In the first group, options have different time-to-maturity from the in-sample ones. This takes
advantage of the MGF representation of Eq. (6) as discussed in Section 5.1. In the second group, options have different time-
to-maturity and strike prices from the in-sample options. In the third group, options have different time-to-maturity, strike
prices and underlying stock price from the in-sample ones.
1.
P
Jo
First, we use the estimated risk-neutral MGF to forecast out-of-sample options with different time-to-maturity. We use
time-to-maturity of one month, three months, six months and nine months, respectively. We report two types of
lease cite this article as: Haven, E., et al., Revealing the implied risk-neutral MGF from options: The wavelet method.
urnal of Economic Dynamics and Control (2008), doi:10.1016/j.jedc.2008.09.001

dx.doi.org/10.1016/j.jedc.2008.09.001


ARTICLE IN PRESS

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

log(strike/price)

ca
ll 

pr
ic

e

Out−of−sample forecast for T=84/365 (case 2)

true prices
forecast prices

Fig. 8. Out-of-sample forecast (2).

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

log (strike/price)

ca
ll 

pr
ic

e

Out−of−sample forecast for T=84/365 (case 3)

true prices
forecast prices

Fig. 9. Out-of-sample forecast (3).

P
Jo

E. Haven et al. / Journal of Economic Dynamics & Control ] (]]]]) ]]]–]]] 13
forecasting errors between the true prices and the fitted prices. The mean squared error is computed as ðCbs
i � Ĉ

w

i Þ
2=N,

and the mean absolute error is calculated as jCbs
i � Ĉ

w

i j=N. Panel B in Table 1 reports the mean, minimum, maximum,
and standard deviation of out-of-sample pricing errors. In Fig. 7, we plot group of options with time-to-maturity of 84
days (three months) as they have the biggest pricing errors. From both Panel B and Fig. 7, we conclude that the
estimated risk-neutral MGF is effective in pricing out-of-sample options with different time-to-maturity, especially for
options with time-to-maturity close to the in-sample ones.
2.
 We test the capability of the fitted risk-neutral MGF to forecast option prices with different strike prices and different
time-to-maturity. We choose the strike prices to be evenly spaced between 80 and 120 with step of 1. The pricing errors
are tabulated in Panel C of Table 1. We can see that the maximum squared error of 0.1584 occurs when the time-to-
maturity is 84 days and the true price is 6.8440. We plot this set of options in Fig. 8. Again we are safe in saying that the
lease cite this article as: Haven, E., et al., Revealing the implied risk-neutral MGF from options: The wavelet method.
urnal of Economic Dynamics and Control (2008), doi:10.1016/j.jedc.2008.09.001

dx.doi.org/10.1016/j.jedc.2008.09.001


ARTICLE IN PRESS

Tab
In-s

T

Pan

Squ

28

Abs

28

Pan

Squ

84

168

252

365

Abs

84

168

252

365

Pan

Squ

84

168

252

365

Abs

84

168

252

365

Pan

Squ

84

168

252

365

Abs

84

168

252

365

Pan

fore

stri

P
Jo

E. Haven et al. / Journal of Economic Dynamics & Control ] (]]]]) ]]]–]]]14
revealed risk-neutral MGF performs well in forecasting out-of-sample options with different time-to-maturity and
different strike prices.
3.
 We want to further stretch the out-of-sample robustness test by investigating the pricing errors when options have
different time-to-maturity, strike price, and underlying stock price. We let the underlying asset price S0 to be 120 and
the strike prices are evenly spaced from 100 to 140 with an increment of 5. The time-to-maturity is assumed to be one
month, three months, six months, and nine months. Panel D in Table 1 reports the out-of-sample forecasting errors. The
largest mean squared error is 0.0517 and the largest mean absolute pricing error is 0.1970. Fig. 9 plots the option prices
when time-to-maturity is 84 days, as this group of options have the largest mean squared error. From Panel D and Fig. 9,
we can see that the MGF can price out-of-sample options with different time-to-maturity, different strike price, and
different underlying stock price with considerable accuracy.
le 2
ample and out-of-sample pricing errors for options with one-month to maturity

cBS Mean Min Max Std. deviation

el A. In-sample fit

ared errors

6.1368 0.0344 0.0017 0.0860 0.0324

olute errors

6.1368 0.1604 0.0408 0.2932 0.0987

el B. Out-of-sample forecast ðTÞ

ared errors

7.2201 0.0073 1:1401	 10�4 0.0257 0.0089

8.8083 0.0081 7:0984	 10�6 0.0238 0.0079

10.3156 0.0185 6:4067	 10�4 0.1071 0.0347

12.2257 0.0573 7:7899	 10�5 0.3103 0.1060

olute errors

7.2201 0.0684 0.0107 0.1604 0.0545

8.8083 0.0769 0.0027 0.1542 0.0497

10.3156 0.1002 0.0253 0.3273 0.0978

12.2257 0.1512 0.0088 0.5570 0.1967

el C. Out-of-sample forecast ðT ;KÞ

ared errors

6.8440 0.0073 3:1225	 10�6 0.0261 0.0087

8.5008 0.0072 3:2518	 10�7 0.0238 0.0064

10.0524 0.0141 3:3319	 10�7 0.1071 0.0245

12.0025 0.0457 7:3917	 10�6 0.3103 0.0819

olute errors

6.8440 0.0694 0.0018 0.1616 0.0508

8.5008 0.0734 5:7025	 10�4 0.1542 0.0426

10.0524 0.0892 5:7722	 10�4 0.3273 0.0791

12.0025 0.1359 0.0027 0.5570 0.1671

el D. Out-of-sample forecast ðT;K; SÞ

ared errors

7.7913 0.0107 1:8593	 10�4 0.0376 0.0135

9.8596 0.0095 1:6785	 10�4 0.0230 0.0085

11.7720 0.0149 8:6825	 10�5 0.0745 0.0232

14.1573 0.0511 1:6016	 10�4 0.2743 0.0935

olute errors

7.7913 0.0847 0.0136 0.1940 0.0631

9.8596 0.0849 0.0130 0.1515 0.0508

11.7720 0.0976 0.0093 0.2729 0.0780

14.1573 0.1471 0.0127 0.5238 0.1821

el A reports in-sample pricing errors. Panel B reports out-of-sample forecast for options with different time-to-maturity. Panel C reports out-of-sample

cast for options with different time-to-maturity and strike price. Panel D reports out-of-sample forecast for options with different time-to-maturity,

ke price, and underlying asset price.

lease cite this article as: Haven, E., et al., Revealing the implied risk-neutral MGF from options: The wavelet method.
urnal of Economic Dynamics and Control (2008), doi:10.1016/j.jedc.2008.09.001

dx.doi.org/10.1016/j.jedc.2008.09.001


ARTICLE IN PRESS

Table 3
In-sample and out-of-sample pricing errors for options with six-month to maturity

T cBS Mean Min Max Std. deviation

Panel A. In-sample fit

Squared errors

168 8.8083 0.0001 0.0000 0.0004 0.0001

Absolute errors

168 8.8083 0.0077 0.0012 0.0207 0.0062

Panel B. Out-of-sample forecast ðTÞ

Squared errors

28 6.1368 0.0212 0.0005 0.0600 0.0214

84 7.2201 0.0007 0.0000 0.0017 0.0007

252 10.3156 0.0030 0.0000 0.0221 0.0072

365 12.2257 0.0198 0.0000 0.1089 0.0364

Absolute errors

28 6.1368 0.1271 0.0215 0.2449 0.0758

84 7.2201 0.0215 0.0032 0.0408 0.0159

252 10.3156 0.0335 0.0015 0.1486 0.0464

365 12.2257 0.0943 0.0033 0.3300 0.1108

Panel C. Out-of-sample forecast ðT;KÞ

Squared errors

28 5.6946 0.0224 0.0003 0.0654 0.0192

84 6.8440 0.0007 0.0000 0.0017 0.0006

252 10.0524 0.0001 0.0000 0.0004 0.0001

365 12.0025 0.0155 0.0000 0.1089 0.0272

Absolute errors

28 5.6946 0.1329 0.0164 0.2558 0.0696

84 6.8440 0.0220 0.0015 0.0418 0.0143

252 10.0524 0.0069 0.0000 0.0207 0.0060

365 12.0025 0.0845 0.0001 0.3300 0.0926

Panel D. Out-of-sample forecast ðT;K; SÞ

Squared errors

28 6.3313 0.0341 0.0002 0.0864 0.0296

84 7.7913 0.0010 0.0000 0.0024 0.0009

252 11.7720 0.0015 0.0000 0.0099 0.0032

365 14.1573 0.0171 0.0000 0.0880 0.0295

Absolute errors

28 6.3313 0.1581 0.0150 0.2939 0.1011

84 7.7913 0.0266 0.0038 0.0492 0.0169

252 11.7720 0.0266 0.0035 0.0993 0.0299

365 14.1573 0.0907 0.0030 0.2967 0.0998

Panel A reports in-sample pricing errors. Panel B reports out-of-sample forecast for options with different time-to-maturity. Panel C reports out-of-sample

forecast for options with different time-to-maturity and strike price. Panel D reports out-of-sample forecast for options with different time-to-maturity,

strike price, and underlying asset price.
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In summary, the risk-neutral MGF estimated from options with one year of life can accurately forecast options with
different time-to-maturity, different strike prices, and different underlying stock prices. To complete the experiment, we
now conduct two more out-of-sample estimations when the in-sample options have time-to-maturity of one month and
six months, respectively.

6.2. Time-to-maturity: one and six months

Following Section 6.1, we carry out two more estimations by changing the time-to-maturity of the in-sample options.
We set the time-to-maturity to one month and six months, respectively. Other parameters remain unchanged. The
estimated coefficients are fâlkg ¼ ½0:0691 0:1317 0:2498 0:4743 0:6504 0:6284 0:4106 0:1744 0:0398� for the one-month
options and fâlkg ¼ ½0:0054 � 0:0002 0:2557 0:5757 0:7206 0:6669 0:3938 0:1625 0:0480� for the six-month options.
Summary statistics of the pricing errors are reported in Tables 2 and 3. In Panel A, Table 2 for options with one month to
maturity, the in-sample mean squared error is 0.0344 and the mean absolute error is 0.1604. In Panel A, Table 3 for options
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with six month to maturity, the in-sample mean squared error is 0.0001 and the mean absolute pricing error is 0.0077.
Compared with the results reported in Table 1 where the in-sample options have time-to-maturity of one year, the pricing
errors are slightly larger and the estimated risk-neutral MGF deviates from the true one slightly more. We suggest three
reasons.
1.
P
Jo
During the optimization process, the gradient is calculated in each iteration. However, when the time-to-maturity is not
equal to 1, the gradient is more difficult to calculate as it takes longer for the optimization to converge and more function
evaluations are needed. Therefore, larger errors are likely because the optimization may terminate when the maximum
number of function evaluations is reached before reaching the global maximum value. In this case, we need to repeat the
optimization process with the obtained coefficients as initial values. We repeat this process until we get a satisfactory result.
2.
 Eq. (6) specifies that we have to carry out an inverse Laplace transform to estimate option prices. To do so, we need to
integrate YT�t

ðsÞ=sðsþ 1Þ from negative infinity to positive infinity, which cannot be achieved in practice. Therefore, we
can integrate only over a truncated interval, which may lead to estimation errors.
3.
 In Table 2 where in-sample options have a time-to-maturity of one month and the strike prices vary from 80 to 120, four
options have prices between zero and one. Options with prices near zero contain less information about the risk-neutral
MGF than other options. This may result in a larger estimation error for the risk-neutral MGF.

Despite this, the estimated risk-neutral MGF still performs well overall in the out-of-sample forecast. In particular, the
estimated risk-neutral MGF forecasts better when the out-of-sample options have time-to-maturity closer to the in-sample
one. When the time-to-maturity increases, the forecast errors increase slightly.

Our methodology also allows us to price other contingent claims written on the same underlying asset, including
complex and illiquid derivative claims. This is because the risk-neutral MGF and PDF capture the same information and we
can obtain the risk-neutral PDF from the estimated MGF. With the entire asset distribution and payoff structure, we will be
able to price exotic derivatives.

7. Conclusions

In this paper, we apply the wavelet methodology for estimating the risk-neutral MGF of the underlying asset from options
prices based on Ma (2006b). The most important contribution of our paper is that the wavelet method offers a promising
alternative for pricing out-of-sample options and other complex and illiquid derivatives on the same underlying asset.

Our experiment contains three steps. First, we simulate a set of option prices using the benchmark Black–Scholes model.
Second, we use a series of Franklin hat functions with different scale and shift parameters to estimate the implied risk-
neutral MGF. Third, we compare option prices obtained from the fitted MGF with simulated option prices to see whether
the wavelet method is effective in revealing the risk-neutral MGF. We also apply the fitted risk-neutral MGF to price out-of-
sample options with different times-to-maturity, different strike prices, and different underlying asset prices. Through
comparison between the option prices obtained from the fitted risk-neutral MGF and the simulated option prices, we
provide strong evidence of the superior ability of the wavelet method in accurately approximating the risk-neutral MGF,
and in pricing and forecasting option prices.
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Appendix A. Laplace transform

For a function f ðtÞ which is real valued and piecewise continuous on ½0;1Þ, its Laplace transformation is a complex
valued function given by

Lff ðtÞgðsÞ ¼ FðsÞ ¼

Z 1
0

f ðtÞe�st dt, (19)

where s is a complex value in the complex plane and L denotes the Laplace transform operator. The inverse Laplace
transform, denoted by L�1

fFðsÞgðtÞ, is defined as

L�1
fFðsÞgðtÞ ¼ f ðtÞ ¼

1

2pi

Z cþi1

c�i1
FðsÞest ds, (20)

where c is a specific real number so that all singularities of FðsÞ are to the left of it.
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To introduce the Laplace transform into the option pricing model, we need not only positive t, but also negative t.
Therefore, we need a so-called bilateral Laplace transform and bilateral inverse Laplace transform. The bilateral Laplace
transformation of f ðtÞ, denoted by Lff ð�ÞgðsÞ; is given by

Lff ðtÞgðsÞ ¼ FðsÞ ¼

Z 1
�1

f ðtÞe�st dt, (21)

where f ðtÞ is defined for t 2 R; and s is a complex value in the complex plane.
Let FðsÞ denote Lff ðxÞgðsÞ and GðsÞ denote LfgðxÞgðsÞ, we have the properties of the Laplace transform summarized as

follows:
1.
Ple
Jou
Linearity:

Lfaf ðxÞ þ bgðxÞgðsÞ ¼ aFðsÞ þ bGðsÞ, (22)

L�1
faFðsÞ þ bGðsÞgðxÞ ¼ af ðxÞ þ bgðxÞ. (23)
2.
 Frequency shifting:

Lfe�lxf ðxÞgðsÞ ¼ Fðsþ lÞ; 8l 2 R, (24)

L�1
fFðsþ lÞgðxÞ ¼ e�lt f ðxÞ; 8l 2 R. (25)
3.
 Time shifting:

Lff ðx� x0ÞgðsÞ ¼ e�x0sFðsÞ; 8x0 2 R, (26)

L�1
fe�x0sFðsÞgðxÞ ¼ f ðx� x0Þ; 8x0 2 R. (27)
4.
 Convolution:

Lff ðxÞ � gðxÞg ¼ FðsÞGðsÞ, (28)

L�1
fFðsÞGðsÞgðxÞ ¼ f ðxÞ � gðxÞ, (29)

where ‘*’ indicates the convolution operator on f and g. This operator can be defined as (Bracewell, 1999, p. 25)

f � g �

Z 1
�1

f ðtÞgðt � tÞdt ¼
Z 1
�1

gðtÞf ðt � tÞdt. (30)
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