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Abstract

This paper studies sequential portfolio choices by MPS-risk-averse

investors in a continuous time jump-diffusion framework. It is shown

that the optimal trading strategies for MPS risk averse investors, if

they exist, must be located on a so-called ‘temporal efficient frontier’

(t.e.f.). Analytic and qualitative characterizations of the t.e.f. are

provided and are shown to form a hyperbola in the μ-σ plane. This

paper also provides insights on (i) dynamic consistency underlying

those temporal efficient trading strategies; (ii) mutual fund separation

in extending the classical notion of Tobin (1958) and Black (1972) to

this continuous-time setting; (iii) risk decomposition in presence of

Lévy jumps, and (iv) differences between MPS risk averse investors
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and the expected utility investors concerning their optimal trading

bahaviour.

1 Introduction

This paper is on sequential portfolio choice, dynamic risk management, and

intetemporal mean-variance efficiency in a context of continuous time jump-

diffusion framework. The analysis extends the existing literature in two-folds:

First, investors are assumed to display mean-preserving-spread (MPS) risk

aversion.1 Second, asset returns follow a jump-diffusion process, and the

motion of the stock prices is assumed to be driven by an exogenous Markov

state process {xt} that is itself a Lévy process. Our contribution involves
an analytic characterization of the so-called temporal efficient frontier in the

jump-diffusion framework, along with several insights into optimal trading

strategies conducted by MPS risk averse investors.

1.1 MPS Risk Aversion and Portfolio Choice

The notion of MPS-risk-aversion is taken from Boyle and Ma (2002). An

investor is said to display MPS-risk-aversion if s/he prefers X to Y whenever

Y is identical in distribution to anMPS ofX. The MPS risk averse preference

differs from risk averse expected utility. MPS risk averse preference as a

partial order may not admit a mean-variance utility representation though

any mean-variance utility function (that is decreasing in standard deviation)

must display MPS-risk-aversion. These are well illustrated in Boyle and Ma

(2002).

It is also noted that, mean-preserving-spread as a partial order can cap-

ture higher moments of the distribution, in addition to the first two moments.
1Here, MPS is the abbreviation of ‘mean-preserving-spread’. For arbitrary random

payoffs X and Y , Y is said to be a mean-preserving-spread of X if there exists an ε, with
E [ε] = 0 and Cov(X, ε) = 0, such that Y = X + ε. MPS constitutes a partial order on
the space of random payoffs.
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The MPS risk averse preference is thus readily able to model investors’

psychological aversion towards downside risk, in contrast to the classical

mean-variance preferences. Moreover, according to Boyle and Ma (2002),

MPS-risk-aversion constitutes the key behavioral assumption underlying the

classical Markowitz’s (1952, 1959) mean-variance analysis, and also for the

validity of the CAPM, one of the corner stones for modern finance which has

originated from Sharpe (1964) and Lintner (1965), along with the insight

from Tobin (1958) and Black (1972) on mutual fund separation.

The notion of MPS risk aversion can be readily extended to continuous

time setting. For any arbitrary given trading session [0, T ] concerned, letX0,T

and X 0
0,T be the final payoffs resulting from self-financing trading strategies

φ and φ0, respectively. Typical MPS-risk-averse investors would prefer φ to

φ0 whenever X 0
0,T is expressed as an MPS of X0,T , provided that both trading

strategies have the same initial cost of capital.

In the meantime, we may also extend Markowitz’s mean-variance effi-

ciency in continuous time. Consider the set of terminal payoffs generated

from self-financing trading strategies on trading session [0, T ]. A trading

strategy with instantaneous expected growth rate μ0 on [0, T ] is said to be

temporal efficient at μ0 if there exists no other self-financing trading strategy

that has a smaller risk and yet achieves the target rate μ0 within the trading

session [0, T ]. Here, the risk is understood to be measured by the stan-

dard deviation / variance with respect to the terminal wealth. The curve on

(μ, σ)-plane, which is formed by the set of all mean-variance efficient trading

strategies, is known as temporal efficient frontier (t.e.f.). Almost by defini-

tion, all MPS risk averse investors will invest optimally along the t.e.f..

Unlike Markowitz’s one-period problem, to construct the temporal effi-

cient trading strategy and to analytically derive the t.e.f. is, by no means,

an easy task. This is mainly due to the fact that, the temporal MV-efficient

trading strategies involve continuous trading, and investors need to revise its

portfolio holdings continuously upon newly arrival of information. In conse-
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quence, to analytically characterize the set of efficient trading strategies, we

need to fully characterize the revision of the optimal portfolio holdings for the

entire trading session. This represents a challenging mathematical problem

relative to the original one-period problem studied by Markowitz (1952) and

Boyle and Ma (2002). So, this paper represents probably the very original

effort in tackling the sequential portfolio choice problem.

Interestingly, as illustrated below in this paper, we may transform the

efficient portfolio choice problem into a so-called ‘optimal tracking problem’.

The optimal tracking problem is best understood as a problem of controlling

a moving object to reach a specific target within a prespecified time interval

[0, T ]. The controller must try to maintain the moving object to move at

about a constant pre-specified target speed, while maintaining the time-T

location of the object as close to the target location as possible. This problem

is solved by applying the standard variational method together with the

dynamic programming technique.

It is shown that the optimal trading strategies for MPS risk averse in-

vestors, if exist, must be located on the t.e.f.. Analytic and qualitative char-

acterizations of the t.e.f. are provided and are shown to form a hyperbola in

the μ-σ plane. This paper also provides insights into

• dynamic consistency underlying those temporal efficient trading strate-
gies;

• mutual fund separation in extending the classical notion of Tobin (1958)
and Black (1972) to continuous-time;

• risk decomposition in continuous time with Lévy jumps, and

• differences between MPS risk averse investors and the expected utility
investors concerning their optimal trading behavior.
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1.2 Managing Risk of Rare Events

The existing literature on risk management and portfolio choice in continuous

time has largely been in the context of diffusion. The books by Korn (1997)

and Merton (1990) contain an extensive coverage of the literature. The

sequential choice problem, or simply Merton’s problem, can be traced back

to Merton (1971,1973) for his derivation of the optimal risky portfolio by

expected utility investors with constant Arrow-Pratt measure of relative risk

aversion (RRA). The optimal portfolio is expressed as

θ∗ =
1

RRA
× [σσ|]−1

£
μ− r1

¤
,

where σσ| is the instantaneous variance-covariance matrix for the risky as-

sets, and μ− r1 is the excess instantaneous mean return vector for the risky

assets. The formula suggests that, for EU investors with constant RRA, the

optimal portfolio is proportional to the instantaneous tangent portfolio that

is located on the so-called ‘local mean-variance efficient frontier’. This is in

analoguing to Markowitz’s original finding (for mean-variance investors) in

static setting.

Research on mean-variance analysis and portfolio choice in continuous

time includes Richardson (1989), Duffie and Richardson (1991), Schweizer

(1992), and more recently Bielecki, Jin, Pliska and Zhou (2005). Treatments

in all these papers are within the pure diffusion framework. Mean-variance

analysis in continuous time jump-diffusion framework, which remains largely

an untouched research territory, constitutes the aim of this paper.

The diffusion specification on the state process, along with the security

price processes, fails to capture the presence of rare events, the possibility of

some sudden changes in the economic conditions, shifts in economic policies,

and other possible changes in the economic environment, which all leads to

dramatic changes in security prices. Empirical research conducted by Press

(1967), Jarrow and Rosenfeld (1984), Ball and Torous (1985), and recent
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studies by Bates (1996), Eraker, Johannes and Polson (2003) and Eraker

(2004), all confirmed the existence of significant jump risk in security prices.

The jump risk can be best modelled by introducing the Lévy jump in

characterizing the motion of the state process along with the security price

process (see Merton 1976, Naik and Lee 1990, Ma 1992, 2005, 2006). By

assuming the state process to follow a Lévy process, we are able to simul-

taneously model both the Brownian motion, corresponding to continuous

local risk, and the ‘jump’ events summarized through a so-called Lévy mea-

sure. The Lévy measure summarizes both the frequency and the jump size

distribution.

To hedge against jump risk and the risk of rare events has long been

recognized as a challenging task. Naik and Lee (1990) are among the first to

point out that the market becomes incomplete in presence of jump risk. Ma

(1992) goes further to assert that it is essentially impossible to fully hedge

against the jump risk using options trading unless there is no Brownian risk,

and when the jump size is constant. The latter corresponds to the case

studied by Cox and Ross (1976). In fact, even with portfolios involving

arbitrary large but finite number of assets, as is to be illustrated below,

efficient portfolio in presence of jump risk could deviate dramatically from

what has been prescribed above in the diffusion case, without mentioning the

possibility of obtaining a fully hedged portfolio. This is largely due to the

fact that, the temporal efficient trading strategy is to hedge against not only

the local instantaneous risk associated with the Brownian motion, but also

the rare jump risk, in addition to the risk on how investors perceive future

investment opportunities. The latter is known as ‘shadow risk’ as it reflects

risk associated with the shadow prices.

While it is hard to fully hedge against different sources of risk simultane-

ously, the relevance of temporal mean-variance efficient trading strategies as

a useful venue towards portfolio risk management can be readily established.

Following the same logic in Boyle and Ma (2002), we can show (see section
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2.3 below) that, to investors who display MPS-risk-aversion, their optimal

trading strategies, if they exist, must be temporal mean-variance efficient.

Indeed, what we wish to accomplish in this paper is exactly to construct an-

alytically the temporal mean-variance efficient frontier in presence of jump

risk.

1.3 EU vs MPS RA Investors: How Differently They

Trade?

As a relevant issue, we explore the difference between MPS risk averse in-

vestors and expected utility investors concerning their trading behavior. We

shall restrict our discussion to the case in absence of jump risks – this cor-

responds to the case in which investors from either groups would invest in

the same composition of riky portfolio. Yet, they are found to follow very

different trading patterns concerning the portfolio weights assigned to the

separating portfolios. Such differences can be also best reflected through the

instantaneous mean return and local volatility with respect to the balance

of the investment accounts respectively managed by investors from the two

groups.

Various observations concerning mutual fund separation and risk decom-

position can be made as well in this general jump-diffusion framework. Ex-

tension of Black’s (1972) two mutual fund separation theorem within the

temporal framework is found sensible to the existence of jump risk. In gen-

eral, investors with different target rates may end up adopting very different

trading strategies; in particular, the optimal trading strategy by an MPS risk

averse investor may not be expressed as convex combinations of two arbitrary

efficient trading strategies. Moreover, in general, it no longer holds true that,

“if φ and φ0 are temporal efficient trading strategy (say with targeting rate μ

and μ0), then for all constant α ∈ (0, 1) , αφ+ (1− α)φ0 is efficient”. Condi-

tions for the validity of statement of this sort will be explored in this paper.
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1.4 Organization of The Paper

The rest of the paper is organized as follows: In Section 2, we provide a setup

of the model. It includes an introduction of the state process in summa-

rizing uncertainty of the economy, and specifications on the return process

for all tradable securities. Formal definition of temporal efficient trading

strategy, along with some discussions on the behavior assumption underly-

ing MPS-risk-averse investors and on the formulation of the corresponding

sequential portfolio choice problem, are also covered in this section. In Sec-

tion 3, we transform the efficient portfolio choice problem into an optimal

tracking problem, and show how the problem can be solved with the dy-

namic programming technique. Section 3 also contains some useful insights

into the qualitative properties of the t.e.f. and its relationship with the lo-

cal instantaneous mean-variance efficient frontier. Sections 4 and 5 concern

implications on the robustness of mutual fund separations and risk diversi-

fication in continuous time, respectively. Section 6 is an in-depth discussion

on the difference between MPS risk averse investors and the expected utility

investors concerning their optimal trading behavior. Some useful remarks

are provided in Section 7.

2 Setup of the Model

We take as primitive a trading session [0, T ]. The uncertainty is summarized

by a probability space (Ω,F ,P) with increasing and right continuous infor-
mation filtration. The market contains a fixed number of securities, indexed

by j ∈ {1, 2, · · ·, J}, in addition to an risk-free saving account with instanta-
neous risk free interest rates {rt}. A typical task for investors is to choose a
trading strategy within the trading session to maximize its temporal utility.

The trading strategy is associated with a portfolio holding of the tradable

securities at each spot market t contingent on realizations of state of nature

ω in Ω.
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The following are some additional descriptions with respect to each com-

ponent of the market environment; namely, the information structure, the

market structure, and the behavior assumptions underlying the economic

agents, namely, the investors.

2.1 Jump-Diffusion State Process and Returns

Throughout this paper, we make the following specifications on the infor-

mation structure along with the return process for all tradable securities.

These specifications are largely taken from Ma (1992, 2006), and are known

to be sufficiently flexible for carrying out most applications in continuous

time finance.

• The nature of uncertainty in this economy is assumed to be summa-
rized by a probability space (Ω,F ,P). The information filtration F =
{Ft}t∈[0,T ] is generated from a n-dimensional Markov jump-diffusion

Lévy process {xt} that is governed by the following stochastic differen-
tial equation:

dxt = b (t, xt) dt+ a (t, xt) dBt +

Z
Rk

l (t, xt, u) υ (dt, du) (1)

with initial state x0, and with coefficients b, a and l to be deterministic

continuous functions of dimension n× 1, n×m and n× 1, respectively.
Here, {Bt}t∈[0,T ] is a m-dimensional standard Brownian motion; and

υ (·, ·) on [0, T ] × Rk is a random Poisson measure of a k-dimensional

Lévy process. The corresponding Lévy measure of the Lévy process is

denoted υ (du). The process {xt} is understood as the state process
as driving force for the evolution of the economy, particularly for the

motion of stock prices described below.

• Security j is associated with a life-long cumulative dividend stream©
Dj

t

ª
t∈[0,T ] and a price process

©
Sj
t

ª
t∈[0,T ]. The payoffs and security
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prices are all adapted to the state process {xt}. The total instanta-
neous return for each of the tradable security j admits the following

decomposition

dXj
t

Sj
t

= μj (t, xt) dt+ σj (t, xt) dBt +

Z
γj (t, xt, u) υ (dt, du) (2)

with dXj
t ≡ dSj

t + dDj
t . We assume that γ

j > −1.

• The interest rates {rt} are also assumed to be adapted to the state
process {xt}. We write rt ≡ r (t, xt).

Under these specifications, the cash balance
n
Xφ

t

o
of the investment

account resulting from self-financing trading strategy φ evolves according to

dXφ
t

Xφ
t

=
£
rt + θ|t

¡
μt − rt1

¢¤
dt+ θ|t σtdBt +

Z
θ|t γt (u) υ (dt, du) (3)

with

θt
4
=
£
θ1t , · · ·, θJt

¤|
, μt

4
=
£
μ1t , · · ·, μJt

¤|
(4)

σt
4
=
£
σ1t , · · ·, σJt

¤|
, γt

4
=
£
γ1t , · · ·, γJt

¤|
. (5)

Here, θjt is the proportion invested in security j with θjt
4
=

φjtS
j
t

φt·St
for all

j 6= 0. The cash position deposited in the saving account is given by³
1−

P
j 6=0 θ

j
t

´
Xφ

t .

Remark 1 It is noted that, the cash balance of the investment account re-
mains positive throughout the entire trading session so long as θ|t γt > −1
for all t ∈ (0, T ) ,P-a.s.. In other words, for trading strategies to satisfy the
restriction θ|γ > −1, the resulting cash balance

n
Xφ

t

o
must be positive and
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evolve according to the following SDE:

d lnXφ
t =

µ
rt + θ|t

£
μt − rt1

¤
− 1
2
θ|t σtσ

|
t θt

¶
dt+ θ|t σtdBt

+

Z
ln [1 + θ|t γt (u)] υ (dt, du) .

A trivial trading strategy resulting in positive cash balance is to set θ ≡ ∅;
that is, to invest in the risk free saving account. For the special case where

there exists no jump risk, the resulting cash balance
n
Xφ

t

o
must be positive

P-a.s. for any self-financing trading strategy φ. Since, in this paper, we do

not impose explicitly restrictions on borrowing, we do not need to impose

positive cash balance as a constraint.2

2.2 Temporal MV-Efficiency

The concept of temporal MV-efficiency is a straightforward extension to the

notion of Markowitz’s static MV-efficiency.

Definition 2 Within an arbitrarily given trading session [0, T ], for all μ0 ∈
R, a self-financing trading strategy φ (μ0) is said to be temporal MV-efficient,
or simply MV-efficient, at μ0 if

φ (μ0) = arg min
φ∈Φ0T

n
σ0
h
Rφ
0,T

i
: E0

h
Rφ
0,T

i
= eμ0T

o
; (6)

that is, among all self-financing trading strategies with the target rate of re-

turn μ0, the corresponding MV-efficient trading strategy φ (μ0) is the one that

involves the minimum risk in reaching the target rate μ0.

2A different problem can be formulated here is when negative cash balance is not
permitted, for example, as part of the liquidity restrictions from financial regulation. In
this circumstance, we must impose explicitly the non-negative constraint as part of the
restriction to feasible trading strategies even though investor can tolerate negative payoffs
psychologically.

11



The notion of temporal MV-efficiency extends to any arbitrary sub-trading

sessions, say (t, T ]. Since an MV-efficient trading strategy involves contin-

uous trading, investors need to revise their portfolio holdings continuously

upon new arrival of information. As a result, to analytically characterize the

efficient trading strategy represents a more challenging mathematical prob-

lem relative to the original one-period problem studied by Markowitz (1952)

and Boyle and Ma (2002). One may thus wonder if it is possible to construct

a dynamic consistent efficient trading strategy so that the efficient trading

strategy designed at time t = 0 for the entire trading session [0, T ] would be

optimally carried out at all future contingencies; in particular, if the efficient

trading strategy contingent on the sub-trading session [t, T ] would remain

efficient for the sub-session.

One may also wonder how it is possible to analytically characterize the

temporal efficient frontier, along with the evolution of the temporal efficient

frontier in time. All these will be tackled in the following sections.

2.3 MPS-Risk-Aversion and Temporal MV-efficiency

The notion of mean-preserving-spread (MPS) is taken from Boyle and Ma

(2002), which can be readily extended to the context of sequential choice in

continuous time. For any arbitrary trading session [0, T ], letX andX 0 be the

end of session payoffs resulting from self-financing trading strategies φ and

φ0, respectively. X 0 is said to be amean-preserving-spread of X if X 0 = X+ε

with E0 [ε] = 0 and Cov0 (X, ε) = 0.

We consider investors who care only about the terminal wealth at the end

of trading session [0, T ], and rank different self-financing trading strategies by

applying the mean-preserving-spread criterion with respect to the resulting

end of session returns or terminal payoffs. Or, more explicitly, let Xφ
0,T and

Xφ0

0,T be the final payoffs respectively resulting from self-financing trading

strategies φ and φ0. MPS-risk-averse investors would prefer φ to φ0 whenever

Xφ0

0,T is expressed as an MPS of X
φ
0,T .
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The following observation is on the MV-efficient trading strategy and its

relevance for MPS risk averse investors’ choices:

Proposition 3 Let φ0 ∈ Φ0T be an efficient self-financing trading strategy

at μ0. Then, for all self-financing trading strategies φ ∈ Φ0T with expected

growth rate μ0, X
φ
0,T must be expressed as an MPS of X

φ0
0,T . Moreover, for

MPS risk averse investors, its optimal trading strategy φ∗, if exists, must be

MV-efficient.

Proof. The total return, denoted Rφ
0,T , associated with trading strategy φ

can be interpreted as the end of session payoff starting with unit initial cash

position. Consider the set of trading strategies

{αφ+ (1− α)φ0 : α ∈ R}

formed by convex combinations of trading strategies φ0 and φ. These trading

strategies remain self-financing, and to have their total return be given by

αRφ
0,T + (1− α)R

φ0
0,T . The expected total return is e

μ0T . Since φ0 is efficient

at μ0, the total risk σ0
h
αRφ

0,T + (1− α)R
φ0
0,T

i
must achieve its minimum at

α = 0. The first order condition leads to Cov0
³
Rφ
0,T , R

φ0
0,T

´
= σ20

h
Rφ
0,T

i
. Let

εT ≡ Rφ
0,T −R

φ0
0,T . We have: E0 [εT ] = 0 and Cov0

³
R
φ0
0,T , εT

´
= 0.

To prove the second part of the proposition, suppose to the contrary that

there exists a self-financing and budget feasible trading strategy φ to be such

that μφT = μ∗T and σφT < σ∗T , where μ
∗
T and σ∗T are respectively the expected

final payoff and standard deviation of the final payoff, X∗
T , generated from

the optimal trading strategy φ∗. Let W0 > 0 be the initial cash position of

the investment account. We may write X∗
T = W0R

∗
0,T and Xφ

T = W0R
φ
0,T .

Consider the set of trading strategies {αφ+ (1− α)φ∗ : α ∈ R} formed by
the (extended) convex combinations of φ and φ∗, all are self-financing and

budget feasible, and are with the same expected total return. Let φ0 6= φ∗
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be the trading strategy in the set that minimizes the total risk

σ0
h
αXφ

T + (1− α)X∗
T

i
=W0σ0

h
αRφ

0,T + (1− α)R∗0,T

i
.

By the first part of the proposition,X∗
T =W0R

∗
0,T must be a mean-preserving-

spread ofXφ0
T =W0R

φ0
0,T . In consequence, the MPS-risk-averse investor would

prefer φ0 to φ∗. This contradicts the optimality of φ∗ for MPS-risk-averse

investors.

The quest for the relevance of Markowitz’s efficient frontier has been con-

trovercial ever since its original launch in the early 1950’s. The attack on

mean-variance analysis has mainly concerned the mean-variance behavior as-

sumptions of the investors. One may ask: How can we assume that investors

only care about mean and variance towards their portfolio decision making,

while there are substantial evidence in suggesting that investors care about

downside risk more than the risk measured by the standard deviation or vari-

ance? It is noted that the measure of downside risk in general involves higher

order moments than mean and variance. Indeed, people do care about higher

moments in describing their preferences.

The attack does not apply to MPS risk averse investors. This is because,

as pointed out by Boyle and Ma 92002), MPS risk aversion as a partial order

may not admit a mean-variance utility representation. Also, MPS risk averse

investors may indeed care about downside risk and higher moments of the

distribution. Yet, what has suggested by Proposition 3 is that the MPS risk

averse investors’ optimal portfolio, if it exists, must be located on the t.e.f.

So, it is exactly in this sense that we say that Proposition 3 establishes the

relevance of t.e.f. for choices by MPS risk averse investors.
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3 MVEfficiency: An Optimal Tracking Prob-

lem

The objective of this section is to analytically characterize the MV-efficient

trading strategy along with the evolution of the MV-efficient frontier in

continuous-time. The stock returns are understood to be driven by state

process {xt}. The cash balance of the investment account evolves according
to equation (3):

dXφ
t

Xφ
t

=
£
rt + θ|t

¡
μt − rt1

¢¤
dt+ θ|t σtdBt +

Z
θ|t γt (u) υ (dt, du) (7)

with initial cash position Xφ
0 = W0 > 0 and with θjt ≡

φjtS
j
t

Xφ
t

, j 6= 0. When

the investment account is with unit initial cash position, say W0 = 1, Xφ
t

corresponds to the total return resulting from the trading strategy within

the trading session (0, t], for which we may write Xφ
t = Rφ

0,t.

To understand the evolution of the efficient trading strategy within a pre-

specified trading session (0, T ], we propose the following so-called optimal

tracking problem:

Problem 4 (Optimal Tracking) Consider an investor whose objective is
to achieve a pre-specified expected growth rate μ0 for the cash balance of the

managed investment account for a pre-specified trading session [0, T ] and all

its subsessions, and he wishes to achieve the target rate by taking the mini-

mum risk measured by the standard deviation of the end of session wealth.

The problem described above is referred to as a problem on ‘tracking a

target rate’. The question is: How would the optimal tracking strategy evolve

in time, if it exists? One may imagine that, to track the target rate, at each

future spot market, say at time t ∈ (0, T ), the investor may wish to revise
his portfolio holding upon newly arrival of information, by maintaining the
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same target rate μ0 set, and by choosing a trading strategy to minimize the

risk for the sub- trading session [t, T ] starting from t.

In the following paragraphs, we will formulate the sequential choice prob-

lem as an optimal tracking problem; in particular, we will show that the

solution to the optimal tracking problem must constitute a temporal MV-

efficient trading strategy.

Let φ be an arbitrary tracking strategy with Et
h
Xφ

T

i
= eμ0(T−t)Xφ

t and

with σ2t

h
Xφ

T

i
= Et

∙³
Xφ

T

´2¸
− E2t

h
Xφ

T

i
. Since the target rate is fixed in

advance, the time-t optimization problem for the optimal tracking problem

is reduced to the following minimization problem under constraint:

J (t, x,X)
4
= min

φ∈Φ0T
s.t.

Et[Xφ
T ]=eμ0(T−t)X

Et
∙³

Xφ
T

´2¸
(8)

for all t ∈ [0, T ], whereXφ
t = X is the starting cash position of the investment

account, and xt = x is the time-t state for the state variable.

The following observation on the relationship between the optimal track-

ing strategy and the MV-efficient trading strategy can be readily established:

Proposition 5 For all t ∈ (0, T ) the optimal tracking strategy φ∗ on (t, T ],
if exists, must constitute an MV-efficient trading strategy for the sub-session

(t, T ]. Moreover, it corresponds to the efficient trading strategy with expected

growth rate to be given by μ0.

Proof. Let φ∗ be the optimal tracking strategy on (0, T ] with end of session
payoff X∗

T . The time-t variance σ
2
t

h
Xφ

T | X
φ
t = X

i
is minimized at φ∗ with

the minimum variance to be given by σ2t [X
∗
T ] = J (t, xt, X) − e2μ0(T−t)X2.

With
n
Xφ

t

o
satisfying equation (3) which is of homogeneous of degree one

to the initial cash balance, we may write Xφ
T = Xφ

t R
φ
t,T with Rφ

t,t = 1, and

write J (t, x,X) = J (t, x, 1)X2. The time-t optimal tracking strategy φ∗
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must be given by

φ∗ = arg min
φ∈Φ0T
s.t.

Et[Rφ
t,T ]=eμ0(T−t)

σt
h
Rφ
t,T

i
(9)

for all t ∈ [0, T ] , with
n
Rφ
t,s

o
s∈[t,T ]

solving the SDE (3) under initial condition

Rφ
t,t = 1. Therefore, by definition of MV-efficience, restriction of φ

∗ on (t, T ]

constitutes an efficient trading strategy at μ0 for the trading session (t, T ].

So, to find the MV-efficient trading strategy we need to solve the optimal

tracking problem (8).

3.1 Dynamic Consistency

The following lemma shows that the optimal tracking strategy displays dy-

namic consistency:

Lemma 6 The optimal tracking strategy φ∗, if it exists, must display dy-

namic consistency; that is, for the given optimal tracking strategy φ∗ on (0, T ],

the restriction of φ∗ on (t, T ] must constitute an optimal tracking strategy for

the sub-session (t, T ].

Proof. Let θ∗ be the corresponding portfolio holding to the optimal tracking
strategy φ∗. Suppose to the contrary that there exists a tracking strategy φ

with resulting portfolio holdings θ so that

Et
∙³

Xφ
T

´2
| Xφ

t = X

¸
≤ Et

£
(X∗

T )
2 | X∗

t = X
¤

for all X,P-a.s., on the sub-session (t, T ]. Now, we construct a new trading
strategy, say bφ, that trades according to the optimal tracking strategy θ∗ on
the session (0, t] and according to θ on (t, T ] with Xφ

t = X∗
t . This newly de-

signed trading strategy is, by construction, self-financing. It also constitutes

17



a tracking strategy on (0, T ]:

E0
h
Xφ

T | X
φ
0 =W0

i
= E0

h
Et
h
Xφ

T | X
φ
t = X∗

t

i
| Xφ

0 =W0

i
= E0

h
Et
h
Xφ

T | X
φ
t = X∗

t

i
| Xφ

0 =W0

i
= E0

£
eμ0(T−t)X∗

t | X∗
0 =W0

¤
= eμ0(T−t)eμ0tW0

= eμ0TW0.

Taking the conditional expectations on both sides of the above inequality to

obtain

E0
∙³

X
bφ
T

´2¸
< E0

£
(X∗

T )
2¤ .

This contradicts the optimality of φ∗.

Dynamic consistency enables us to work backward in constructing the

optimal tracking strategy. This in turn results in the following recursive

equation for the value function. We have:

Lemma 7 For all t ∈ (0, T ) and ∆ > 0 that is sufficiently small, it must

hold true that

J (t, x,X) = min
φ∈Φ0t+∆
s.t.

Et[Xφ
t+∆]=eμ0∆X

Et
h
J
³
t+∆, xt+∆,X

φ
t+∆

´i
(10)

in particular, the maximum is achieved at the optimal tracking strategy φ∗

with {J (t, xt,X∗
t )}t∈[0,T ] to form a martingale on [0, T ].
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Proof. Let φ∗ be the optimal tracking strategy on (0, T ] with end of session
payoff X∗

T . We have, by Lemma 6, for all t ∈ [0, T ],

J (t, xt,X
∗
t )

= Et
£
(X∗

T )
2 | X∗

t

¤
= Et

£
Et+∆

£
(X∗

T )
2 | X∗

t+∆

¤
| X∗

t

¤
= Et

£
J
¡
t+∆, xt+∆,X

∗
t+∆

¢¤
;

that is, {J (t, xt, X∗
t )}t∈[0,T ] forms a martingale on [0, T ]. We can further verify

that trading according to φ∗ on (t, t+∆] constitutes a tracking strategy for

the sub-session (t, t+∆]. We have:

eμ0(T−t)X

= Et [X∗
T | X∗

t = X]

= Et
£
Et+∆

£
X∗

T | X∗
t+∆

¤
| X∗

t = X
¤

= Et
£
eμ0(T−t−∆)X∗

t+∆ | X∗
t = X

¤
= eμ0(T−t−∆)Et

£
X∗

t+∆ | X∗
t = X

¤
.

This yields

Et
£
X∗

t+∆ | X∗
t = X

¤
= eμ0∆X.

Now, consider an arbitrary tracking strategy φ that achieves the same target

rate on (t, t+∆]; that is,

Et
h
Xφ

t+∆ | X
φ
t = X

i
= eμ0∆X.

We extend the trading strategy on (t, t+∆] to the entire session (t, T ] by set-

ting θ = θ∗ on (t+∆, T ]. With starting balance Xφ
t+∆, which is available at

the beginning of the sub-trading session (t+∆, T ], to be fully invested accord-

ing to θ∗, this newly defined trading strategy, denoted bφ, is by construction
self-financing. We can further verify that it forms a tracking strategy on
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(t, T ]; that is,

Et
h
Xφ

T | X
φ
t = X

i
= Et

h
Et+∆

h
X∗

T | Xφ
t+∆

i
| Xφ

t = X
i

= Et
h
eμ0(T−t−∆)Xφ

t+∆ | X
φ
t = X

i
= eμ0(T−t−∆)eμ0∆X

= eμ0(T−t)X.

With these, by the optimality of φ∗, we obtain

J (t, x,X)

≤ Et
∙³

Xφ
T

´2
| Xφ

t = X

¸
= Et

h
Et+∆

h
(X∗

T )
2 | Xφ

t+∆

i
| Xφ

t = X
i

= Et
h
J
³
t+∆, xt+∆,X

φ
t+∆

´
| Xφ

t = X
i
.

We have already learnt (Re: Lemma 6) that the inequality holds with equality

when it trades according to φ∗ on (t, t+∆], which itself constitutes a tracking

strategy on (t, t+∆]. These enable us to conclude the validity of (10).

3.2 HJB Equation: MPS-RA Investor

With above observation on the dynamic consistency for the corresponding

sequential choice problem induced by the optimal tracking problem, we can

readily derive the following HJB equation for the optimal tracking problem.

We have:

Proposition 8 The HJB equation for the optimal tracking problem takes the
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form

0 = min
θ∈RJ
s.t.

θ| (μ+ γ(u)υ(du)−r1)=μ0−r

A(θ)J (t, x,X) (11)

where

A(θ)J (t, x,X)
= Jt + Jxb+XJX

¡
r + θ|

£
μ− r1

¤¢
+
1

2
tr ([a|, Xσ|θ]HJ [a

|, Xσ|θ]|)

+

Z
(J (t, x+ l,X +Xθ|γ)− J) υ (du)

is the infinitesimal generator induced by the joint jump-diffusion process
n
xt, X

φ
t

o
.

Proof. For any arbitrarily given tracking strategy φ, it must hold true that

lim
∆→0+

Et
h
e−μ0∆Xφ

t+∆

i
−X

∆
= 0.

This, by Itô’s lemma, yields

μ0 − r = θ|
µ
μ− r1 +

Z
γ (u) υ (du)

¶
. (12)

Moreover, by Lemma 7, for tracking strategy φ, it must hold true that

0 ≤ lim
∆→0+

Et
h
J
³
t+∆, xt+∆, X

φ
t+∆

´i
− J (t, x,X)

∆

= A(θ)J (t, x,X)

and that, it holds with equality at the optimal tracking strategy. So, we

conclude that A(θ)J (t, x,X) achieves its minimum (zero) with the optimal

tracking strategy, which is summarized by the risky portfolio θ∗ (t, x,X),
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among all θ ∈ RJ that are constrained by equation (12).

With the HJB equation (11) we transform the sequential optimal tracking

problem into a static optimization problem with constraint. This enables us

to fully analytically characterize the optimal portfolio holding as feedback to

the evolution of the state process. We now turn to next section to work out

the technical details.

3.3 Analytic Solution

By Proposition 5, the optimal tracking strategy at μ0 must constitute an MV-

efficient trading strategy with the same target rate μ0. The HJB equation

derived in Proposition 8 for the optimal tracking portfolio enables us to

analytically characterize the efficient trading strategy in continuous-time.

With J (t, x,X) = J (t, x)X2 and J (t, x) ≡ J (t, x, 1) > 0, the static opti-
mization problem associated with the HJB equation can be further simplified

into the following quadratic optimization problem:

θ∗ = arg min
θ∈RJ
s.t.

θ|λ=μ0−r

θ|c+
1

2
θ|Σθ (13)

where

λ
∆
= μ− r1 +

R
γυ (du) is the vector of excess instantaneous returns for all

risky assets (in presence of jump risk) over the risk free interest rates.

Σ
∆
= σσ|+J−1

R
J (t, x+ l) γγ|υ (du) is the shadow instantaneous variance-

covariance matrix (in presence of jump risk) derived from the returns

of risky assets. The contribution from the jump risk is indexed by

J (t, x+ l) /J (t, x). The weights depend on how the total risk of the

investment account reacts to the jumps in the state variables.

c
∆
= J−1

©
σa|Jx +

R
[J (t, x+ l)− J ] γυ (du)

ª
corresponds to the instanta-

neous covariances of the risky returns with the depreciation rate of the
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total risk associated with the investment account. The total risk is

measured by J , which is, in general, driven by the state variables x.

Remark 9 It is noted that the total risk J of the investment account varies
with the level of target rate μ0. In consequence, both Σ and c are specific to the

target rate μ0 as well. But, there is an exception to this, which corresponds

to the case where asset returns are not driven by the state variables. In this

case, we will have J = J (t) with c = 0 and Σ = Σ0, where

Σ0
4
= σσ| +

Z
γγ|υ (du) (14)

is the objective- rather than shadow- instantaneous variance-covariance ma-

trix for the returns of risky assets. This special case will be studied in some

detail in Example 11 below.

The quadratic optimization problem formulated above for the local effi-

cient portfolio holding resembles the optimization problem solved byMarkowitz

(1952) in deriving the mean-variance efficient frontier in static setting except

that, here c may not be equal to zero, and that we made use of shadow

instantaneous variance-covariance matrix Σ.

The optimal solution can be easily found by applying the standard La-

grangian method. Suppose Σ is positive definite, the efficient portfolio θ∗ is

unique and is given by

θ∗ = −Σ−1c+
¡
μ0 − r + c|Σ−1λ

¢ ¡
λ|Σ−1λ

¢−1
Σ−1λ. (15)

Let θ
4
= −Σ−1c. The risky portfolio θ constitutes the so-called instanta-

neous minimum shadow variance portfolio since it is the risky portfolio that

minimizes the shadow risk in absence of tracking constraint. The second

term in the efficient risky portfolio θ∗ is proportional to Σ−1λ, and, in turn,

23



proportional to the instantaneous shadow tangent portfolio

θm
4
=
¡
1
|
Σ−1λ

¢−1
Σ−1λ (16)

which is obtained by incorporating the jump risk. So, to obtain the efficient

portfolio, investors need to do the following:

(a) to hedge against the systematic risk with the minimum (shadow) vari-

ance portfolio θ;

(b) to invest the remaining cash balance into a combination of the instanta-

neous (shadow) tangent portfolio θm and the risk free saving account.

The weight invested in the shadow tangent portfolio varies with the

target rate μ0. If 1
|
Σ−1λ > 0, the position invested in the tangent

portfolio would increase with the target rate μ0.

It remains to determine the risk associated with the efficient trading strat-

egy. With

σ2t [X
∗
T ] ≡

£
J (t, xt)− e2μ0(T−t)

¤
X∗2

t , t ∈ [0, T ] (17)

the risk that is associated with the efficient trading strategy φ∗ (with ex-

pected growth rate μ0) is fully summarized by the J-function. With efficient

portfolio θ∗ (t, x) given by (15), we can readily derive the functional equation

for J by substituting J (t, x,X) = J (t, x)X2 and the expression for θ∗ (t, x)

into the HJB equation (11). This results in the following so-called generalized

Riccarti equation for the J-function:

AJ
J
= −2μ0 + c|Σ−1c−

¡
μ0 − r + c|Σ−1λ

¢2 ¡
λ|Σ−1λ

¢−1
(18)

with terminal condition J (T, x) ≡ 1. Here, A is the infinitesimal generator

induced by the state process {xt}.
So, in summarizing the above derivations, we obtain the following char-

acterization theorem for the efficient trading strategy:
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Proposition 10 Let J ∈ C1,2 ((0, T )×Rn) solve the generalized Riccati

equation (18). The efficient trading strategy φ∗ is with its time-t portfolio

θ∗ (t, x) to be given by (15), and is with its risk exposure to be determined by

equation (17). Moreover, the cash balance {X∗
t } resulting from φ∗ is governed

by SDE
dX∗

t

X∗
t

= μ0dt+ θ∗|t

∙
σtdBt +

Z
γt (u)eυ (dt, du)¸ . (19)

The following is an illustrative example of the formation of MV-efficient

trading strategies, along with the evolution of risk and cash balance resulting

from such trading strategies:

Example 11 We consider the case where the coefficients of asset returns
are state-independent; that is,

r = r (t) , μ = μ (t) , σ = σ (t) , γ = γ (t, u) (20)

in addition to the assumption that the state process {xt} contains no jump
risk (l ≡ ∅) and that the asset returns contain no systematic instantaneous
risk (σa| = ∅). Under these specifications, we have c = ∅,Σ = Σ0. We

will also have J = J (t); that is, the total risk of the investment account is

deterministic and state-independent. With J = J (t) the efficient portfolio

holding admits a simple expression:

θ∗ = (μ0 − r)
¡
λ|Σ−10 λ

¢−1
Σ−10 λ. (21)

We can further characterize the total risk involved in the managed invest-

ment account. The generalized Riccati equation for the total risk J of the

investment account is reduced to an ordinary linear differential equation:

dJ (t)

dt
= −ξ0 (t)J (t) with J (T ) = 1 (22)
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where

ξ0 (t)
∆
= 2μ0 +

¡
λ|Σ−10 λ

¢−1
(μ0 − r)2 .

The solution is given by J (t) = e
T
t ξ0(s)ds. It is noted that ln J, as function

of μ0, forms a hyperbola. This is analogue to the classical static Markowitz’s

efficient frontier. Finally, the cash balance {X∗
t } resulting from the efficient

trading strategy must evolve in time according to the following SDE:

dX∗

X∗ = μ0dt+ (μ0 − r)
¡
λ|Σ−10 λ

¢−1
(23)

×λ|Σ−10
∙
σdBt +

Z
γeυ (dt, du)¸ .

4 Temporal v.s. Local Mutual Fund Separa-

tion

Here, we wish to distinguish between local instantaneous MV-efficiency and

temporal MV-efficiency. The former is defined locally at any specific time

and state, say at (t, x), and refers to the Markowitz’s efficient frontier derived

from the time-t instantaneous variance-covariance matrix Σ0 and excess in-

stantaneous mean return λ, in addition to the risk free interest rate r. The

latter is, on the other hand, defined over trading strategies on an entire

trading session (0, T ]. The concept of temporal MV-efficiency is relevant to

MPS risk averse investors’ trading in continuous time since we have already

learnt that, MPS risk averse investors only invest according to some MV-

efficient trading strategies. The relationships between local and temporal

MV-efficiency can be readily deduced from expression (15) for the local port-

folio holding θ∗ (t, x) induced by the temporal MV-efficient trading strategy

φ (μ0) with target rate μ0. We have the following observations:

(a) As indicated in Figure 1, the portfolio holding θ∗ (t, x) induced by a

temporal efficient trading strategy, in general, is not located on the
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μ

0
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Tθ( )λΣ ,0
mθ

Figure 1: Instantaneous MV Frontier

instantaneous Markowitz’s MV-efficient frontier derived from (Σ0, λ, r);

instead, for the given shadow instantaneous variance-covariance matrix

Σ, θ∗ (t, x) given by (15) admits the following alternative expression:

θ∗ = arg min
θ∈RJ
s.t.

r+[θ−θ]|λ=μ0−θ|λ

1

2
(θ − θ)| Σ (θ − θ)

that is, as depicted in Figure 2, the distorted portfolio θ∗ − θ consti-

tutes a local shadow efficient portfolio induced by (Σ, λ, r) with shadow

variance-covariance matrix Σ (rather than Σ0), and be proportional to

the local instantaneous shadow tangent portfolio θm. We have θ
∗ to

admit the following expression

θ∗ = θ + (μ0 − r − λ)λ−1m θm (24)

where λ and λm are the excess instantaneous return for the risky port-

folio θ and θm, respectively. It is noted that the temporal efficient
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Figure 2: Shadow MV Frontier

portfolio θ∗ would fall into the local Markowitz’s mean-variance effi-

cient frontier induced by (Σ0, λ, r) when c = ∅ and Σ = Σ0. This cor-

responds to the case when the market involves no systematic jump risk

(l = ∅) and when asset returns contain no systematic risk (σa| = ∅).

(b) Concerning mutual fund separation in a local spot market, expression
(15) leads to a three-fund separation for the local portfolio holding

θ∗ induced by temporal efficient trading strategies. The local portfo-

lio holding can be decomposed into θ, plus a risky portfolio that is

proportional to the instantaneous shadow tangent portfolio θm, in ad-

dition to the risk free saving account. But, in contrast to the classical

Markowitz’s efficient frontier, both θ and θm derived above are specific

to the target rate μ0. In other words, different target rates would cor-

respond to different shadow efficient frontiers with different minimum-

variance portfolios θ and instantaneous shadow tangent portfolios θm.

This is because the shadow instantaneous variance-covariance matrix
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Σ itself varies with the target rate μ0.

(c) Let

θ0
4
= θ +

¡
c|Σ−1λ− r

¢ ¡
λ|Σ−1λ

¢−1
Σ−1λ (25)

θ1
4
= θ0 +

¡
λ|Σ−1λ

¢−1
Σ−1λ (26)

From expression (15) we obtain the following decomposition for the

efficient risky portfolio:

θ∗ = (1− μ0) θ
0 + μ0θ

1. (27)

Let φ0 and φ1 correspond to the trading strategies generated from risky

portfolios θ0 and θ1, respectively. Then, concerning temporal mutual

fund separation for a given trading session (0, T ], we have:

φ (μ0) = (1− μ0)φ
0 + μ0φ

1 (28)

that is, the efficient trading strategy admits a decomposition into a

convex combination of two trading strategies φ0 and φ1. Notice that,

in this above decomposition, the trading strategies φ0 and φ1 are, in

general, not efficient and are target rate specific (unless c = ∅ and
Σ = Σ0).

For the special case when c = ∅ and Σ = Σ0, as is the case when the

market involves no systematic jump risk (l = ∅) and when asset returns
contain no systematic risk (σa| = ∅), the separating trading strategies
φ0 and φ1 would be invariant with the target rate, and correspond to

the efficient trading strategies φ (0) and φ (1) at μ0 = 0 and μ0 = 1,

respectively. In this case, we obtain a mutual fund separation that

extends the classical Black’s separation theorem to continuous time;
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that is, for all μ0 ∈ R,

φ (μ0) = (1− μ0)φ (0) + μ0φ (1) . (29)

This can be re-stated in the language of Black: First, all (extended)

convex combinations of efficient trading strategies are efficient. Second,

any efficient trading strategy can be expressed as a unique linear com-

bination of two arbitrary, but fixed, efficient trading strategies. This

separation theorem in continuous time goes deeper than the classical

Black’s separation theorem because the issue of how investors revise

their portfolio weights on each of the separating portfolios can not be

addressed in the static setting.

(d) Under the same specifications as in (c) towards temporal mutual fund
separation, all myopic MPS-risk-averse investors, who care about final

payoff at the end of a specific, but arbitrary, trading session (0, T ],

would optimally invest in two mutual funds, each corresponding to

some arbitrary, but distinct, efficient trading strategies, say, for exam-

ple, φ (0) and φ (1), on (0, T ]. It is understood that, once an investor

sets a target rate, and decides on the specific mutual funds to invest for

a given trading session, the separating theorem suggests that there is no

need to revise the weight put into each of the separating funds during

the entire trading session. This extends Tobin’s two-fund separation

into continuous-time. But, unlike Tobin’s separating funds, which differ

from each other largely from the compositions of the separating port-

folios (say, one involving purely risky assets, and the other involving

the risk free bond only), the separating funds in this continuous-time

setting differ from each other concerning the corresponding trading

strategies. In each spot market, each separating fund has a combina-

tion of the minimum-variance portfolio θ, the instantaneous shadow

tangent portfolio θm, along with the risk free saving account. The two
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seprating funds differ from each other on the weights allocated to each

of these portfolios, and in the ways how the weights are to be adjusted

as time evolves within the trading session.

In summary, it is the local instantaneous shadow efficient frontier, which

is target rate specific, that is relevant in characterizing the composition of

the temporal efficient portfolio in each spot market. A three fund separation

is valid with respect to efficient local portfolio holdings, but each of the sep-

arating risky portfolios θ and θm is target rate specific. Similar observations

hold true regarding temporal mutual fund separations. Generally speaking,

each efficient trading strategy can be decomposed into an extended convex

combination of two separating trading strategies φ0 and φ1, both are target

rate specific unless the state variables have no jump risk (l = ∅) and when
asset returns contain no systematic risk (σa| = ∅).

5 Risk-Return Relationship

We start with some useful notations. For any arbitrary risky portfolio θ ∈ RJ ,

the corresponding instantaneous excess return, systematic factor risks, and

shadow portfolio risk are respectively denoted by

λθ
∆
= θ|λ, cθ

∆
= θ|c, bσ [θ] ∆= √θ|Σθ. (30)

For the instantaneous shadow tangent portfolio θm, we denote

λm
∆
= θ|mλ, cm

∆
= θ|mc, bσm ∆

=
p
θ|mΣθm. (31)

Moreover, for all θ, bσ [θm, θ] ∆= θ|Σθm is the shadow covariance between the

two portfolios.

To derive the risk-return relationship, we multiply Σ on both sides of

equation (16) to obtain

λ =
¡
1
|
Σ−1λ

¢
Σθm. (32)
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With this, we see that, for all risky portfolio θ,

λθ =
¡
1
|
Σ−1λ

¢ bσ [θm, θ] and λm =
¡
1
|
Σ−1λ

¢ bσ2m. (33)

This, in turn, implies the following risk-return relationship that admits the

standard linear-β representation:

λθ = bβθmλm with bβθm ∆
= bσ [θm, θ]Ábσ2m. (34)

It is noted that bβθm is computed using shadow variance and covariance matrix
Σ. For those pure risky portfolios (1

|
θ = 1), which include all individual

securities j, the above linear-β model can be re-stated in terms of the total

instantaneous returns:

μθt +

Z
γθt (u) υ (du)

= rt + bβθm,t

µ
μm,t +

Z
γm,t (u) υ (du)− rt

¶
. (35)

WithΣ = Σ0+
R ³

J+
J
− 1
´
γγ|υ (du) , the shadow variance and covariance

matrix is expressed as the total instantaneous variance-covariance matrix,

plus a term that represents the deviation of the shadow variance-covariance

matrix from the objective variance-covariance matrix. Σ is reduced to the

objective instantaneous variance-covariance matrixΣ0 when the state process

{xt} contains no jump risks (l = ∅). So, the newly derived linear-β model (35)
can be regarded as a two-factor model with total risk premium of the risky

portfolio, that is measured by bβθm, to admit the following decomposition:
bβθm = θ|mΣ0θ +

R ³J+
J
− 1
´
θ|mγγ

|θυ (du)

θ|mΣ0θm +
R ³

J+
J
− 1
´
θ|mγγ

|θmυ (du)
(36)

where the first term is interpreted as the risk premium for hedging against

32



the total instantaneous risk (Brownian + jump) associated with the risky

portfolio, and the second term is an additional risk premium to compensate

for the systematic jump risk involved in the ‘shadow’ risk of the managed

investment account.

Alternatively, with Σ0 = σσ| +
R
γγ|υ (du), we may write

bβθm = θ|mσσ
|θ + J−1

R
J+θ

|
mγγ

|θυ (du)

θ|mσσ
|θm + J−1

R
J+θ

|
mγγ

|θmυ (du)
(37)

in which the first component represents part of the risk premium for hedging

against Brownian uncertainty involved in the risky portfolio, while the second

component represents part of the risk premium for hedging against the jump

risks involved in the portfolio and the systematic jump risk that affects the

overall volatility (J) of the investment account.

When state variables involve no systematic jump risk, we have J+ = J

and bβθm = βθm
4
= θ|mΣ0θ

θ|mΣ0θm
. There is no need to hedge against the systematic

jump risk. In this case, the above shadow linear-β model is reduced to the

classical linear-β model with β as a measure of risk premium for hedging

against portfolio risk using the instantaneous tangent portfolio θm.

5.1 Risk Decomposition

With the validity of the shadow linear-β model (35) derived in the previous

section, we obtain as follows a so-called ‘orthogonal risky decomposition’ in

continuous-time: For each risky portfolio θ, we may write

θ =
λθ

λm
θm +

µ
θ − λθ

λm
θm

¶
. (38)

Let θe ≡ θ − λθ

λm
θm. Then, it is easy to see that θ

e has zero excess instanta-

neous return; moreover, with the validity of the shadow linear-β model, we

can readily verify that θe is orthogonal to the shadow instantaneous tangent
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portfolio θm in the sense that bσ [θe, θm] = 0. We have
bσ [θe, θm] = bσ [θ, θm]− λθ

λm
bσ2m

= −bσ2m
λm

³
λθ − bβθmλm´ = 0.

Particularly, for temporal MV efficient portfolio θ∗ with target rate μ0,

which is given by (15), the orthogonal decomposition takes the following form

θ∗ =
³
θ − bβθmθm´+µμ0 − r

λm

¶
θm. (39)

For the validity of this decomposition, notice that, the right hand side is a

linear combination of θ and θm with total excess instantaneous return to be

given by μ0−r, which is the same as that of θ∗; and that, all temporal efficient
portfolio is a linear combination of θ and θm. Notice also that, the first term

on the right hand side of equation (39) is the residual risky portfolio induced

by the minimum variance portfolio θ. It has zero excess instantaneous return,

and is orthogonal to the shadow instantaneous tangent portfolio θm under

the shadow variance-covariance matrix Σ. These enable us to conclude the

validity of ‘shadow orthogonal decomposition’ (39).

From shadow orthogonal decomposition (39), we see that the temporal

efficient portfolio θ∗ is in general not located on the shadow instantaneous

efficient frontier unless θ − bβθmθm = ∅, or, equivalently, when the minimum
variance portfolio θ is itself proportional to the instantaneous tangent port-

folio. This occurs when c = ∅, for which we have θ = ∅.

5.2 Temporal v.s. Instantaneous Efficient Frontier

With the help of ‘orthogonal decomposition’ for temporal efficient risk port-

folios θ∗, we can readily plot on the μ-σ plane, the so-called temporal efficient
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frontier It. The time-t temporal efficient frontier is defined by setting

It
4
=

(
(μ0, σ0) : μ0 ∈ R, σ0 =

√
θ∗|Σ0θ

∗ and

θ∗ is temporal efficient at t with target rate μ0

)
. (40)

We proceed to characterize the temporal efficient frontier It induced by
those temporal efficient trading strategies. For all θ and θ0 ∈ RJ , we denote

σ [θ, θ0]
4
= θ|Σ0θ

0 and σ [θ]
4
=
p
σ [θ, θ]; particularly for θ and θm we denote

σ = σ [θ] , σm = σ [θm] and βθm =
σ[θ,θm]
σ2m

. With these notions, we can readily

compute the portfolio variance for the temporal efficient portfolio θ∗ given

by equation (39). Setting σ0 = σ [θ∗], we obtain

σ20 = σ2
∙
θ +

µ
μ0 − r

λm
− bβθm¶ θm

¸
= σ2 + 2

µ
μ0 − r − λθ

λm

¶
βθmσ

2
m +

µ
μ0 − r − λθ

λm

¶2
σ2m

= σ2 −
¡
βθmσm

¢2
+

µ
μ0 − r − λθ

λm
+ βθm

¶2
σ2m.

This yields a hyperbola on the μ-σ plane

μ0 = r + λθ − βθmλm ±
¯̄̄̄
λm
σm

¯̄̄̄q
σ20 − σ2 +

¡
βθmσm

¢2
(41)

for all σ0 ≥
q
σ2 −

¡
βθmσm

¢2
, with

λθ = −c|Σ−1λ
σ2 = c|Σ−1Σ0Σ

−1c

βθmλm = −
¡
λ|Σ−1Σ0Σ

−1λ
¢−1 ¡

c|Σ−1Σ0Σ
−1λ

¢ ¡
λΣ−1λ

¢
βθmσm = −

¡
λ|Σ−1Σ0Σ

−1λ
¢−1/2 ¡

c|Σ−1Σ0Σ
−1λ

¢¯̄̄̄
λm
σm

¯̄̄̄
=

¡
λ|Σ−1Σ0Σ

−1λ
¢−1/2 ¡

λΣ−1λ
¢
.
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Figure 3: Temporal MV Frontier

It is noted that, the temporal efficient frontier differs from the local in-

stantaneous Markowitz’s efficient frontier derived from (Σ0, λ, r). The latter

is known to be composed of two efficient rays that intersect the μ-axis at

r with tangent portfolio proportional to Σ−10 λ. Here, the minimum shadow

variance portfolio θ = −Σ−1c, which is in general not located on the instan-
taneous efficient rays, is always on the temporal efficient frontier It. In fact,
it corresponds to the temporal efficient portfolio at (μ0, σ0) =

¡
r + λθ, σ

¢
.

In contrast, the shadow instantaneous tangent portfolio θm, which is always

on the instantaneous shadow efficient frontier, in general, does not belong to

the instantaneous efficient rays, nor does it belong to the temporal efficient

frontier It.
For the special case of c = ∅, the temporal efficient frontier, which is

composed of two efficient rays that also intersects the μ-axis at r, has its slope
λm
σm
to be different from the corresponding slope of the instantaneous efficient

rays. The temporal efficient frontier coincides with the instantaneous efficient
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frontier when the state process contains no systematic jump risk (l = ∅).
In conclusion, the temporal and instantaneous efficient frontiers, in gen-

eral, differ from each other. While the instantaneous efficient frontier is com-

posed of two efficient rays, the temporal efficient frontier, in general, forms a

hyperbola on the μ-σ plane. The temporal and instantaneous efficient fron-

tiers coincide to each other when asset returns involve no systematic risk

(c = ∅) and when the state process contains no systematic jump risk (l = ∅).

6 EU v.s. MPS-Risk-Averse Investors

With the above analytic characterizations of the optimal portfolio choices by

investors displaying MPS risk aversion, we may readily dig into the difference

between expected utility investors and MPS-risk-averse investors concerning

their optimal trading behaviors. We start by asking the following general

question:

Problem 12 How is it possible to distinguish between expected utility in-
vestors and investors who display MPS-risk-aversion in their trading behav-

iors?

To answer this question, we restrict our discussion to the special case of

Example 11, where asset returns and state variables contain no jump risks

(γ = ∅ and l = ∅) and where asset returns are state-independent (σa| = ∅).
This case is of particular interesting because, as to be illustrated below, it

becomes less obvious on how to distinguish between these two groups of in-

vestors concerning their trading behavior. Following the standard treatment

in literature such as Merton (1971), we consider expected utility functions

with constant relative risk aversion (i.e., RRAu = 1− α) and assume α < 1.

It is well-known that (see, Merton 1971), expected utility investors with

constant RRA would optimally invest in a common instantaneous tangent
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portfolio that is given by

θm =
[σσ|]−1

£
μ− r1

¤
1
|
[σσ|]−1

£
μ− r1

¤ . (42)

We have also learned from Example 11 that MPS-risk-averse investors would

invest in the same risky portfolio. So, it is impossible to distinguish these

two groups of investors by merely looking into the compositions of their risky

portfolios. This, however, does not mean that these two groups of investors

would trade in the same fashion. In fact, as illustrated below, investors

from these two groups act very differently. We look into the corresponding

portfolio weights on the risky portfolio θm within the trading session.

Let θα be the optimal risky portfolio for the expected utility investor

with relative risk aversion to be given by 1−α. Let θ∗ be the local portfolio

corresponding to an MV-efficient trading strategy with target rate μ0. We

write

θα = kα × [σσ|]−1
£
μ− r1

¤
θ∗ = k∗ × [σσ|]−1

£
μ− r1

¤
where

kα
∆
=

1

1− α
and k∗

∆
=

μ0 − r£
μ− r1

¤|
[σσ|]−1

£
μ− r1

¤ .
Both θα and θ∗ are proportional to a common risky portfolio which is itself

proportional to the instantaneous tangent portfolio θm. We see that, for

expected utility investors, the portfolio weight kα is constant and invariante

to changes in the market environment (which is summarized by the risk free

interest rates r, the drifts μ and volatilities σ of the risky assets), while

for MPS risk-averse investors, the corresponding portfolio weight k∗ is very

sensitive to such changes.
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The difference between the trading behavior for investors from these two

groups can alternatively be reflected from the cash balance dynamics for the

investment accounts managed by these investors. To investment accounts

managed by those MPS-risk-averse investors, the resulting cash balances

must evolve in time according to

dX∗

X∗ = μ0dt+
(μ0 − r)

£
μ− r1

¤|
[σσ|]−1 σ£

μ− r1
¤|
[σσ|]−1

£
μ− r1

¤ dBt (43)

for some constant μ0. Similarly, the cash balance of an investment account

managed by an expected utility investor must evolve according to

dX(α)

X(α)
= rdt+

£
μ− r1

¤|
[σσ|]−1

1− α

¡£
μ− r1

¤
dt+ σdBt

¢
. (44)

The former is associated with a constant expected growth rate μ0, while the

latter is with time-varying instantaneous growth rate which is greater than

the risk free interest rate r.

It is also interesting to notice that the instantaneous volatilities of the

two managed investment accounts tends to move in the opposite directions.

With

σ2 [lnX∗] =
(μ0 − r)2£

μ− r1
¤|
[σσ|]−1

£
μ− r1

¤ (45)

σ2
£
lnX(α)

¤
=

£
μ− r1

¤|
[σσ|]−1

£
μ− r1

¤
(1− α)2

(46)

we see that, roughly speaking, at times when the interest rates are relatively

stable (i.e. r does not change much), the account managed by the expected

utility investors are experiencing high (and increasing) volatilities, and the

volatilities for the accounts managed by the MPS-risk-averse investors has

to be low (and declining). Or, in other words, for a given target rate μ0 and

a risk aversion coefficient α, the two volatilities tend to move in opposite
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directions. This is true particularly when the interest rates are stable.

As a separate, but relevant, observation, we have

σ
£
lnX(α)

¤
≥ σ [lnX∗]⇔ μα ≥ μ0 (47)

whenever μ0 > r. Here,

μα = r +

£
μ− r1

¤|
[σσ|]−1

£
μ− r1

¤
1− α

is the instantaneous portfolio return induced by the optimal portfolio θα. We

may thus say that, at times when the accounts managed by those expected

utility investors become more (less) volatile relative to those managed by

some other MPS risk averse investors, it has to be the case when members

in the former group are expecting higher (lower) rewards (in terms of instan-

taneous expected returns) than the fixed target rates (μ0) set by those MPS

risk averse investors.

Therefore, in conclusion, even for the special case when investors from ei-

ther group would optimally choose to invest in the same local risky portfolio

θm, their trading behavior could be very different, referring to the portfolio

weight allocated to the common risky portfolio. The difference in the trading

behavior of investors from these two groups is also reflected in the dynam-

ics for the cash balance of the investment account respectively managed by

investors from these two groups. Such difference in trading reflects their

psychological differences in attitudes towards risk.

7 Concluding Remarks

The temporal efficient frontier (t.e.f.) in presence of Lévy jumps is shown

to inherit much of the mathematical properties of the classical Markowitz’s

static MV efficient frontier, and it resembles the local instantaneous efficient

frontier corresponding to Merton (1971) and Bielecki et al (2005). All form
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hyperbola in the μ-σ plane.

The t.e.f. is found not to coincide with the local instantaneous fron-

tier – the continuous time analogue of Markowitz’s mean-variance fron-

tier. This observation is potentially useful in understanding the existence

of documented financial anormally in empirical finance – MPS risk averse

investors may not wish to invest along the local instantaneous Markowitz’s

mean-variance frontier, but instead hold portfolios on the t.e.f.. The optimal

portfolio on the t.e.f. could well fall strictly within the instantaneous local

Markowitz’s efficient frontier.

Our observations on mutual fund separation are also profound and in-

teresting. In contrast to the classical two-fund separation along the line of

Black (1972) and Tobin (1958), our study shows that MPS-risk-averse in-

vestors’ optimal trading strategy is target rate specific. Precisely, investors

with different target rates may end up investing into different managed mu-

tual funds, each involving a specific set of separating portfolios. Our theoretic

findings are, nevertheless, much in line with the real world phenomena on the

existence of various types of mutual funds offered by different financial insti-

tutes, each aiming to attract demand from some specific groups of investors

– a picture that is in sharp contrast to the theoretical prediction made by

Black (1972) and Tobin (1958).

Finally, our study sheds light on the difference between expected utility

andMPS-risk-averse investors concerning their trading behavior in sequential

time frame. Even though these two groups of investors may end up holding

a common risky portfolio in each spot market, the differences between their

trading behaviors are most reflected through the portfolio weights assigned

to each of the separating portfolios within the time frame and across states.

Precisely, the portfolio weights corresponding to investors respectively from

the two groups are associated with recognizable different time patterns. We

showed that such difference in trading behavior would be also reflected from

the time patterns of the instantaneous returns and the volatilities of the funds
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respectively managed by investors from these two groups.
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