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Abstract

This paper establishes conditions under which the classical CAPM
holds in equilibrium. Our derivation uses simple arguments to clarify
and extend results available in the literature. We show that if agents
are risk averse in the sense of mean-preserving-spread (MPS) the CAPM
will necessarily hold, along with two-fund separation. We derive this re-
sult without imposing any distributional assumptions on asset returns.
The CAPM holds even when the market contains an infinite number of
securities and when investors only hold finite portfolios. Our paper com-
plements the results of Duffie(1988) who provided an abstract derivation
of the CAPM under some somewhat more technical assumptions.

In addition we use simple arguments to prove the existence of equilib-
rium with MPS-risk-averse investors without assuming that the market is
complete. Our proof does not require any additional restrictions on the
asset returns, except that the co-variance matrix for the returns on the
risky securities is non-singular.

Keywords: CAPM equilibrium, two-fund separation, generalized efficient
portfolio, MPS-risk-aversion. JEL Classification: D50, D81, G10, G11

1 Introduction

This paper provides general conditions for the validity of the classical CAPM
as an equilibrium model in economies with a frictionless market. First, we show
that, if equilibrium exists, then the asset returns must satisfy the CAPM if
all investors are MPS-risk-averse (Theorem1). Second, we prove the existence
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of equilibrium in the CAPM without assuming complete markets (Theorem
2). What is remarkable for the existence of equilibrium CAPM lies in the
fact that, as illustrated in Section 4 below, generically, the optimal demand
correspondences for MPS-risk-averse investors do not exist for an arbitrary given
set of security prices. Yet, we manage to prove the existence of an equilibrium
CAPM by restricting the prices to be located in a zero-measure set. Precisely,
the existence proof is based on the validity of the CAPM when equilibrium
exists as is proved in Theorem 1. It is noted that prices satisfying the CAPM
constitute a measure-zero set in a suitably defined topological space for security
prices.

Given the importance of the CAPM, it is of interest to see to what extent it
holds in equilibrium and this topic has been discussed in the literature. It has
been known for a long time1 that if all investors have mean-variance preferences,
then the CAPM will necessarily hold. It is also known that mean-variance pref-
erences persist when asset returns are elliptically distributed (see Chamberlain
1983, and Owen and Rabinovitch 1983). It is, therefore, of particular inter-
est to explore if the CAPM holds when preferences are not necessarily in the
mean-variance class (but, see Duffie 1988, and the discussions below).

Following the insights of Sharpe-Lintner-Mossin, the key observation which
leads to the validity of the CAPM is that (mean-variance) investors optimally
choose to hold combinations of two efficient portfolios: the risk free asset and the
so-called tangent portfolio. This is known as two-fund separation theorem (see
Black 1972 and Tobin 1958, and also Bottazzi, Hens and Löffler 1998 for recent
developments). Therefore, to seek conditions for the CAPM, it is sufficient to
seek conditions under which the two-fund separation theorem holds. The first
effort in this direction was made by Cass and Stiglitz (1970). They used an
expected utility framework and derived a parametric specification of expected
utility functions which were sufficient for two-fund separation in the sense that,
given the utility function, changes in wealth would not change the risky portfolio
which the investor would optimally invest (if the optimal solution exists). In
contrast to Chamberlain (1983), and Owen and Rabinovitch (1983), Cass and
Stiglitz’s observation on two-fund separation was made without imposing any
distributional restrictions on asset returns. As a result, it is not clear if Cass
and Stiglitz’s separating risky portfolios remain the same for different utility
functions belonging to the parametric class discovered by them.

Further to Cass and Stiglitz (1970), Ross (1978) developed distributional
conditions on asset returns to ensure two-fund separation with the separating
portfolios being common for all risk averse expected utility investors. Ross
showed that two-fund separation holds if and only if asset returns are driven by
two common factors with residual returns (to the factors) having zero (condi-
tional) mean conditional on the linear span formed by the factors. It is noted
that Chamberlain’s class of elliptical distributions, which is sufficient for two-
fund separation, belongs to the Ross’s class. More recently, Berk (1997) de-
rived joint restrictions on investor’s expected utility functions, the aggregate

1See Sharpe (1964) and Lintner (1965) and Mossin (1966).
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endowment and asset returns for two-fund separation and the CAPM, which
accommodates both Ross (1978) and Chamberlain (1983) as special cases.

The conditions required for the CAPM in this paper advance the existing
literature and lead to a clearer understanding of the extent to which the CAPM
holds in equilibrium. In comparison with the above cited work, this paper
makes no distributional assumptions on asset returns, and purely focusses on
investor’s risk preferences over the random payoffs. Essentially, we show that
the CAPM holds as long as investors have MPS-risk-averse preferences. Loosely
speaking, an investor exhibits MPS-risk-aversion, if for all random payoffs X and
Y = X+ε, the investor would prefer X to Y whenever E [ε] = 0 and Cov(X, ε) =
0. The notion of MPS-risk-aversion is appealing because (a) it captures the
investor’s psychological aversion towards ‘increase in risk’ in a natural way. (b)
MPS-risk-averse preferences are not restricted to certain classes of expected or
non-expected utility functions. Therefore, they are not subject to criticisms
such as the well-known Allais Paradox and other deficiencies associated with
expected utility functions. It is noted that expected utility functions may violate
MPS-risk-aversion — and it could even be argued that this constitutes another
drawback of expected utility functions.

An alternative derivation of the CAPM under the MPS-risk-averse behavior
assumption was given by Duffie (1988, Theorem 11E). He used the notion of
variance-aversion which is the same as MPS-risk-aversion introduced here. It
is noted that the derivation of the CAPM in Duffie’s book does not rely on the
two-fund separating properties of the efficient frontier. Duffie’s derivation rests
on several explicit and implicit technical assumptions on asset returns: first,
the existence of a continuous linear pricing rule in the market span; second,
the market subspace is assumed to be a closed subset in L2. Whilst the lin-
earity of the pricing rule is necessarily implied by the no-arbitrage condition,
as part of the equilibrium conditions, the continuity assumption on the pric-
ing rule is somewhat arbitrary and rather strong. Moreover, the closed-ness
assumption on the market subspace is especially strong when the market sub-
space is infinite dimensional. For example, it is well known that the set of all
bounded random payoffs L∞ as a market subspace in L2 is not closed under
the L2-norm. The market subspace studied in this paper also violates Duffie’s
closed-ness condition. Notice further that the continuity assumption, together
with the closed-ness of the market subspace, implies the linear representation of
the pricing rule in L2. The latter is crucial for Duffie’s derivation of the CAPM.

In contrast, the derivation provided in this paper follows the heritage of the
traditional approach, as in Sharpe (1964) and Lintner (1965). It is based on
the relevance of the mean-variance efficient frontier and the investor’s optimal
portfolio holdings. This paper deviates from Duffie (1988), but is similar to
Chamberlain and Rothschild (1983) and Nielsen (1990), in that we restrict in-
vestors to hold portfolios θ ∈ Θ involving only a finite number of securities even
though the market contains an infinite number of tradable securities. The role
played by the dimensionality of the number of securities is important in this
paper. Hence it is useful to give a brief road map of the areas where the di-
mensionality of the number of security space impacts the analysis as well as an
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outline of the relevant results. We first discuss this in connection with the math-
ematics of the efficient frontier and then its implications for two fund separation
and risk decomposition.

To discuss the efficient frontier we need more notation. Let J = {1, · · ·, j, · · ·}
be the set of risky assets. The set

Θ =
{
θ ∈ R#J : sup {j ∈ J : θj 6= 0} < ∞}

which is itself an infinite dimensional vector space, forms a dense, but not closed,
subset of Hilbert space H2. The Hilbert space contains all square-integrable
risky portfolios (see section 3 for detail).2 Elements in H2 are referred to as
‘generalized portfolios’ because they may involve compositions of an infinite
number of securities.

We shall see that the efficient frontier for Θ, in general, does not exist. This
is not surprising because a fully diversified portfolio may involve the composition
of an infinite number of securities. The efficient frontier for H2, as it turns out, is
relatively easier to obtain, and is referred to as the generalized efficient frontier
(hence g.e.f.). The characterization of the g.e.f. is a straightforward extension
to Markowitz’s efficient frontier with a finite number of securities. In fact, under
fairly general conditions, the g.e.f. is well-defined and inherits many of the key
properties of the classical efficient frontier (for a finite number of securities).
These include the validity of

(a) (generalized) two-fund separation, and

(b) risk decomposition.

For (a), we show that any generalized efficient portfolio must be expressed as
a convex combination of two arbitrary generalized efficient portfolios. For (b),
we show that, all arbitrary (generalized) portfolios, including all finite portfo-
lios in Θ, must be expressible as a mean-preserving-spread of some generalized
efficient portfolios. In the presence of a risk free asset, the generalized effi-
cient portfolios would involve convex combinations of the risk free asset and a
so-called generalized tangent portfolio θT .

The generalized efficient frontier is also shown to be relevant for portfolio
decision making when investors are restricted to hold finite portfolios in Θ. This
is the case despite the fact that the efficient frontier formed by portfolios in Θ
does not exist. In general, MPS-risk-averse investors would not be satiated
with an arbitrary portfolio containing just a finite number of securities. This
leads to non-existence or emptiness of the optimal demand correspondence for
MPS-risk-averse investors. Nevertheless, in the presence of a risk less asset, if
the generalized tangent portfolio θT itself were finite (thus located in Θ), the
efficient frontier formed by portfolios in Θ (with the risk free asset) would be,
generically, well-defined and be given by the tangent ray and the reflection of the
tangent ray. In these circumstances, both the mutual fund separation theorem

2Defined later as H2 (Σ). Here, we use H2 to simplify the notation for convenience.
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and the risk decomposition theorem hold true even with #J = ∞. In fact,
we show that, when the economy involves a finite number of MPS risk averse
investors and when the market portfolios contain a finite number of tradable
securities, in equilibrium the generalized tangent portfolio θT would necessarily
be located in Θ, and be given by the market portfolio. It is in this sense we say
that the classical mutual fund separation along with risk-decomposition extend
to economies with an infinite number of securities (#J = ∞)3. This in turn
implies the validity of the equilibrium CAPM.

The assumption on the finiteness of the market portfolio is not restrictive.
In practice, the market portfolio is an index of a finite number of stocks. The
class of derivative securities written on the stocks or the index of stocks, which
represents a large or even an infinite number of traded financial securities, are
not in the composite of the market portfolio. The equilibrium CAPM provides
a mechanism to price not only those primitive securities in the composite of the
market portfolio, but also securities that are out of the composite of the market
portfolio.

The relationship between mean-variance utility functions and the MPS risk-
averse preferences has been analyzed by Löffler (1996). Löffler showed that,
when the market contains a finite number of risky assets (but no less than three)
and when the market span forms a convex cone of L2, if the MPS risk averse
preference is represented by continuously Frechét-differentiable (in the L2-norm)
utility functions, then the preference must admit a mean-variance utility repre-
sentation.4 This result is interesting and surprising. Nevertheless, one may still
want to treat the mean-variance preferences as a subset of the MPS-risk-averse
preferences. First, a binary relationship satisfying the MPS risk aversion prop-
erty constitutes a partial order, which may not admit an utility representation.
Indeed, we do not need to assume the MPS preference to admit an utility rep-
resentation for most of the analysis in this paper. Second, even if preferences
admit utility representations, most of the analysis carried out in this paper does
not require the utility function to be differentiable. The latter, according to
Löffler (1996), is crucial for the preferences to admit a mean-variance utility
representation. Third, in this paper we restrict attention to monotone MPS-
risk-averse preferences that are not satiated by future payoffs/cash flows. This
is in contrast to the general class of mean-variance utility functions that may
violate the non-satiation property. Finally, we do not restrict the market to
contain a finite number of securities instead it may contain an infinite number
of securities. The assumption of a finite number of securities is crucial for the
validity of Löffler (1996)’s representation theorem.

3The mutual fund separation result along with risk decomposition would hold true for
generalized portfolios if investors were allowed to hold portfolios involving an infinite number
of securities. These are valid for arbitrary given risky returns that may not necessarily conform
to the equilibrium.

4Without the Frechét differentiability assumption it is not clear if the MPS-risk-averse
preferences admit mean-variance representation. The analysis carried out in this paper does
not require the differentiability assumption. In fact, we even do not need to assume the
preference to admit an utility representation except for the proof on the existence of an
equilibrium.
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As a separate contribution, we provide an elementary proof of the existence
of market equilibrium for economies with a finite or countably infinite number
of tradable securities. By elementary we mean that the proof does not use
fixed point arguments, and we consider general MPS-risk-averse investors. The
proof is based on the observation that the CAPM holds as long as equilibrium
exists in an economy with MPS-risk-averse investors. For the existence proof,
we need to assume that, investors’ preferences restricted to the set of efficient
portfolios (if the efficient frontier is well-defined) admit some continuous utility
representations.

The existence of equilibrium in the CAPM framework with mean-variance
investors has been well documented. For example, Dana (1999) provides a sim-
ple existence proof by assuming a complete market. More recently Hara (2001)
contains an existence proof by dropping the market completeness and maintain-
ing the assumption of mean-variance preferences. Nielsen (1989) and Sun and
Yang (2003) prove existence under joint restrictions on the mean-variance utility
functions and asset returns. These latter proofs do not assume homogeneous
beliefs, but rely crucially on the assumption of mean-variance preferences. Our
proofs are along the lines of Hara’s approach. The distinguishing features of the
existence proof provided in this paper are:

• We consider general MPS-risk-averse investors.

• Similar to Hara (2001), we do not assume the market to be complete.

The remainder of the paper is organized as follows: Section 2 describes
the model and summarizes the main results. Section 3 derives the generalized
efficient portfolios where the number of risky securities can be infinite. Sec-
tion 4 discusses the MPS-risk-averse investor’s optimal portfolio choice and its
relevance to the generalized efficient frontier defined for an infinite number of
tradable securities. Section 5 includes a formal derivation of the CAPM, along
with the two-fund separation theorem. Section 6 concludes the paper. The
proof of the existence of equilibrium is outlined in the Appendix.

2 Outline of the Model and Main Results

This section describes the basic framework and summarizes the main results of
the paper.

We consider a two-period exchange economy with a frictionless capital mar-
ket and heterogenous agents. The uncertainty is summarized by a probability
state space (Ω,P) with probability measure P. The topological properties of
the state space are otherwise not specified. There exists a countable (finite or
infinite) set of non-redundant risky securities J = {1, · · ·, j, · · ·} available for
trade. Let #J be the number of risky assets. Security j is associated with a
state-contingent random payoff δj : Ω → R. We assume that there is a risk free
asset, denoted as security 0. The risk free asset has a unit payoff in all future
states (i.e., δ0 ≡ 1).
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For the given set of risky assets, let Θ be a set of all admissible portfolio
holdings on J .5 Similar to Chamberlain and Rothschild (1983) and Nielsen
(1990), we restrict Θ to consist of portfolios that involve only a finite number
of risky assets:

Θ =
{
θ ∈ R#J : sup {j ∈ J : θj 6= 0} < ∞}

. (1)

For all θ ∈ Θ, θj represents the proportion invested in the risky security j with
θ0 ≡ 1 − ∑

j∈J θj being the proportion invested in the risk free asset. Let
δθ ≡ δ0 +

∑
j∈J θj

(
δj − δ0

)
be the portfolio payoff. Denote by

D ≡{
δ : ∃ θ ∈ Θ such that δθ = δ

}
(2)

the market span formed by all tradable securities.
With this notation, the exchange economy is summarized by

E ≡
(
(Ω,P) ,D,

{ºi, φi
}

i∈I

)
(3)

where

• We assume that the payoffs of the J risky securities are all in the Hilbert
space L2 (Ω,P) — the space of square integrable random variables. More-
over, we assume that the variance-covariance matrix, Σ0 is positive defi-
nite; that is, for all θ ∈ Θ, θᵀΣ0θ ≥ 0 and θᵀΣ0θ = 0 ⇔ θ = 0.

• The number of agents (investors) I is finite. Investor i ∈ I is concerned
only with his or her next period wealth. Investor i’s preference over all
random payoffs in D ⊆ L2 (Ω,P) is summarized by a preference relation
ºi⊂ D× D. For all i, ºiis monotonic, and displays risk aversion in the
sense of MPS-risk-aversion.

• Investor i is endowed with a fixed number of shares φi ∈ Θ of securities.

Let pj be the market price of security j. The (total) return on security
j is thus given by Rj ≡ δj

pj
. After the market opens at t = 0, investors can

adjust their positions at the given market prices p ≡ [p0, · · ·, pj , · · ·]. At price
p, agent i’s initial wealth is given by W i

0 ≡ p • φi. Let θi be agent i’s portfolio
holdings with θi

j representing the proportion of i’s initial wealth invested in the
risky security j. The total number of shares invested in security j by agent i is

thus given by θi
jW i

0
pj

with corresponding market value of θi
jW

i
0. The total amount

invested in the risk free asset is W i
0 (1− θᵀe) , where e ≡ [1, 1, · · ·]ᵀ is a column

vector with unit elements.
5Much of the analysis below applies for a general admissible set such as Θ = H2 (Σ) defined

in section 3 below, which may contain portfolios with an infinite number of securities.
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Definition 1 Market equilibrium consists of a price vector p and a portfolio

allocation
{
θi

}
i∈I

⊆ Θ such that: (i)
∑

i

θi
jW i

0
pj

= φM
j ≡ ∑

i φi
j for all j; and (ii)

for all i, θi is the most preferred portfolio amongst all feasible portfolios θ for
agent i.

Let θM be the market portfolio with θM
j = φM

j pjP
j φM

j pj
for all j ∈ J . Let RM

be the return of the market portfolio.
We are now in a position to state the first main result of the paper:

Theorem 1 Given the economy E with a (possibly infinite) number of tradable
securities (#J ≤ ∞) and a finite number of MPS-risk-averse investors. If
equilibrium exists with pj 6= 0, for all j, then the capital asset pricing model
(CAPM) holds: for all θ,

µ [θ] = Rf + βθ
(
µM −Rf

)
, (4)

where Rf = p−1
0 is one plus the risk free interest rate, µ [θ] ≡ E

[
Rθ

]
is the

expected return for portfolio θ,

βθ ≡ Cov
(
Rθ, RM

)

Var (RM )
(5)

and µM = E
[
RM

]
.

The proof of Theorem 1 is based on the properties of the efficient frontier
together with the implications of the choice behavior for MPS-risk-averse in-
vestors. We provide the full details in Sections 3, 4 and 5.

The second main result of this paper deals with the existence of equilibrium.6

Theorem 2 Given the economy E with a (possibly infinite) number of trad-
able securities (#J ≤ ∞) and a finite number of MPS-risk-averse investors.
Assuming that investors’ preferences (as partial orders) constrained on the set
of efficient portfolios admit some well-defined continuous utility representations
(whenever the efficient frontier is well-defined). If the payoffs associated with
the initial portfolios7 are non-negative, and if the payoffs for individual securi-
ties are non-negative and have a positive definite covariance matrix, then the
equilibrium exists and the CAPM holds.

The proof of Theorem 2 is contained in the Appendix. In the proof, we will
make extensive use of the results developed in the paper, including the validity
of the CAPM (Theorem 1), the two-fund separation theorem (Proposition 8)
and other properties of the efficient frontier.

6The existence theorem is stated for the case when investors are restricted to hold finite
number of securities. The existence proof extends as well to the case when investors were
allowed to hold infinite portfolios.

7Those are the portfolios with which the investors are endowed.
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3 The Efficient Frontier

In this section we provide a unified treatment of efficient portfolios. First, the
definition of an efficient frontier adopted here extends the original definition in
Markowitz (1954) by allowing an infinite number of tradable securities. Second,
the framework is general enough to accommodate cases with or without a risk
free asset (even though we assume the existence of a risk free asset). Finally,
in defining the efficient frontier, it is not necessary to assume the covariance
matrix Σ be non-singular.

Let Rf and R be respectively the risk free return and the return vector for
the risky assets. Let X ⊆ R#J be an arbitrary admissible portfolio space8. For
any given θ ∈ X, the resulting portfolio return Rθ ≡ Rf + θᵀ [R−Rfe] has
mean return and standard deviation given by

µ [θ] = Rf + θᵀ [µ−Rfe] and σ [θ] = (θᵀΣθ)
1
2 ,

where µ and Σ represent the vector of expected returns and the variance-
covariance matrix of the risky returns. For pure risky portfolios θ we have
θᵀe = 1 and µ [θ] = θᵀµ. Similarly, for any given two portfolios θ and θ′, the
covariance of the portfolio returns is given by

σ [θ, θ′] = θᵀΣθ′. (6)

The following definition of an efficient portfolio applies whether or not there
is a risk free asset.

Definition 2 For any given µ0 ∈ R, portfolio θ0 ∈ X is said to be efficient at
µ0 if

θ0 = arg min
θ∈X

{σ [θ] : µ [θ] = µ0} ; (7)

that is, amongst all portfolios with an expected return of µ0, the efficient portfolio
θ0 has the minimum risk(standard deviation). The curve I (X) defined below,
which is formed by the set of efficient portfolios,

I (X) ≡ {(µ [θ] , σ [θ]) : θ ∈ X is efficient}

is referred to as the mean-variance efficient frontier, or simply the ‘efficient
frontier’, with respect to X.

The next proposition describes a general property of efficient portfolios.

Proposition 1 Let θ0 ∈ X be an efficient portfolio with mean µ0. For all θ ∈ X
with µ [θ] = µ0, we have: Rθ = Rθ0 + ε with E [ε] = 0 and Cov

(
Rθ0 , ε

)
= 0.

8The admissible set X in this section is not restricted so long as the portfolio returns are
associated with finite means and variances. For example, the notion of efficient portfolios
introduced below are well-defined for X = Θ when all portfolios are restricted to contain
only a finite number of risky assets. The notion of efficient frontier is also well-defined for
X = H2 (Σ) that is defined in Section 3.1 below.

9



Proof. Consider the set of portfolios {αθ + (1− α) θ0 : α ∈ R} formed by
convex combinations of θ0 and θ. These portfolios all have the same mean
return given by µ0. Since θ0 is efficient at µ0 with standard deviation σ0,
σ [αθ + (1− α) θ0] must achieve its minimum at α = 0; that is,

0 = arg min
α

{
α2σ2 [θ] + 2α (1− α)σ [θ, θ0] + (1− α)2 σ2

0

}
. (8)

The first order condition leads to σ [θ, θ0] = σ2
0 . Let ε ≡ Rθ − Rθ0 . We have:

E [ε] = 0 and Cov
(
Rθ0 , ε

)
= σ [θ, θ0]− σ2

0 = 0.
Notice that this proof does not require any assumption on the finiteness

of the number of securities, nor does it require any assumption on the non-
singularity of the covariance matrix Σ. Similar to the well-known case with
a finite number of securities, it can be further shown that the efficient frontier
induced by pure (possibly an infinite number of) risky assets, if well-defined, will
form a hyperbola (see section 3.1 below). The efficient frontier in the presence
of a risk free asset is formed by a tangent ray plus its reflection ray. The efficient
portfolio at any given µ0, if exists, might not be unique unless Σ is non-singular.

From the definition of the efficient frontier, it is also noted that

• Dropping redundant securities does not affect the shape of the efficient
frontier;

• For finite portfolios X = Θ, with any arbitrary given set of non-redundant
securities we can always construct a new sequence of portfolios, known
as ‘normalized portfolios’ so that (a) the normalized portfolios are un-
correlated with each other; (b) each constitutes a portfolio of a finite
number of risky securities together with the risk free asset; and (c) the
set of normalized portfolios, together with the risk free asset, generates
the same market span as was generated from the original set of tradable
securities.9

9Given returns {Rj}∞j=1 for an arbitrary collection of non-redundant risky assets with

positive definite variance-covariance matrix, the returns
n

R∗j
o∞

j=1
associated with the so-

called ‘normalized portfolios’ are defined by setting

R∗1 = R1

R∗2 = R2 − α2,1

�
R∗1 −Rf

�
· · ·

R∗j = Rj − αj,1

�
R∗1 −Rf

�− · · · − αj,j−1

�
R∗j−1 −Rf

�
· · ·

with αj,k =
Cov(Rj ,R∗k)

Var(R∗
k)

, k = 1, 2, · · ·, j − 1.The normalized returns are un-correlated to each

other, and each constitutes a finite portfolio. The normalized risky returns defined above
are non-zero and risky because the risky assets are non-redundant and because the variance-
covariance matrix is positive definite. Finally, it is also noted that the return for each risky
asset, say Rj , can be expressed as a return of a finite portfolio formed by the ‘normalized
portfolios’ .
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It is evident that the normalized portfolios induce the same efficient frontier
as the original set of tradable securities. For the rest of this section, without
loss of generality, we only deal with normalized portfolios, so that the variance
and covariance matrix Σ is expressed as a (infinite dimensional) diagonal matrix
with its elements to be given by the variances of the corresponding normalized
risky portfolios σ2

j , j = 1, 2, · · ·. The infinite-dimensional matrix Σ is understood
to be associated with an well-defined inverse matrix Σ−1 which is also diagonal
with diagonal elements given by σ−2

j , j = 1, 2, · · ·.

3.1 Generalized efficient portfolios: pure risky assets

First, we introduce some machinery to handle an infinite number of securities.
For the given positive definite matrix Σ we consider the following infinite di-
mensional Hilbert space

H2 (Σ) ≡ {
θ ∈ R#J : θᵀΣθ < ∞}

(9)

with its inner product given by 〈θ, θ′〉Σ ≡ θᵀΣθ′ and norm given by ‖θ‖Σ ≡√〈θ, θ〉Σ. The Hilbert space consists of all weighted square-summable sequences.
A pure generalized risky portfolio corresponds to an element in H2 (Σ) with
eᵀθ = 1. The inner product of two generalized portfolios gives the covariance of
the two (generalized) portfolio returns, while the norm of a generalized portfolio
gives the standard deviation of the (generalized) portfolio return.

We note that a generalized risky portfolio may involve holdings of an infinite
number of risky assets. The portfolio space Θ that contains portfolios with finite
number of risky assets is known to form a dense subset of the Hilbert space
H2 (Σ); that is, (a) Θ ⊂ H2 (Σ); (b) for all θ ∈ H2 (Σ) there exists a sequence
{θn}∞n=1 in Θ such that ‖θ − θn‖Σ → 0 as n → ∞. However, the set Θ as a
subset of H2 (Σ) is not closed under the ‖·‖Σ-norm.

We impose the following two conditions on µ and Σ.

A.1 Σ is positive definite and Σ−1µ and Σ−1e ∈ H2 (Σ);

A.2 Non-degeneracy: µ is not proportional to e.

Given A.1 and A.2, as in the case with a finite number of securities, we
introduce the notion of ‘generalized efficient portfolio’ (g.e.p.) and ‘general-
ized efficient frontier’ (g.e.f.) Ig formed by the set of generalized pure risky
portfolios:

Definition 3 The ‘generalized efficient portfolio’ (g.e.p.) at µ0 is given by

θ0 =
[
Σ−1µ, Σ−1e

]
A−1 [µ0, 1]ᵀ ∈ H2 (Σ) (10)

where A ≡ [µ, e]ᵀ Σ−1 [µ, e] is a 2 × 2 positive definite matrix. The frontier
formed by g.e.p.s in the µ-σ plane is referred to as the ‘generalized efficient
frontier’ (g.e.f.) and is denoted by Ig.
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Notice that, under condition A.1, we have eᵀθ0 =
〈
Σ−1e, θ0

〉
Σ

= 1 and
µᵀθ0 =

〈
Σ−1µ, θ0

〉
Σ

= µ0. The non-degeneracy condition A.2 is satisfied when
there are two risky assets with distinct expected returns. Assumption A.2 im-
plies Σ−1e is not proportional to Σ−1µ, which in turn implies

〈
Σ−1e,Σ−1µ

〉
Σ

<
∥∥Σ−1e

∥∥
Σ
×

∥∥Σ−1µ
∥∥

Σ
. (11)

This last inequality ensures the matrix A is non-singular with a well-defined
inverse A−1.

Remark 1 The g.e.p. θ0 will, in general, not be efficient with respect to Θ
because it may involve an infinite number of securities for almost all µ and
µ0. There are, however, exceptional cases for which there exist g.e.p.s belonging
to Θ. This happens when, there exists a constant number k so that the infinite
vector Σ−1 (µ− ke) 6= ∅ contains a finite number of non-zero elements.10 In this
case, we can always find a µ0 at which the g.e.p. θ0 involves a finite number of
risky assets. So, generically, risky portfolios in Θ would not constitute as g.e.p.s
even though the g.e.p.s are well-defined for all arbitrary µ0 under conditions A.1
and A.2.

Remark 2 Although the efficient frontier generated from portfolios in Θ may
not exist, all generalized efficient portfolios on Ig can be arbitrarily approximated
by finite portfolios because Θ is dense in H2 (Σ). It is in this sense, we refer to
the g.e.f. Ig as the ‘asymptotic efficient frontier’ for Θ. In Proposition 2 below,
we shall also see that the g.e.f. Ig constitutes the efficient frontier generated
from the enlarged portfolio set X = H2 (Σ).

The g.e.f. defined above inherits many of the properties of the original
Markowitz’s efficient frontier for a finite number of securities. The next propo-
sition summarizes the properties of the g.e.f. Ig. The proofs are standard, and
are thus omitted.

Proposition 2 Under conditions A.1 and A.2, the g.e.f. Ig generated by gen-
eralized risky portfolios (with possibly an infinite number of securities) forms an
hyperbola in the µ-σ plane:

1. For all µ0, the variance of the generalized efficient portfolio θ0 is given by

σ2
0 = [µ0, 1] A−1 [µ0, 1]ᵀ . (12)

2. The (generalized) minimum variance portfolio on the hyperbola is given by

θ =
∥∥Σ−1e

∥∥−2

Σ
× Σ−1e (13)

which corresponds to the g.e.p. at

µ =
∥∥Σ−1e

∥∥−2

Σ
× 〈

Σ−1e,Σ−1µ
〉
Σ

. (14)

10This happens when the normalized risky portfolios are associated with finite distinct
expected returns.
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3. The g.e.p. θ0 at µ0 solves the following quadratic minimization problem
with constraints:

θ0 = arg min
θ∈H2(Σ)

s.t.
〈Σ−1e,θ〉Σ=1

〈Σ−1µ,θ〉Σ=µ0

‖θ‖2Σ . (15)

4. For the g.e.p. θ0 at arbitrary µ0 6= µ, there exists a so-called ‘generalized
zero-beta portfolio’ θ′0 located on Ig such that 〈θ0, θ

′
0〉Σ = 0. Moreover, θ′0

corresponds to the g.e.p. at µ′0, which is the intercept on the µ-axis of the
tangent line at (µ0, σ0) along the g.e.f. Ig.

5. Generalized Black Separation: Convex combinations of g.e.p.s on Ig are
still generalized efficient; and all g.e.p.s can be expressed as convex combi-
nations of two arbitrary distinct g.e.p.s, particularly for those orthogonal
portfolios θ0 and θ′0.

In the above proposition, we see from statement 2, that the minimum vari-
ance generalized portfolio θ always involves an infinite number of securities. The
variance of the minimum variance (generalized) portfolio θ, which is given by
σ2 [θ] =

∥∥Σ−1e
∥∥−2

Σ
=

[
eᵀΣ−1e

]−1, is strictly smaller than the minimum vari-
ance generated from any finite number of risky assets in Θ. In fact, σ2 [θ] is the
asymptotic limit to the minimum variances generated from finite risky portfolios
in Θ. This is consistent with the logic of risk diversification.

Statement 3 of the proposition confirms that the g.e.f. Ig constitutes the
efficient frontier for X = H2 (Σ). Statements 4 and 5 extend the classical mutual
fund separation properties of the efficient frontier to the case with an infinite
number of securities, keeping in mind that it is valid for the generalized efficient
frontier (rather than the efficient frontier for Θ).

Next we consider the situation when there is a risk free asset.

3.2 Generalized efficient frontier with a risk free asset

We proceed to characterize the generalized efficient frontier when the market
contains a risk free asset, in addition to an infinite number of risky assets.
Similar to the finite dimensional case, the generalized efficient frontier in the
presence of a risk free asset is determined by the relative position of the risk
free return Rf to that of the minimum variance (generalized) portfolio θ in the
µ-σ plane. It is noted that the generalized tangent portfolio θT on the hyperbola,
which constitutes a generalized efficient risky portfolio, intersects the µ-axis at
the given risk free return Rf , may or may not exist.

Even when the generalized tangent portfolio that crosses the µ-axis at Rf

exists, it is not necessarily on the top half of the hyperbola (see Figure 2 below).
Therefore, the tangent ray, even when it exists, does not necessarily constitute
the generalized efficient frontier. This happens when the generalized tangent
portfolio belongs to the lower section of the hyperbola.
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Figure 1: Plot of case when µ > Rf .
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Figure 2: Plot of case when µ < Rf .

14



To fully characterize the generalized efficient frontier, we need to distinguish
between the following two cases:

Case 1: µ 6= Rf . In this case, there is a unique generalized pure risky
portfolio, say θT ∈ Ig, on the hyperbola, which could be either on the top or
the bottom of the hyperbola, such that the tangent line at θT intersects the µ-
axis at Rf . The generalized portfolio risk and expected return are thus bordered
by the tangent ray and the reflection of the tangent ray in the µ-σ plane. Given
this observation, we have:

Proposition 3 Suppose A.1 and A.2 hold with µ 6= Rf . The generalized tan-
gent portfolio θT ∈ H2 (Σ) exists uniquely, and is given by

θT =
Σ−1µ−RfΣ−1e

〈Σ−1e, Σ−1µ〉Σ −Rf ‖Σ−1e‖2Σ
. (16)

Moreover,

(a) The generalized efficient frontier is formed by the tangent rays on the µ-σ
plane, called the generalized efficient rays:

µ = Rf ± µ [θT ]−Rf

σ [θT ]
σ, for all σ ≥ 0. (17)

(b) For all θ ∈ Θ, which includes all individual securities, it must hold true
that

µ [θ] = Rf + βθ
T (µ [θT ]−Rf ) , (18)

where βθ
T ≡ 〈θT ,θ〉Σ

‖θT ‖2Σ

(
= σ[θ,θT ]

σ2[θT ]

)
. Moreover, the portfolio return admits the

following decomposition:

Rθ −Rf = βθ
T

[
RθT −Rf

]
+ εθ, (19)

where εθ has a zero mean and is un-correlated with RθT .

Proof. The generalized tangent portfolio θT is well-defined when µ 6= Rf .

By definition, θT maximizes the absolute generalized Sharpe-ratio |µ[θ]−Rf |
σ[θ]

among all generalized risky portfolios. When µ 6= Rf , the optimal solution
exists unique and is given by the expression (16). Statements (a) and (b) are
valid following the same argument as in the finite dimensional case as in Huang
and Litzenberger (1988, Chapter 3.18 & 3.19).

Notice that the generalized efficient frontier, which is well-defined when µ 6=
Rf , would constitute the efficient frontier for portfolios in Θ if, and only if, the
tangent generalized portfolio θT itself belongs to Θ. This is possible when and
only when there exist only a finite number of normalized risky assets having
their expected returns to deviate from the risk free rate. If this were the case,
the generalized efficient rays would constitute the efficient frontier formed by
finite portfolios in Θ (in addition to the risk free asset).

Case 2: µ = Rf .
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Figure 3: Plot of case when µ = Rf .

It is not difficult to see that the generalized efficient portfolio for all µ0 6= Rf

does not exist.

Proposition 4 If µ = Rf , the generalized efficient portfolio does not exist at
all µ0 6= Rf .

Proof. When µ = Rf , the set of all feasible portfolios in the µ-σ plane
is strictly bordered by the two asymptotic rays of the hyperbola, originating
from Rf at the µ-axis. For all µ0 6= Rf , any generalized portfolio θ which
is strictly located within the two asymptotic rays, with mean-return no less
than µ0, can not be efficient since there exists another generalized portfolio to
the left of (µ [θ] , σ [θ]). The new portfolio has the same mean and a smaller
variance. Therefore, the generalized efficient portfolio at µ0 does not exist. Any
bundle (µ, σ) other than (Rf , 0) located on or outside the asymptotic rays is
not achievable.

When there is a finite number of risky assets, it is well known that the op-
timal portfolio for mean-variance investors, if it exists, must be located on the
Markowitz mean-variance efficient frontier. The existing literature tells us little
about the relevance of efficient frontier on portfolio choices made by investors
whose preferences are not in the mean-variance class.11 The difficulties in es-
tablishing such relevancy are well known: First, an investor’s optimal portfolio
may not exist even though the efficient frontier is well defined. This occurs,
for example, when the security prices violate the no-arbitrage conditions which

11See Ross (1978) and Huang and Lizenberger (1988, Chapter 4.2) for results on two-fund
separation for investors with risk averse expected utility functions. They prove that, the
separating portfolios, if they exist, must be on the efficient frontier. See also Berk (1997)
for conditions on asset returns and the expected utility functions that are sufficient for both
two-fund separation and the CAPM.
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are necessary for the existence of an optimal portfolio for all investors with in-
creasing and continuous utility functions. Second, even if the optimal portfolio
exists, the efficient portfolio with mean return corresponding to that of the op-
timal portfolio may not exist. This occurs, for example, when the mean return
of the minimum variance portfolio is equal to the risk free rate. Finally, when
the optimal portfolio and efficient portfolio both exist, it is still not obvious if
the investor would choose to optimally hold the efficient portfolio because the
investor may care about the higher moments beyond the second. In this section
we study the optimal choice behavior for risk averse investors and explore the
relevance of the efficient portfolios in their optimal choices.

We begin by recalling the definition of MPS-risk-aversion:

Definition 4 An investor is said to be risk averse if E [X] º X for all X ∈ D;
and is said to be ‘risk averse in the sense of mean-preserving spread’, or simply
‘MPS-risk-averse’, if

X º X + ε, where E [ε] = 0 and Cov (X, ε) = 0,

with strict preference if ε 6= 0.

In this definition, ε is required to have zero mean and zero correlation with
X. Therefore, it is natural to take X + ε as being more risky than X, and thus
MPS-risk-aversion captures agent’s negative attitudes towards an increase in
risk. Since X is a mean preserving spread of E [X], MPS-risk-aversion implies
risk aversion.

The notion of MPS risk aversion is the same as the notion of strict variance-
averse preferences proposed by Duffie (1988). Moreover, Löffler (1996) showed
that if the preference relation º on D is continuous in the L2-norm and is
represented by a continuously differentiable utility function, and if the market
contains a finite (but no less than three) number of tradable securities, then
MPS-risk-averse preferences must admit a mean-variance utility representation.
The equivalence between MPS-risk-aversion and mean-variance breaks down
when J = 2. The smoothness assumption on the agent’s utility function would
appear to be essential for Löffler’s result. Here, we distinguish between MPS-
risk-averse preferences with mean-variance utility function because a binary
relationship satisfying MPS-RA property forms a partial order, which may not
necessarily admit an utility representation. Indeed, the analysis below is carried
through without assuming the preference relationship to be complete and to
admit an utility representation.

The concept of MPS differs also from the notion of second-order stochastic
dominance (SSD). Rothschild and Stiglitz (1970) showed that X SSD X +
ε if, and only if, E [ε | X] = 0. The latter implies, but is not implied by,
E [ε] = 0 and Cov(X, ε) = 0. Therefore, if a random variable Y is second-
order stochastically dominated by the random variable X, then Y must be
identical (in distribution) to a MPS of X. The converse is, in general, not
true. The two partial orders, namely SSD and MPS, are equivalent for certain
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class of distributions, for example, when the random variables are normally
distributed.12

For MPS-risk-averse investors, our next result follows as a corollary to Propo-
sition 1.

Proposition 5 Let θ∗ be an optimal portfolio holding for a MPS-risk-averse
investor. Let µ∗ be the portfolio mean return for the optimal portfolio θ∗. Then,
if the efficient portfolio at µ∗ exists, the optimal portfolio must be efficient.

Proof. Let θ0 be an efficient portfolio with mean return given by µ∗. By
Proposition 1, the return of θ∗ must be a mean-preserving spread of the return
of θ0. We must have Rθ∗ = Rθ0 since otherwise if Rθ∗ 6= Rθ0 , W0R

θ0 must be
preferred to W0R

θ∗ by the MPS-risk-averse investor at initial wealth W0 > 0,
which contradicts the optimality of θ∗. Therefore, θ∗ must be efficient at µ∗.

In general, an MPS-risk-averse investor’s optimal portfolio holding may not
necessarily belong to the efficient frontier if the efficient portfolio at µ∗ does
not exist. It is obvious that any mean-variance investor with utility function
u (µ, σ) which is continuous, monotonically increasing in the first argument,
and decreasing in the second argument, must display MPS-risk-aversion. For
mean-variance investors, we have a stronger result.

Proposition 6 For mean-variance investors, their optimal portfolios, if they
exist, must be efficient.

Proof. Suppose to the contrary that there exists θ0 such that µ [θ0] = µ [θ∗]
and σ [θ0] < σ [θ∗]. We have: u

(
W0µ [θ0] ,W0σ

[
θ0

])
> u (W0µ [θ∗] ,W0σ [θ∗]).

This contradicts the optimality of θ∗.

Remark 3 The existence of an efficient portfolio is a necessary condition for
the existence of an optimal solution for mean-variance investors. That is, the
existence of an optimal solution with a mean return µ∗ implies the existence of
an efficient portfolio at µ∗. Conversely, if no efficient portfolio exists at µ0,
then no investor with mean-variance preferences will optimally choose to hold
portfolios with a mean return equal to µ0.

3.3 Mutual fund separation

It is well known that, with a finite number of securities, efficient frontiers are
well-defined and all efficient portfolios can be expressed as a convex combination
of two efficient portfolios. The optimal portfolio holdings for MPS-risk-averse
investors can be easily characterized because they would have to be located on
the efficient frontier.

This section concerns optimal portfolio choices for MPS-risk-averse investors
(who prefer more to less) when they face a possibly infinite number of investment
opportunities (#J = ∞). Here we deal with an arbitrary given set of asset

12For normal distributions, E [ε | X] = 0 if, and only if, E [ε] = 0 and Cov(X, ε) = 0.
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returns and for these cases we saw that the efficient frontiers are not always well-
defined. Therefore, it is not surprising to find violation with respect to mutual
fund separation, and to find non-existence of the optimal portfolio holdings (in
Θ) for MPS-risk-averse investors. The situation will be dramatically different
when the market is restricted to be in equilibrium. In equilibrium, we shall
show that the efficient frontier (with a risk less asset) is well-defined, and the
mutual fund separation holds (see section 5).

3.3.1 Choices with pure risky portfolios

We consider the case when the market contains purely risky portfolios. As a
corollary to Propositions 1 & 2, the following important risk decomposition
result is readily obtained:

Proposition 7 Assume conditions A.1 and A.2 hold. For all θ ∈ H2 (Σ) , there
exists a unique θ0 ∈ Ig such that Rθ is a MPS of Rθ0 .

Note that, the risk-decomposition theorem holds for all generalized risky
portfolios in H2 (Σ) , thus in particular for risky portfolios in Θ. That is, the re-
turn for each risky portfolio θ in Θ must admit as a MPS to that of a g.e.p. θ0 on
Ig. This implies that MPS-risk-averse investors would tend to hold generalized
efficient portfolios if they were allowed to hold an infinite number of securities.
In other words, investors would, in general, not be satiated with holding any
arbitrary finite number of securities. However there are two exceptions to this
result.

(a) when #J < ∞, the g.e.f. Ig reduces to the Markowitz efficient frontier,
and all g.e.p.s become efficient;

(b) #J = ∞ and the (normalized) risky assets contain just a finite number
distinct expected returns. There exists one (and only one) g.e.p. on Ig

that involves a finite number of securities. Unless investors wish to invest
in such a portfolio, their optimal portfolios being restricted in Θ would
not exist.

So, in general, when confronted with an infinite number of risky investment
opportunities, the MPS-risk-averse investors would rarely be satiated with a
finite number of risky assets. This results in non-existence with respect to their
optimal portfolio holdings in Θ.

Remark 4 Their optimal portfolios would, however, be well-defined and be lo-
cated on the g.e.f. Ig, if they are allowed to hold an infinite number of securities,
corresponding to H2 (Σ), keeping in mind that the (generalized) classical Black
separation holds for H2 (Σ) following from Proposition 2.
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3.3.2 Portfolio choices with a risk free asset

The same conclusion applies to the case with a risk free asset. Suppose µ 6=
Rf so that the generalized tangent portfolio θT is well-defined. When θT /∈
Θ, all generalized efficient portfolios (except the risk free asset) would not be
admissible, yet highly desirable by the MPS-risk-averse investors ending up with
the generic non-existence of optimal portfolios in Θ. For the case when θT ∈ Θ,
the tangent ray and its reflection constitute the efficient frontier generated from
risky portfolios in Θ and the risk free asset. The optimal portfolio holdings for
MPS-risk-averse investors can be easily characterized. We have:

Proposition 8 Assume A.1 and A.2 hold. Consider an investor with monotonic
and MPS-risk-averse preferences.

(a) The investor’s optimal portfolio, if it exists, must have an expected return
no less than the risk free interest rate, µ∗ ≥ Rf .

(b) When µ 6= Rf , the optimal portfolio, if it exists must be on the generalized
efficient rays and consist of a combination of the risk free asset and the
generalized tangent portfolio θT .

(c) When µ = Rf , the optimal portfolio, if not risk free, will not exist.

Proof. To prove (a), suppose to the contrary, that µ∗ < Rf . For any given
positive initial wealth W0, we have: W0Rf Â W0µ

∗ º W0R
θ∗ . That is, the

investor will choose to invest in the risk free asset only. This contradicts the
optimality of portfolio θ∗. Therefore, the optimal portfolio, if it exists, must
have an expected return no less than Rf .

For (b), with µ 6= Rf and µ∗ ≥ Rf , from Proposition 3-(a), we know that the
efficient portfolio exists at µ∗ with a mean return given by µ∗. By Proposition
5, the optimal portfolio is efficient. Hence, Proposition 3-(b) implies that the
optimal portfolio can be expressed as a combination of the risk free asset and
the generalized tangent portfolio θT .

For (c), with µ = Rf and µ∗ ≥ Rf , by Proposition 4, the efficient portfolio
does not exist for all µ0 > Rf , particularly for µ∗ if µ∗ 6= Rf . By Proposition
5, the optimal portfolio would either be risk free or inefficient, or would not
exist. We can further show that, the optimal portfolio would not exist if it is
not risk free. Suppose, to the contrary that, the optimal portfolio θ∗ exists and
is not risk free. It must be located strictly within the area bordered by the two
asymptotic rays in the µ-σ plane. In particular, we can always find portfolios
θ′ and θ′′ in Θ, θ′ 6= θ′′ so that θ∗ is strictly located inside the area bordered
by the sub-efficient frontier, I0, formed by the three (risky) portfolios θ∗, θ′ and
θ′′.13 Since Proposition 8 holds for the case with a finite number of securities,
θ∗ can be expressed as a mean-preserving-spread of a portfolio on I0. The latter
contradicts to the optimality of θ∗ for the MPS-risk-averse investor.

13Since, by assumption, θ∗ is not efficient, we may set portfolios θ′ and θ′′ to be such that
µ′ < µ∗, σ′ < σ∗, µ′′ > µ∗ and σ′′ = σ∗.
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Finally, if investors are allowed to hold an infinite number of securities, say in
H2 (Σ) , their optimal portfolios would exist and be expressed as combinations of
the risk free asset and the generalized tangent portfolio θT . The classical mutual
fund separation theorem holds for H2 (Σ) though it does not hold for Θ when
investors are restricted to hold a finite number of securities. Recall that there
would be no more than one generalized efficient risky portfolio that is actually
located in Θ. This is true in particular for the generalized tangent portfolio.
Since, generically, the generalized tangent portfolio does not belong to Θ, so are
those generalized efficient portfolios along the generalized efficient rays. It is in
this sense we may say that, generically, the optimal demand correspondence in
Θ for MPS risk averse investors does not exist.

4 Equilibrium CAPM

This section builds on our earlier results to derive the CAPM with MPS-risk-
averse investors. First, we prove that, the CAPM holds for economies that
contain a finite number of securities. Then we extend the result to the case
when the number of securities is infinite.

Recall that investors have homogeneous beliefs and so they will perceive the
same generalized efficient frontier as derived in the previous sections. Given the
two-fund separation theorem (Proposition 8) and Proposition 3-(b), to prove
the validity of the CAPM, it is sufficient to show that, (a) the generalized
tangent portfolio exists in equilibrium, and (b) the generalized tangent portfolio
coincides with the market portfolio in Θ.

The lemma below shows that, in equilibrium, we must have µ 6= Rf .

Lemma 1 For economies with a finite number of tradable securities, existence
of equilibrium implies µ 6= Rf .

Proof. Suppose to the contrary that the equilibrium exists with µ = Rf . By
Proposition 4, with µ = Rf , the efficient portfolios do not exist at all µ0 6= Rf .
By Proposition 8-(c), the optimal portfolio would be either given by the risk free
asset, or would not exist. Since all investors investing in the risk free asset will
necessarily violate the market clearing conditions for the risky assets, we can
thus conclude that, the optimal portfolios do not exist for at least one investor.
The latter contradicts the assumption of the existence of equilibrium. Therefore,
in equilibrium, we must have µ 6= Rf .

We can further identify the generalized tangent portfolio to coincide with
the market portfolio in equilibrium.

Lemma 2 Given an economy E with a finite number of securities. Let pj 6= 0,
j = 0, · · ·, J , be the equilibrium prices. Then, the equilibrium generalized tangent
portfolio must be given by the market portfolio; that is, θT = θM .

Proof. By Lemma 1, in equilibrium, we have µ 6= Rf . Let θi be investor i’s
optimal portfolio holding. By Proposition 8, we can write: θi = αiθT , αi ∈ R+
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or R− depending on whether µ > Rf or µ < Rf , with 1 − αi of the initial
wealth invested in the risk free asset. Since, by assumption, the market is in
equilibrium, we must have:

(i)
∑

i (1− αi) W i
0 = 0;

(ii)
∑

i

θi
jW i

0
pj

= φM
j , for all j = 1, · · ·, J.

Condition (i) is the market clearing condition for the risk free asset, which
means that the total borrowing equals the total lending. Condition (ii) is the
market clearing condition for the risky assets — the total number of shares held
by the investors must equal the total number of shares outstanding. Condition
(ii) can be re-written as:

∑
i θi

jW
i
0 = pjφ

M
j for all j; that is, the total dol-

lar amount invested in security j equals the total market capitalization of the
security. With θi = αiθT , condition (ii) further reduces to

(∑

i

αiW
i
0

)
θT =

[
φM

1 p1, · · ·, φM
J pJ

]ᵀ ≡

∑

j

φM
j pj


 θM .

From (i), we have:
∑

i

αiW
i
0 =

∑

i

W i
0 ≡

∑

i

∑

j

φi
jpj ≡

∑

j

φM
j pj .

This yields θT = θM ; that is, the generalized tangent portfolio coincides with
the market portfolio.

Remark 5 Notice that, when pj 6= 0 for all j, the risky returns have a non-
singular variance-covariance matrix as long as the covariance matrix of the pay-
offs δ is non-singular. This last assumption is to ensure that none of the tradable
securities is redundant.

Remark 6 The market clearing condition (i) for the risk free asset is actually
implied by the market clearing condition (ii) for the risky assets. We have
seen that, condition (ii), together with θi = αiθT , implies

(∑
i αiW

i
0

)
θT =(∑

j φM
j pj

)
θM . With θᵀ

T e =
(
θM

)ᵀ
e = 1, we have:

∑
i αiW

i
0 =

∑
j φM

j pj ≡∑
i W i

0 ; that is, condition (i) is valid. Of course, we must have θT = θM .

Remark 7 We can further show that, if equilibrium exists with W i
0 > 0 for all

i, then we must have µM > µ > Rf and the market portfolio θM must be on the
efficient ray.

Proof of Theorem 1. Lemmas 1 and 2, together with Proposition 3-
(b), imply the validity of the CAPM for economies with a finite number of
securities. This concludes the proof of Theorem 1 for the case of #J < ∞.
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We can further prove the validity of the CAPM for economies with an infinite
number of securities (#J = ∞).

Let {θi}i∈I be an equilibrium allocation for the infinite economy E . We
consider a hypothetic economy, say E0, which contains both the initial allocation
{φi}i∈I and the equilibrium allocation {θi}i∈I in the market span. In fact, we
can construct E0 by selecting all securities j in its market span whenever there
exists an agent i such that either φi or θi involves a non-zero position in j. The
constructed economy E0 has the following characteristics:

• E0 is finite. This is because the number of agents is assumed to be finite,
and because, for all i, the portfolios φi and θi ∈ Θ involve only a finite
number of securities.

• The allocation {θi}i∈I constitutes an equilibrium allocation for E0. This
is because, given the equilibrium prices for E , the portfolio θi, which is
feasible and optimal for investor i in economy E , remains feasible and
optimal for i in economy E0. Moreover, by definition, the allocation {θi}i∈I

satisfies the market clearing conditions for E0.

• For all j ∈ J that is tradable in E0, the CAPM holds for j; moreover, for
all i, θi must be expressed as a combination of the risk free asset and the
market portfolio. This is because, the CAPM and two-fund separation
hold for all finite economies.

Now, consider an arbitrary security j ∈ J which was excluded from the econ-
omy E0 as a tradable security. We modify the economy E0 constructed above by
adding security j as a tradable security. This will not change the equilibrium
allocation because {θi}i∈I is an equilibrium allocation for the original economy
E and because the number of shares outstanding for security j is zero. Conse-
quentially, the CAPM must hold for security j as well. Since j is arbitrary, we
conclude that the CAPM must hold for all θ ∈ Θ that involves a portfolio of
any finite number of securities. This completes the proof of Theorem 1 for the
case when #J = ∞.

We see that, in equilibrium, adding (non-active) new risky assets does not af-
fect investors’ optimal portfolio holdings. But, we must emphasize that, adding
new (non-redundant) assets would certainly change the shape of the (general-
ized) efficient frontier, which would in general be shifted further towards the left.
The equilibrium conditions imply that, even though the shape of the efficient
frontier formed by the risky portfolios will change with newly added risky secu-
rities, it won’t change the composition of the generalized tangent portfolio(s) —
in equilibrium the market portfolio still coincides with the generalized tangent
portfolio for the new efficient frontier(s). This last observation holds true more
generally when prices of all securities are determined through the CAPM (see
Lemma 8 for proof). Moreover, since, in equilibrium, the generalized tangent
portfolio is given by the market portfolio which involves a finite number of se-
curities, the equilibrium efficient frontier for Θ with #J = ∞ (and with a risk
less asset) is well-defined and is given by the tangent ray and its reflection ray.
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This last observation implies the validity of two-fund separation, along with
risk-decomposition; that is, in equilibrium, investors optimally hold portfolios
that involve combinations of the market portfolio and the risk free asset.14

We conclude this section with two additional remarks.

Remark 8 In comparison to Duffie (1988, Theorem 11E), this proof of the
CAPM is elementary and does not involve topological assumptions on the mar-
ket span. In addition, we do not impose the continuity assumption on the equi-
librium pricing rule. It is easy to verify that, the market span generated from
an infinite number of tradable securities studied in this paper does not neces-
sarily form a closed set in L2. For example, consider the sequence of portfolios
{θn}∞n=1 ⊂ Θ defined to be such that θn (j) = 1 for all 1 ≤ j ≤ n and θn (j) = 0
for j > n. Each portfolio involves a finite number of securities, but the sequence
does not converge to an element in Θ. Even if the payoffs of all individual risky
securities

{
δj

}∞
j=1

belong to L2, the payoff
∑

j∈J δj (in the limit) induced by the
sequence, may not have a finite L2-norm.

Remark 9 Under fairly general conditions, the CAPM remains valid as an
equilibrium model if the MPS-risk-averse investors are allowed to invest in an
infinite number of securities. This is because, the generalized efficient frontier,
which is well-defined under A.1. and A.2, would constitute the efficient frontier
formed by infinite portfolios. Since MPS-risk-averse investors would all invest
in the risk-free asset and the generalized tangent portfolio, in equilibrium, the
market portfolio must coincide with the generalized tangent portfolio. The va-
lidity of the CAPM along with two-fund separation theorems follow from the
properties of the generalized efficient frontier summarized in Propositions 2 and
3.

5 Concluding remarks

This paper proves that the CAPM holds for economies with MPS-risk-averse
investors. The CAPM model is shown to be valid without imposing any dis-
tributional restrictions on asset returns and the number of tradable securities.
This approach contrasts with multi-factor models in the literature based on
assumptions on the existence of some exogenous factor structure in modelling
asset returns. Our results suggest that, so long as investors exhibit MPS-risk-
aversion, the relevance of all those factors, that affect asset returns would all be
summarized through the return of the market portfolio. This is true, at least,
in equilibrium.

We implicitly assume that the investor’s endowment is in the market span.
For cases with non-spannable endowments such as in Hara (2001), the results on

14Black’s separation theorem for risky portfolios still does not hold in equilibrium when we
restrict θ ∈ Θ. This is because the efficient portfolios formed by finite risky portfolios are
generically not defined (even in equilibrium) except when µ0 is set at the expected return of
the market portfolio, for which the efficient portfolio is given by the market portfolio. Black’s
separation holds, however, for generalized efficient portfolios in H2 (Σ).
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the validity of the CAPM and the existence proofs are still valid. This is because
the part of the endowment which is not market spannable must be orthogonal
to the market span following the orthogonal decomposition theorem for the
Hilbert spaces. Therefore, MPS-risk-averse investors still hold portfolios along
the efficient rays. Moreover, the derivation of the CAPM and the existence proof
provided in the Appendix below remain valid for the cases with non-spannable
endowments.

In future research it would be desirable to consider economies with heteroge-
nous beliefs as in Nielsen(1990) and Sun and Yang (2003) by maintaining the
MPS-risk-averse behavior assumption studied in this paper.

It would be useful to extend this analysis to multi-period settings with MPS-
risk-averse agents. In particular it would be of interest to explore the implica-
tions of MPS-risk-averse behavior assumption on the agents’ portfolio trading
strategies. Concerning the equilibrium security prices, we conjecture that for
i.i.d. economies with MPS-risk-averse agents the CAPM will still constitute an
equilibrium model. It remains to be seen to what extent the CAPM or the
conditional-CAPM will represent an equilibrium model for non-i.i.d. economies
with MPS-risk-averse agents. These topics will be examined in future work.

6 Appendix: Existence of Equilibrium CAPM

This appendix contains the proof of the existence of a market equilibrium satis-
fying the CAPM. Let Σ0 be the positive definite variance-covariance matrix for
the payoffs of all individual risky securities. Assume that φi •δ ≥ 0 for all i, and
that δj ≥ ( 6=) 0 for all j. Assume further that the payoff, δM ≡ φM • δ ≥ (6=) 0,
of the market portfolio has a positive standard deviation σ

[
δM

]
> 0. In addi-

tion to the assumption of MPS-risk-aversion, we restrict investors’ preference to
be represented by some increasing, continuous and strictly quasi-concave utility
functions Ui : D→ R15, i = 1, · · ·, I.

For all d ∈ D, let Ψ (d) be the price of the payoff d, that is implicitly
determined from the CAPM.16

Lemma 3 If equilibrium exists, then there exists t > 0 and s > 0 such that, for
all d ∈ D,

Ψ(d) = E [πd] with π = t− sĉ (20)

where ĉ ≡ δM−E[δM ]
σ[δM ]

, t ≡ Ψ(1) > 0 and s ≡ Ψ(1)E[δM ]−Ψ(δM)
σ[δM ]

> 0.

Proof. By Theorem 1, the CAPM holds in equilibrium. Substitute the
return d

Ψ(d) together with Rf = 1
Ψ(1) and RM = δM

Ψ(δM )
into the CAPM relation,

and solve for Ψ (d). This yields the desired expression for Ψ (d) with t and s

15A real function f on D is said to be quasi-concave if for all A ∈ R, the set
{d ∈ D : f (d) ≥ A} is a convex set (if not empty). It is said to be strictly quasi-concave if for
all distinct d and d′ ∈ {d ∈ D : f (d) ≥ A}, and for all α ∈ (0, 1) , f (αd + (1− α) d′) > A.

16Notice that, for all d ∈ D the (equilibrium) price Ψ (d) of d is well defined and is the
common price of all financing portfolios.
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as specified above. We note that s is positive because the equilibrium price of
the market portfolio must not be greater than the present value of its expected
payoff; otherwise, nobody would hold a positive quantity in the market portfolio,
which leads to a violation of the market clearing condition.

Note that π is a discount factor. Therefore, given the payoff on the market
portfolio, and given the expressions for t and s, the equilibrium pricing rule is
fully determined by Ψ (1) and Ψ

[
δM

]
, which are the prices of the risk free bond

and that of the market portfolio.

Lemma 4 If π is an equilibrium discount factor, then for all constants k > 0
kπ is also an equilibrium discount factor.

By Lemmas 3 and 4, we can normalize the equilibrium discount factor in
(20) to be such that t + s = 1 and write π = π (r) with

π (r) = 1− r − rĉ, for some r ∈ [0, 1] . (21)

To prove the existence of equilibrium, we need to show that there exists an r
such that, given prices determined by (20) with π = π (r) , the optimal portfolio
exists for each investor and satisfies the market clearing conditions.

To ensure the existence of an optimal portfolio, we need to restrict r to be
such that the pricing rule (20) satisfies the no-arbitrage conditions. Let D⊥ be
the vector space that is orthogonal to the market span; that is, for all d ∈ D
and v ∈ D⊥, E [dv] = 0.

Lemma 5 If π is an equilibrium discount factor, then for all v ∈ D⊥, π + v is
also an equilibrium discount factor that supports the same equilibrium as π. In
particular, there exists an v ∈ D⊥ such that π + v > 0.

The first statement of the Lemma is obvious. The second part follows from
the fundamental theorem of Dybvig and Ross (1987) since in equilibrium the
market admits no arbitrage opportunities, and the latter is equivalent to the
existence of a positive discount factor.

Given π (·) as defined above, let O be the subset of r for which a positive
discount factor can be found which would support the same price vector as the
one generated by π (r); that is,

O ≡ (
r ∈ [0, 1] : there exists v ∈ D⊥ such that π (r) + v > 0

)
. (22)

Notice that, when π (r) is positive, we can set v = 0.

Lemma 6 The set O is an open and convex subset of [0, 1] ; in particular, we
can write: O = [0, r∗), for some r∗ ≤ 1 /∈ O.

Proof. First, we see that 0 ∈ O with π (0) = 1 and with v = 0. Sec-
ond, we have 1 /∈ O. This is because, with π = π (1) = −ĉ, the price for the
market portfolio is negative: Ψ

(
δM

)
= −σ

[
δM

]
< 0. This violates the no-

arbitrage condition since, by assumption, the payoff of the market portfolio, δM
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is non-negative and does not equal to zero. Since π (r) is linear in r, for any
arbitrary r0 ∈ O with π (r0) + v0 > 0, v0 ∈ D⊥, we have π (r) + v0 > 0 for all
r ∈ {r ∈ [0, 1) : |r − r0| < ε} , and for all ε > 0 that are sufficiently small. In
particular, for r0 > 0, and for ε sufficiently small, we have: (r0 − ε, r0 + ε) ⊂ O.
Therefore, O ⊆ [0, 1] is open.

For all r0 and r1 in O, let v0 and v1 ∈ D⊥ be such that π (r0) + v0 > 0
and π (r1) + v1 > 0. For all x ∈ [0, 1] , we have v = xv0 + (1− x) v1 ∈ D⊥
since D⊥ is a vector space. Moreover, we have: π (r) + v = x [π (r0) + v0] +
(1− x) [π (r1) + v1] > 0; or, r = xr0 + (1− x) r1 ∈ O. Therefore, O is a convex
subset of [0, 1] .

Let r∗ ≡ sup {r : r ∈ O} > 0. We have r∗ ≤ 1 and, for all r < r∗, [0, r] ⊆ O
by the convexity of O. We can further claim that r∗ /∈ O, otherwise, [0, r∗] = O
which contradicts the openness of O. Therefore, we must have O = [0, r∗).

For all r ∈ O, let θT (r) and θM (r) respectively be the generalized tangent
portfolio and market portfolio. For all x ∈ R#J , let diag[x] be the diagonal
matrix with j-th diagonal element given by xj .

Lemma 7 For all 0 < r ∈ O, the generalized tangent portfolio θT (r) is well-
defined and is given by

θT (r) =
diag [Ψr (δ)] Σ−1

0

(
E [δ]−Ψ−1

r (1)Ψr (δ)
)

Ψᵀ
r (δ)Σ−1

0

(
E [δ]−Ψ−1

r (1)Ψr (δ)
) . (23)

Proof. Since no-arbitrage implies a positive linear pricing rule, the price
Ψr

(
δj

)
for all securities j must be positive and be linear in r. We can further

verify that, for all 0 < r ∈ O, µ (r) 6= Ψ−1
r (1) = Rf . This in turn implies, by

Proposition 8, the existence of the efficient rays with the generalized tangent
portfolio θT (r) well-defined and given by

θT (r) =
Σ−1 (µ−Rfe)

〈Σ−1e, Σ−1µ〉Σ −Rf ‖Σ−1e‖2Σ
.

Notice that
〈
Σ−1e,Σ−1µ

〉
Σ
−Rf

∥∥Σ−1e
∥∥2

Σ
=

∥∥Σ−1e
∥∥2

Σ

(
µ (r)−Rf

) 6= 0

for 0 < r ∈ O. Let E [δ] and Ψr (δ) be the expected payoff vector and the
positive price vector for the J risky assets. The desired expression for the
generalized tangent portfolio is valid because

Σ−1 = diag [Ψr (δ)] Σ−1
0 diag [Ψr (δ)] ,

E [δ]−Ψ−1
r (1)Ψr (δ) = diag [Ψr (δ)] (µ−Rfe) ,

Ψᵀ
r (δ) = eᵀdiag [Ψr (δ)] .

We can also show that
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Lemma 8 For all 0 < r ∈ O, the generalized tangent portfolio is given by the
market portfolio:17 θT (r) = θM (r) .

Proof. By definition, the market portfolio is given by

θM (r) ≡ diag [Ψr (δ)] φM

Ψr (δM )
.

Since both the generalized tangent portfolio and the market portfolio have unit
length, and since diag[Ψr (δ)] is non-singular, it is sufficient to show that the φM

is proportional to Σ−1
0

(
E [δ]−Ψ−1

r (1)Ψr (δ)
)
. By the definition of the discount

factor, we have:

E [δ]−Ψ−1
r (1)Ψr (δ) =

r

1− r
E [ĉδ] =

r

1− r

1
σ [δM ]

Σ0φ
M .

This yields

φM =
(
r−1 − 1

)
σ

[
δM

]
Σ−1

0

(
E [δ]−Ψ−1

r (1)Ψr (δ)
)

as desired.
In the light of this observation, by the two-fund separation theorem (Propo-

sition 8), all MPS-risk-averse investors will choose to hold a combination of the
market portfolio and the risk free asset. For all r ∈ O, let

αi (r) = arg max
a∈R+

Ui

(
(1− a)

Ψr

(
φi · δ)

Ψr (1)
+ a

Ψr

(
φi · δ)

Ψr (δM )
δM

)
(24)

be the proportion of i’s wealth W i
0 ≡ Ψr

(
φi · δ) that is optimally invested in

the market portfolio θM (r) .

Lemma 9 For all r ∈ O and for all i, we have:

1. αi (0) = 0.

2. If {rn}∞n=1 ⊂ O converges to r∗ /∈ O, then limn→∞ αi (rn) = +∞.

3. αi : O → R+ is continuous.

Proof. At r = 0, the price of the market portfolio is given by E
[
δM

]
. The

expected return of the market portfolio is thus given by the risk free interest rate(
Ψ−1

r (1) = 1
)
. This implies that, for all a, the portfolio return (1− a) 1

Ψr(1) +

a δM

Ψr(δM )
is a mean-preserving spread of the risk free return 1

Ψr(1) . Therefore,
all risk averse investors would optimally invest in the risk free asset with zero
position in the market portfolio. That is, αi (0) = 0 for all i.

17Notice that, for arbitrary given prices, the market portfolio does not necessarily coincide
with the tangent portfolio. But, with prices generated by the discount factor π (r) , for all
r ∈ O, the two portfolios can be shown to coincide.
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Since, by assumption, the utility function is continuous, the real function
f : R+ × [0, 1] → R defined by

f (a, r) ≡ Ui

(
(1− a)

Ψr

(
φi · δ)

Ψr (1)
+ a

Ψr

(
φi · δ)

Ψr (δM )
δM

)
(25)

is also continuous and strictly quasi-concave in a for any given r ∈ [0, 1]. Con-
sider the set-valued function

G (r) ≡
{

a ∈ R+ : f (a, r) = sup
a∈R+

f (a, r)

}
, r ∈ [0, 1] , (26)

which is either single-valued or empty. By Lemma 6, the set of r ∈ [0, 1] for
which G (r) is non-empty is given by O ≡ [0, r∗) ⊂ [0, 1] . Therefore, for all
r ∈ O, we can write G (r) =

{
αi (r)

}
.

To prove the second statement, let {rn}∞n=1 ⊂ O converge to r∗ /∈ O. Con-
sider the resulting sequence

{
αi (rn)

}∞
n=1

⊂ R+. To show that limn→∞ αi (rn) =
+∞, suppose, to the contrary, that

{
αi (rn)

}∞
n=1

has a finite limit point given
by α∗ ≥ 0. Let {nk}∞k=1 be a convergent subsequence that converges to α∗.
We have: for all a ∈ R+, f (a, rn) ≤ f

(
αi (rn) , rn

)
for all n, particularly

holds true for the subsequence {nk}∞k=1. Let k → ∞, by continuity of f ,
we have: f (a, r∗) ≤ f (α∗, r∗) , which holds true for all a. Therefore, α∗ ∈
arg maxa∈R+ f (a, r∗) ≡ G (r∗). This, however, contradicts the emptiness of
G (r∗) at r∗. Therefore, we must have: limn→∞ αi (rn) = +∞.

To show that αi : O → R+ is continuous, it is sufficient to show that: for
all {rn}∞n=1 ⊂ O converging to r ∈ O, the resulting sequence

{
αi (rn)

}∞
n=1

converges to αi (r) . Firstly, we show that
{
αi (rn)

}∞
n=1

must be a bounded
sequence. Suppose, without loss of generality, that limn→∞ αi (rn) = +∞.
Let {an}∞n=1 ⊂ R+ be an arbitrary sequence that converges to αi (r) . For
any arbitrary a > 0, let xn = a

αi(rn) for all n. For n sufficiently large, we

have xn ∈ (0, 1) . Consider the sequence
{
(1− xn) an + xnαi (rn)

}∞
n=1

formed
by the convex combinations of an and αi (rn) . The sequence converges to
αi (r) + a. By the quasi-concavity of f , and by the optimality of αi (rn) ,
we have: f

(
(1− xn) an + xnαi (rn) , rn

) ≥ f (an, rn). Let n → ∞, it yields
f

(
αi (r) + a, r

) ≥ f
(
αi (r) , r

)
. This contradicts the unique optimality of αi (r)

for the given r ∈ O.
Now, let α ≥ 0 be any finite limit point of

{
αi (rn)

}∞
n=1

, and let {nk}∞k=1 be
the convergent subsequence. We have for all a ∈ R+ and for all k, f (a, rnk

) ≤
f

(
αi (rnk

) , rnk

)
. Let k → ∞, by continuity of f , we have: f (a, r) ≤ f (α, r) ,

which holds for all a. Also, since r ∈ O, supa∈R+
f (a, r) achieves its maximum

uniquely at αi (r). Therefore, we conclude that α = αi (r) . This implies that{
αi (rn)

}∞
n=1

has a unique limit point αi (r) ; or, equivalently, limn→∞αi (rn) =
αi (r) . This ends the proof of the third statement.

As a necessary condition for the existence of a market equilibrium, the mar-
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ket clearing condition for the risky assets implies:
∑

i

αi (r) Ψr

(
φi · δ) = Ψr

(
δM

)
; (27)

that is, the aggregate investment in all risky assets equals the value of the market
portfolio. We have,

Proposition 9 There exists an 0 < r ∈ O that solves equation (27).

Proof. Let αM (r) =
∑

i αi (r)
Ψr(φi·δ)
Ψr(δM )

, r ∈ O. By Lemma 9, the function
αM : O → R+ is continuous, and has the following two properties:
(a) αM (0) = 0, (b) limn→∞ αM (rn) = ∞ for all {rn}∞n=1 ⊂ O converging to r∗.
By the continuity of αM , there exists an r ∈ (0, r∗) such that αM (r) = 1; or,
equivalently,

∑
i αi (r)Ψr

(
φi · δ) = Ψr

(
δM

)
.

Now, we are ready to prove the main existence theorem.

Proposition 10 There exists an r ∈ (0, 1) such that π (r) constitutes an equi-
librium discount factor.

Proof. Let 0 < r ∈ O be a solution to equation (27). Lemma 8, together
with Proposition 8, implies that i’s optimal portfolio θi in the risky assets, for
the given r, is proportional to the market portfolio. We write θi = αi (r) θM (r) .
With initial wealth given by W i

0 ≡ Ψr

(
φi · δ) , we have:

∑

i

(1− αi (r))W i
0

= Ψr

(
φM · δ)−

∑

i

αi (r)Ψr

(
φi · δ)

= Ψr

(
δM

)−
∑

i

αi (r)Ψr

(
φi · δ)

= 0;

that is, the net borrowing in the risk free asset is zero; and for all risky assets
j, we have:

∑

i

θi
jW

i
0

Ψr (δj)

=
∑

i

αi (r) θM
j (r)Ψr

(
φi · δ)

Ψr (δj)

=
∑

i

αi (r)Ψr

(
φi · δ)

Ψr (δj)
θM

j (r)

=
Ψr

(
δM

)

Ψr (δj)
Ψr

(
δj

)
φM

j

Ψr (δM )

= φM
j ;
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or, in other words, the total number of shares invested in risky asset j equals
to the number of shares outstanding for the asset. Therefore, the pricing rule
resulting from the discount factor π (r) constitutes a market equilibrium. This
concludes the proof.
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