
Revealing the Implied Risk-neutral MGF with the

Wavelet Method

Emmanuel Haven∗

Xiaoquan Liu†

Chenghu Ma‡

Liya Shen§

February 28, 2007

∗Department of Accounting, Finance and Management, University of Essex, Colchester

CO4 3SQ, UK. Phone: +44 1206 873768. Email: ehaven@essex.ac.uk.
†Department of Accounting, Finance and Management, University of Essex, Colchester

CO4 3SQ, UK. Phone: +44 1206 873849. Email: liux@essex.ac.uk.
‡The Wang Yanan Institute for Studies in Economics, Xiamen University, Xiamen, P.

R. China. Email: chmauk@yahoo.ca. Phone: +86 5922181602. Ma acknowledges funding

from ESRC UK.
§Department of Accounting, Finance and Management, University of Essex, Colchester

CO4 3SQ, UK. Email: lshenb@essex.ac.uk. Shen acknowledges funding from Overseas

Research Students Awards Scheme (ORSAS), UK. This paper is part of her PhD thesis.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Xiamen University Institutional Repository

https://core.ac.uk/display/41362975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Options are believed to contain unique information about the risk-

neutral moment generating function (MGF hereafter) or the risk-neutral

probability density function (PDF hereafter). This paper applies the

wavelet method to approximate the risk-neutral MGF of the under-

lying asset from option prices. Monte Carlo simulation experiments

are performed to elaborate how the risk-neutral MGF can be obtained

using the wavelet method. The Black-Scholes model is chosen as the

benchmark model. We offer a novel method for obtaining the implied

risk-neutral MGF for pricing out-of-sample options and other complex

or illiquid derivative claims on the underlying asset using information

obtained from simulated data.

Keywords: Implied risk-neutral MGF; wavelets; options; Black-Scholes model.

JEL: G12; G13.
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1 Introduction

In the early 1970s, Black and Scholes (1973) presented the classic Black-

Scholes option pricing formula, which is one of the most important advances

in option pricing. However, since the 1987 stock market crash, there is

growing empirical evidence showing that the market differs from the Black-

Scholes paradigm. There are mainly two types of stylized facts observed:

(i) The Black-Scholes model assumes that the volatility of the underlying

security is constant. However, empirical evidence shows the implied volatil-

ities of real market options vary across strike prices and exhibit a smile or

skew shape across the moneyness (strike/underlying asset price ratio); (ii)

The Black-Scholes model assumes that the stock prices follow a geometric

Brownian motion, thus the risk-neutral probability density function of the

underlying asset is lognormal. However, researchers have observed excess

kurtosis and negative skewness of unconditional returns of the underlying

security which is inconsistent with the lognormality assumption. The first

abnormality is indeed related to the second one, since statistics such as

volatility, skewness, and kurtosis can be derived if we know the entire risk-

neutral PDFs. Therefore, the central empirical issue in option pricing is

what distributional hypothesis is consistent with underlying security prices

and real market option prices. In our paper, we are interested in estimating

the implied risk-neutral MGF. It needs to be stressed that to date, a lot

of methods have been developed which have as purpose to extract the risk-

neutral PDF. However, very little attention has been paid to the risk-neutral

MGF.

In this paper we try to back out the risk-neutral MGF by using the

wavelet method based on the option pricing formula derived by Ma (2006b).

2



Further details about the MGF, the wavelet method and the option pric-

ing formula of Ma (2006b) will be provided in the following sections. The

contributions of this paper are listed below.

1. Although there is one-to-one relationship between the MGF and the

PDF, the MGF is more tractable in some cases. For instance, when

there are random jumps in the process, the PDF will not have an ex-

plicit form, while for the MGF, we may expect an analytical expression

(Ma and Vetzal, 1995).

2. The implied risk-neutral MGF obtained from our model is continuous

while the implied risk-neutral PDF obtained from other methods such

as the smoothed smile method is discrete.

3. With the risk-neutral MGF estimated, out-of-sample options with dif-

ferent time-to-maturity, different strike prices and even different un-

derlying security prices can be calculated very easily. We note that

existing estimation methods such as the volatility smile method and

the double lognormal method aim to estimate the risk-neutral PDF,

which can only be used to infer the distribution at one specific time.

Therefore, the estimated PDF can only be used to price out-of-sample

options with a same fixed expiry date. In this sense, estimating the

risk-neurtal MGF is definitely more appealing from a practical point

of view.

4. It is well known that option prices contain rich information on the

implied volatility, the preference parameter, the jump process and the

higher moments of the distribution. Based on the model developed by

Ma (1992)and Ma (2006b), with the risk-neutral MGF estimated, in

addition to the mean and variance, we are also able to obtain the skew-
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ness and kurtosis of the underlying asset distribution directly from the

risk-neutral MGF. Moreover, the preference parameter of the utility

function can be revealed easily (Ma, 2006a, pg. 233-234).

5. There is no need to put any restrictions on the stochastic process of

the underlying asset or put any prior assumptions on the implied risk-

neutral MGF. This ensures the flexibility of this method in the first

place. Furthermore, wavelets can be used to represent any square

integrable functions. We note this is an advantage since the type of

function is more restricted with other methods such as the polynomial

or cubic spline method.

6. The wavelet method does not require a large collection of data for

a reasonable level of accuracy as the kernel estimation method Ait-

Sahalia and Lo (1998) does. We need only a small sample of options to

estimate the implied risk-neutral MGF. For example, we can estimate

the risk-neutral MGF using only nine options with different strike

prices for a same underlying asset of some certain time-to-maturity

and obtain a reasonably accurate risk-neutral MGF, while the kernel

estimation method requires several thousand data points to obtain a

reasonable level of accuracy.

7. Our technique avoids ill-posed inverse problems. According to Breeden

and Litzenberger (1978), the risk-neutral PDF g(X)can be obtained

by differentiating the option pricing formula twice with respect to the

strike prices X. For example, let us suppose there are three European

call option prices c1, c2, and c3 with time to maturity τ and strike

prices of K − δ, K, and K + δ respectively. Suppose the annually risk

free interest rate is r. The estimate of g(X) at point X = K is given
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by g(K) = erτ c1+c3−2c2
δ2 provided that δ is a small number. However,

there is a problem associated with this method, i.e, the second deriva-

tive of the estimator of the call pricing function may not be a good

estimator for the second derivative of the true call pricing function.

This is because the option prices used for estimation are subject to

perturbations and the small errors of the option prices will be dramat-

ically magnified when the denominator δ2 is infinitely small. Using

the model in Ma (2006b), we avoid this problem by transforming the

problem into a least squares problem and we estimate the parameters

of a linear series which make up of the risk-neutral PDF.

One may ask why the wavelet method is chosen instead of Fourier anal-

ysis. One of the reasons is that “in some cases (e.g. fingerprints) wavelet

analysis is much better than Fourier analysis in the sense that fewer terms

suffice to approximate certain functions” (Bachman, Narici, and Becken-

stein, 2002, pg. 411). What’s more, the Fourier series are a linear combi-

nation of a series of sine and cosine functions, which are defined over the

entire real axis. Due to the properties of the components, i.e., sine and cosine

functions are periodic, Fourier analysis is appealing in representing periodic

functions. However, for non-periodic functions such as financial time series,

the Fourier methodology is not favorable since there is no repetition within

the sampled region. Wavelets, however, are not restricted to a fixed shape

or fixed position. Therefore, wavelets are more effective in dealing with

non-periodic function or non-stationary data series such as financial time

series.

Wavelets, as a mathematical analysis tool, have been broadly applied in

the engineering area such as data-compression, de-noising, edge-detection,

earthquake prediction, and so on. However, it is to be noted that the use
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of wavelets in finance and economics is only a recent phenomenon. Despite

this, wavelets are a very useful tool in financial and economics analysis. We

will provide some examples in the following context.

The rest of this paper is organized as follows. The next section deals with

an overview of existing methods. We provide a brief overview on wavelets

in section 3. Section 4 is divided into two parts. Some theoretical primi-

tives on the risk-neutral MGF and on wavelets are presented respectively in

this section. Section 5 describes the model and methodology of our paper.

Simulation and experimental results are given in section 6. The last section

comes with the summary and conclusions.

2 An overview of existing methods

The existing methods for revealing the risk-neutral PDF can be mainly

grouped into two groups: parametric and nonparametric ones. While the

parametric methods can again be mainly divided into three categories. We

start first with parametric methods.

1. The first approach is to fit the call pricing function or the implied

volatility smile curve parametrically. The risk-neutral PDF is then

derived by implementing Breeden and Litzenberger (1978)’s result.

To implement this approach, one needs equally spaced striking prices

varying from zero to infinity continuously. However, option contracts

are only traded at discrete strike prices and what’s more, the strike

prices are spanned over a very limited range either side of the at-

the-money strike price. Therefore, most of the effort is focused on

interpolating the option prices at equally spaced strike prices and

extrapolating outside of the traded option prices range to estimate
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the entire distribution. See for instance, Shimko (1993), Malz (1997),

Bates (1991), and Bliss and Panigirtzoglou (2002).

2. The second approach is to specify a stochastic process for the un-

derlying asset price and the parameters of the assumed process can

be recovered by using the observed option prices, and therefore the

risk-neutral PDF can be inferred from the stochastic process. For in-

stance, the classic Black-Scholes 1973 model assumes that the stock

prices follow the Geometric Brownian motion with a constant risk-free

rate and constant volatility, and this implies a lognormal distribution

for the stock prices. See more examples in Duffie, Pan, and Singleton

(2000) and Bates (2000)for the jump-diffusion process and stochastic

volatility model.

3. The third approach assumes a parametric form for the risk-neutral

PDF of the underlying asset directly, and the parameters of the risk-

neutral PDF can be estimated by minimizing the distance between the

observed option prices and the fitted prices based on the model (least

square method). For example, Melick and Thomas (1994) assume

a mixture of three lognormal distributions for the terminal implied

PDF, and the estimation is carried out using the bounds on the prices

of American options. The mixture of the lognormal method is claimed

as flexible, general and direct.

Another strand of the literature utilizes non-parametric methods. For

non-parametric methods, one may achieve more flexibility since there are

no prior restrictions on the stochastic process of the underlying asset prices,

the call pricing function, or on the distribution function. For example, Ru-

binstein (1994) proposes a new method by establishing a prior parametric
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distribution as a guess of the risk-neutral probabilities. The implied risk-

neutral probability is then estimated by minimizing the distance between

the implied distribution and the prior probability distribution, subject to

the condition that the observed option prices are valued correctly based on

the implied risk-neutral probabilities distribution. Rubinstein’s approach is

non-parametric in that any probability distribution is a possible solution.

This method requires a large amount of options so that the implied risk-

neutral probabilities distribution is not dependent on the prior guess distri-

bution. Ait-Sahalia and Lo (1998) also estimate an option pricing formula

from S&P 500 option prices nonparametrically by using the kernel regression

method. The option pricing function is obtained numerically also according

to Breeden and Litzenberger (1978)’s result. Option prices are calculated as

a weighted average of the observed option prices with the underlying vari-

ables lying in a neighborhood of the one to be calculated. A suitable kernel

function is chosen as the weighting function (typically a probability density

function in that probability density functions integrate to one).

In summary, parametric methods need to assume relations between vari-

ables or to assume statistical parameters such as skewness, kurtosis, and

volatility. This inevitably makes parametric methods inferior due to the

lack of sufficient flexibility. Nonparametric methods are much more flexible

comparatively.

3 Wavelets: a brief overview

In this paper we propose an alternative to the methods we reviewed above:

i) we estimate the implied risk-neutral MGF instead of the risk-neutral PDF;

ii) we utilize wavelets in our approach to represent and estimate the implied
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MGF function.

Although wavelets have not been extensively applied in the financial and

economic field, there is a growing literature in this regard. Ramsey (1999)

provides for an extensive review on using wavelet analysis to financial and

economic data. We give some specific examples of applications below.

There are mainly three types of applications using wavelets in finance

and economics.

1. The first kind of application of wavelet analysis is multi-resolution

analysis or time scale analysis (or time-scale decomposition), which is

powerful in revealing the potential relationship between the economic

variables and in improving forecasts. An early key article in this re-

gard was that by Davidson, Labys, and Lesourd (1998), where the

authors apply multi-resolution analysis on US commodity price be-

havior and obtain information on both the time location and the time

scale of price movements. In this paper, the authors also mention that

wavelet analysis may help to forecast price movements. This point

was proven in Murtagh, Starck, and Renaud (2004) where the authors

examine several wavelet applications in time series prediction. After

studying wavelet-based multiresolution autoregression models and sin-

gle resolution approaches as well, the authors find that wavelet-based

multiresolution approaches outperform the traditional single resolu-

tion approach in forecasting. Ramsey and Lampart (1998a) also use

wavelets to analyze the relationship between the expenditure and in-

come at six different time scales and find that the relationship varies

across time scales. Further, the authors confirm that (pg.23) “the time-

scale decomposition is very important for analyzing economic relation-
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ships and that a number of anomalies previously noted in the literature

are explained by these means”. See Ramsey and Lampart (1998b) for

a similar example in analyzing the relationship between money and

domestic product. In subsequent work, Connor and Rossiter (2005)

provide a wavelet-based scale analysis approach to analyze the com-

modity prices motivated by the fact that “the dynamics of commodity

markets have always been influenced by the interactions of traders

with different time horizons, who react to the arrival of new informa-

tion in a heterogeneous manner.” Mitra (2006) also exploits wavelets to

do multi-resolution analysis on the econometric relationship between

money, output and price in the Indian macro economy. The author

claims that interesting aspects of the relationship among the three fun-

damental macroeconomic variables are revealed. More examples can

be found in Gençay, Selçuk, and Whitcher (2002), Capobianco (2002),

Yousefi, Weinreich, and Reinarz (2005).

2. The second type of application is to de-noise the time series data so

that market trends or baselines can be observed easily and clearly. This

is actually a subsection of the first type of application. For example,

Gao and Ren (2005) use wavelets to analyze the highly erratic Shang-

hai Stock Market Index and find it effective in suppressing the noise

in the market index. Therefore, the market baseline trend is demon-

strated successfully. In the same year, Antoniou and Vorlow (2005)

also apply wavelets to de-noise the FTSE100 stock returns time series

and find evidence of “non-periodic cyclical dynamics”. More examples

can be found in Gençay, Selçuk, and Whitcher (2002).

3. The third application lies in function approximation. For instance, in

Park, Vannucci, and Hart (2005), a wavelet-based Bayesian method is
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exploited in function estimation. The authors find that “the wavelet

procedure appears to do a very good job at estimating both the func-

tion and the other parameters of the model, for all directions and

noise levels considered in the study”. Furthermore, the comparison

with other existing methods suggests that the wavelet-based Baysian

method outperforms the splines-based Bayesian approach of Anto-

niadis, Gregoire, and McKeague (2004).

Besides these applications, wavelets are used to design tracking portfo-

lios for equity funds and pricing exotic equity derivatives in Zapart (2003).

Furthermore, the author compares the wavelet method with the standard

linear correlation techniques and finds that the wavelet method offers better

performance in designing tracking portfolios.

While wavelets have many useful properties, in this paper we are only

interested in one of the most basic features of the wavelet, i.e. to represent

or approximate other functions. Different wavelets have different strengths

and weaknesses in approximating different functions according to the differ-

ent characteristics of the wavelets and the functions to be approximated. In

our research, we tried several wavelets, including the Haar wavelet (Fig.1),

the Franklin wavelet (Fig.2), and the Shannon wavelet (Fig.3). Finally, we

find that the Franklin wavelet requires the smallest number of terms to ap-

proximate the function at the same level of goodness of fit among all the

wavelet functions we consider. Therefore, we use the Franklin wavelet to

derive the risk-neutral MGF. Our objective in this paper is to use wavelets

to approximate the implied risk-neutral MGF from option prices. With the

estimated MGF, we will further execute out-of-sample tests to demonstrate

how well the wavelet method performs in approximating functions with un-

known functional forms.
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4 Theoretical primitives

4.1 MGF

The MGF of a continuous random variable x is defined as:

M(s) =
∫ ∞

−∞
p(x)e−xsdx, (1)

where p(x) is the PDF of x and s is complex value in the complex plane.

For a discrete random variable, its MGF is defined as

M(s) =
∞∑

x=−∞
p(x)e−xs. (2)

Inversely, the PDF is uniquely determined by the inverse Laplace transform

of the MGF. In the risk-neutral world, the same relationship also holds.(see

appendix for definitions for Laplace transform and inverse Laplace trans-

form)

4.2 The wavelet method

As the name literally suggests, a wavelet is a function which looks like a small

wave. It is localized over a short interval. In other words, the function values

are all zero except on that short interval. The graph of the wavelet oscillates

around its average value (zero) over a short distance, or the oscillations may

damp out very fast outside the short distance. Generally speaking, wavelets

must satisfy three criteria: firstly, a wavelet must be square integrable;

secondly, the Fourier transform ψ̂(f) of the wavelet function ψ(t) should

satisfy the condition (Addison, 2002, pg. 9):
∫∞
0
|ψ̂(f)|2

f df < ∞; and third,

the integral of the wavelet must be zero, which ensures the oscillatory shape

of the wavelets.
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Unlike Fourier series which have only sine and cosine basis functions,

there are different wavelet basis functions. Let us consider the simple case

of a so called Haar wavelet. The Haar mother wavelet is defined as follows:

ψ(t) =





1

−1

0

if 0 ≤ t < 1
2

if 1
2 ≤ t < 1

otherwise

. (3)

The function looks like a square wave. It has non-zero values over the

short interval [-1,1] and it disappears outside of this range. Wavelets are

well known for their remarkable abilities of approximating functions. Any

function belongs to L2(R) can be represented as a linear combination of

wavelet functions generated from the so called mother wavelet.

Basically, two types of manipulations can be performed on the mother

wavelet to change its shape and position and to have it generate other

wavelets. The first type of manipulation is called dilation (scaling), which

means that the wavelets may be squeezed or stretched. Another type of

the manipulation is translation, by which we shift the wavelets horizontally.

See Fig.1 for the example with Haar wavelet and its dilated and translated

versions. The one on the top in Fig.1 is the mother Haar wavelet. The

middle ones show the squeezed and stretched wavelets to half and double

of their original width of the mother wavelet respectively. And the bottom

ones in that figure show the right and left shifted wavelets. These wavelets

are called generations of the mother wavelet ψ(t). To generalize this, for any

arbitrary wavelet function ψ(·) ∈ L2(R) , their generations ψl,k(·) are given

by: ψl,k(t) ≡ 2
l
2 ψ(2lt − k), l, k = 0,±1,±2, ... The parameter l determines

the size of dilation or contraction of the wavelet and the parameter k governs

the movement of the wavelet along the horizontal axis.

The wavelet functions ψl,k(t) are orthogonal to each other and are nor-
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malized. Therefore, ψl,k(t) form an orthonormal wavelet basis for L2(R).

Having defined the wavelet basis, we can now represent any square inte-

grable function x(t) by adding up wavelet basis functions ψl,k(t) over all

integers l and k:

x(t) =
∞∑

l=−∞

∞∑

k=−∞
Tl,kψl,k(t); (4)

where Tl,k are the wavelet coefficients and can be obtained through convo-

lution of the function x(t) and the basis functions ψl,k(t):

Tl,k =
∫ ∞

−∞
x(t)ψl,k(t)dt. (5)

It may seem to be quite challenging to estimate the unknown function

x(t) using wavelet functions since we need to add up an infinite number

of functions together to get the function represented without information

loss. Fortunately, the coefficients Tl,k converge to zero quickly enough when

the parameters l and k increase to infinity so that we can just ignore those

coefficients. Moreover, in our context, we do not need to back out the risk-

neutral MGF as it fully coincides with the true risk-neutral MGF. What we

need is just an approximation which does not deviate from the true function

too much so that it can be used to price other contingent claims and provide

the information we need.

As we said before, the Franklin wavelet function will be applied in

our paper. Although Franklin mother wavelets are very complicated to

deal with, they can be induced from a simple hat function defined by

h(t) = (1 − |t|)1[−1,1](t), with its Laplace transform given by mh(s) =

( es/2−e−s/2

s )2. The dilated and translated versions of the hat function are

given by hl,k(t) ≡ 2
l
2 h(2lt− k), l, k = 0,±1,±2, ... In consequence, we may

approximate function x(t) in terms of hl,k(t) instead of ψl,k(t) following the

Eq.4.

14



For a more detailed review on wavelets, see Hubbard (1998)for a very

interesting introduction. Chui (1992) is an excellent book on the basics

of wavelets. More formal and thorough presentations and explanations on

wavelet theory can be found in Daubechies (1992) and Bachman, Narici,

and Beckenstein (2002).

5 The model and methodology

5.1 The model

Our research in this paper is based on the work by Ma (2006b). The au-

thor derives a closed form formula for European call options in a particular

parameterization of the economy, which is a generalization of many option

pricing models in the existing literature. Based on the assumption that the

moment generating function for lnST (the logarithm of the time T under-

lying asset price) is well defined, the formula has the following expression:

Ct(St, X, T ) = Xe−r(T−t)L−1{ΦT−t(s)}(ln X

St
); (6)

where t is the current time; the operation symbol L−1 denotes the bilateral

inverse Laplace transform operator (see appendix for more details); Ct is the

time-t equilibrium price of the European call option; St is the underlying

asset price at time t; X is strike price; T is the maturity date; r is the

continuously compounded risk free interest rate; and ΦT−t(s) ≡ ΘT−t(s)
s(s+1) ,

where s is a complex value with Re(s) ∈ (x∗,−1), and ΘT−t(s) is the risk-

neutral moment generating function of the logarithmic return ln ST
St

. When

T − t = 1, Θ(s) is the risk-neutral MGF for the rate of return per unit of

time.
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This model can be derived as follows (Ma, 2006b). Let y = lnST ;

G(ey) = (ey −X)+ denotes the payoff of the option; p(y) denotes the risk-

neutral probability density function for y; we have the following:

er(T−t)Ct(St, X, T )

=
∫

R
p(y)G(ey)dy

=
∫

R
L−1{S−s

t ΘT−t(s)}(y)G(ey)dy

=
∫ ∞

ln X
(ey −X)[

1
2πi

∫ σ+i∞

σ−i∞
ΘT−t(s)e(y−ln St)sds]dy

=
1

2πi

∫ σ+i∞

σ−i∞
S−s

t ΘT−t(s)[
∫ ∞

ln X
esy(ey −X)dy]ds

=
1

2πi

∫ σ+i∞

σ−i∞
S−s

t ΘT−t(s)[
Xs+1

s(s + 1)
]ds

=
X

2πi

∫ σ+i∞

σ−i∞
ΦT−t(s)(

X

St
)sds

= XL−1{ΦT−t(s)}(ln X

St
), σ ∈ (x∗,−1) (7)

The second equality follows from the fact that the moment generating func-

tion for y = ln ST is given by S−s
t ΘT−t(s), where ΘT−t(s) denotes the mo-

ment generating function for ln ST
St

. The sixth equality follows by denoting

ΦT−t(s) ≡ ΘT−t(s)
s(s+1) .

As a special case, the 1973 Black-Scholes formula with a constant dividend-

equity ratio l can be obtained by substituting the risk-neutral MGF

Θ(s) = e−(r−l−σ2

2
)s+σ2

2
s2

(8)

for the rate of annual return into formula 6, where r represents the drift,

and σ stands for the volatility for the random underlying stock prices.
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5.2 Methodology

In this section, we explain how we perform the Monte Carlo simulation ex-

periments to examine the performance of the wavelet estimation method for

the risk-neutral moment generating function. The simulated option prices

are calculated based on the benchmark Black-Scholes formula. Then we pre-

tend that we are not aware of the fact that the option prices are obtained

from the Black-Scholes formula, and we estimate the risk-neutral MGF from

the option prices using the wavelet method based on Ma (2006b)’s option

pricing model. The estimated risk-neutral MGF is finally plugged into the

general option pricing function so that we may compare it with the Black-

Scholes formula to examine the accuracy of the wavelet method. Note that

our model does not assume that the Black-Scholes model actually holds in

the real market. The Black-Scholes model is just employed as a benchmark

in our paper to demonstrate the effectiveness of our wavelet method. There-

fore, even if the options in the market were actually determined by some

other option pricing models which might even be unknown to us, we can

still back it out using wavelets as well since we place no prior restrictions on

the stochastic price process or on the risk-neutral MGF of the underlying

asset .

The experiments are conducted as follows:

1. For a given underlying asset with price St at time t, generate N op-

tions based on the Black-Scholes model. The N options have different

strike prices X = {X1, X2, ..., XN}, with a same time-to-maturity T .

Calculate the corresponding option prices Cbs = {Cbs
1 , Cbs

2 , ..., Cbs
N } us-

ing the Black-Scholes formula, assuming the risk-free interest rate r

and the volatility of the underlying asset σ are constant and already

17



known.

2. Given a set of scale and shift parameters, estimate the risk-neutral

moment generating function Θ̂(s) of the yearly logarithmic return of

the underlying asset from the data set {St, X, T , Cbs} using wavelet

analysis. Then we calculate the fitted option prices using Eq.6 with the

derived Θ̂(s). Let Cw = {Cw
1 , Cw

2 , ..., Cw
N} denote the fitted wavelet-

based option prices. Compare Cw with Cbs to get the in-sample good-

ness of fit.

3. Test the out-of-sample forecast ability: select another data set {S′t,
X ′, T ′, Cbs′}. Calculate the wavelet based option prices Cw′ with the

derived risk-neutral moment generating function Θ̂(s). Compare Cw′

with Cbs′ to find out the out-of-sample forecast deviation.

Among the three steps above, Step 2 is the key one. We discuss this

step in detail below. The algorithm used to find the coefficients of a set

of wavelets that fit the data Cw to Cbs, is suggested by Ma (unpublished

manuscript, page 245-246). The following explains how we may use wavelets

to represent the risk-neutral MGF.

For any arbitrary mother wavelet function ψ(·) ∈ L2(R), its generation

ψl,k(x) ≡ 2
l
2 ψ(2lx− k), l, k = 0,±1,±2, ... (9)

form an orthonormal basis for L2(R). Let mψ(s) and ml,k(s) denote the

Laplace transform of ψ(x) and ψl,k(x) respectively, where l, k = 0,±1,±2, ....

Then we have: ml,k(s) = 2−
l
2 e
− ks

2l mψ( s
2l ), l, k = 0,±1,±2, ...

Assuming that the probability density function p(x) of a random variable

x belongs to L2(R), we may expand p(x) in terms of the orthonormal wavelet

basis:
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p(x) =
∑

l

∑

k

alkψl,k(x); (10)

where x = log(ST
S ).

Perform Laplace transformation on both sides of Eq.10, we get Θ(s) =
∑

l

∑
k alkml,k(s), Re(s) ∈ (x∗, 0]; where Θ(s) is the risk-neutral MGF of

random variable x, and it is equal to the Laplace transform of the risk-

neutral PDF p(x).

To estimate the risk-neutral MGF with a known historic or simulated

data set {S,Xi, T, Ci}, i = 1, 2, ...N, where N is the length of the data

vector, S is the underlying security price, Ci is the corresponding option

price calculated on the specified underlying asset price S, strike price Xi,

time to maturity T , we may follow the procedures described below:

1. For positive integers L and K, truncate the coefficients by setting

alk = 0 for all |l| > L,and |k| > K. Set θL,K ≡ {alk}l≤L,|k|≤K.

2. Given the collection of simulated data set,{Si, Xi, Ti, Ci}, we estimate

the unknown coefficients θL,K by taking the minimum of the sum of

the squared error between the true option prices Cbs
i and the estimated

prices Cw
i ,which is obtained by substituting Θ̂(s|θL,K) into formula 6.

3. Go to step 1 with L → L+1 and K → K +1 until
∑

i(C
bs
i −Cw

i )2 < ε,

for any arbitrary ε > 0.

During the process of the experiments, we find there are several prob-

lems with the above algorithm. First, with the increasing of the scale and

shift parameters L and K, the time for the process of searching iteration

increases dramatically, because the number of function evaluations increases

geometrically. Second, the increasing of the parameters require more equa-
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tions (more observed data) to do the optimization, but during the process,

it always runs out of data before it can reach the optimization. Therefore,

we let the scale parameter L fixed at some value, for example let L = l = 3,

and let shift parameters k change from −K to K. We change the above step

3 into two steps as follows:

• Go to step 1 with K → K + 1 until
∑

i(C
bs
i − Cw

i )2 < ε, for any

arbitrary ε > 0.

• If the fitting result improves very little with the increase of K → K+1

so that the optimization process does not terminate within a reason-

able time duration, increase L → L + 1, and repeat the above steps

until a satisfactory fitting result is obtained. This optimization pro-

cess yields an estimation of the risk-neutral MGF:

Θ̂(s) =
∑

|l|=L

∑

|k|≤K

âlkmlk(s); (11)

After solving the above problem about process speed, we still face an-

other problem: how to effectively search suitable scale and shift parameters

l, k for the wavelet series which compose the risk neutral moment gen-

erating function quickly and effectively. First, let’s assume that we have

chosen a suitable scale parameter l. According to the relationship between

the PDF and the MGF, the estimated coefficients âlk and corresponding

wavelet function can also be used to form the risk-neutral PDF of the yearly

logarithmic return of the underlying asset. Therefore, we may be able to

select the appropriate initial scale and shift parameters according to the in-

terval of yearly logarithmic returns x = ln(S1
S0

), which lies typically in the

interval [−0.7, 0.7]. Any wavelet has a short extension, for example, with the

Franklin wavelet, its hat function has a closed and bounded interval between
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[−1, 1], and it disappears outside this interval. Therefore, according to Eq.9,

for ψl,k(x) to be effective in composing the probability density function, we

need to calibrate the scale and shift parameters so that −1 ≤ 2lx − k ≤ 1.

Therefore, for a given scale parameter l, the shift parameters k should lie in

the interval [2lxmin− 1, 2lxmax + 1]. Typically we may assume xmin = −0.7,

xmax = 0.7, therefore

k ∈ [−0.7 ∗ 2l − 1, 0.7 ∗ 2l + 1]. (12)

One point should be noted that the scale parameter determines the reso-

lution of the estimated risk-neutral MGF. The larger the scale parameter,

the finer the estimated risk-neutral MGF provided that the shift parame-

ters are adequate enough. And according to 12, we need relatively more

shift parameters k to apply the approximation. And this will also cost more

time for the execution process. On the contrary, we may also get a feasible

solution for the least squares estimation within several minutes with small

scales l. However, this is obtained at the cost of fitting accuracy.

6 Simulations and experimental results

We perform constrained least squares estimation in this section. There are

several restrictions for the call pricing function:

C(St,X, τ, rt) = e−rt,τ τ

∫ ∞

X
(ST −X)p(ST |St,τ, rt)dST . (13)

First, the probability density must be non-negative. Second, the integral of

the probabilities over the possible terminal asset price should be equal to one.

Third, the call option pricing function should be monotonically decreasing

with respect to the strike price, which means that the first derivative of

the pricing function with respect to strike prices should be negative. And
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fourth, the call pricing function should be convex with respect to strike

prices, indicating that the second derivative of the pricing function with

respect to strike prices should be positive.

Obviously, the optimization process with four restrictions requires quite

a lot of computing time. Fortunately, the latter two restrictions can be

inferred from the first two. The following demonstrate how the latter two

constraints can be achieved from the previous two. By differentiating the

above call price function with respect to the strike price, we get

∂C

∂X
= −e−rtτ

∫ ∞

X
p(ST |St,τ, rt)dST ; (14)

since

p(ST |St,τ, rt) ≥ 0, (15)

and ∫ ∞

0
p(ST |St,τ, rt)dST = 1, (16)

therefore 0 ≤ ∫∞
X p(ST |St,τ, rt)dST ≤ 1, and we get the third constraint:

−e−rtτ ≤ ∂C

∂X
≤ 0. (17)

To get the fourth constraint, twice differentiate the call price function:

∂2C

∂X2
= e−rtτp(X|St,τ, rt) ≥ 0. (18)

This is non-negative since both e−rtτ and p(ST |St,τ, rt) are non-negative.

From the above, we can see that the first two constraints 15 and 16 about

the probability density function are enough to ensure the monotonicity 17

and convexity 18 of the call price function. Therefore, we can only impose

the first two constraints on the wavelet estimator.
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We perform three experiments in this section by generating historic op-

tion prices with time-to-maturity of one year, one month and six months

respectively.

6.1 Time-to-maturity: one year

Let {X1,X2,...,Xn} denote a strike price sample with size n. We assume

that we observe nine call options with underlying stock price S = 100, and

the strike prices are equally spaced between 80 and 120. Other variables

are specified as follows: time to maturity T = 1, risk-free interest rate

r = 0.05, volatility σ = 0.2. For simplicity, we assume further for the moment

that there are no dividends paying on the underlying stock. Let Cbs and

Cwdenote respectively the true option prices based on the Black-Scholes

model and the wavelet estimated option prices based on Ma’s model. Given

the information above, we perform wavelet analysis to estimate the risk-

neutral MGF. We find that we are able to estimate the true call pricing

function with only nine Franklin wavelet hat functions with scale parameter

l = 3 and shift parameters varying from k = −4 : 4.

The estimation errors are reported in the first row in Panel A of Table

1, from which we can see that the sum of squared errors between Cbs and

Cw is 1.4441∗10−4 and the maximum of the squared errors is 3.8171∗10−5.

And in fact, all the numbers in the first two rows of Panel A of Table 1 are

all very small and almost close to zero. Fig.4 shows the overall image of the

true option pricing function and the estimated function. Indeed, a plot of

the difference between the true option prices and the estimated prices are

so small that it cannot be distinguished easily by eye. The estimated prices

seem to coincide with the Black-Scholes prices. Both Table 1 and Fig.4
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demonstrate that the estimated call pricing function produces nearly the

same call prices as the Black-Scholes function does. The approximated coef-

ficients are {âlk}=[0.0482 0.2034 0.0554 0.5405 0.7500 0.6005 0.4971 0.0220

0.1112] ordered for the Franklin wavelet hat function with scale parameter

l = 3 and shift parameters k = −4 : 4.

The Black-Scholes MGF and the approximated MGF for the annual log-

arithmic return ln(S1
S0

) (S0 is the current spot underlying asset price and S1

is the stock price in one year) are plotted in Fig.5. This figure is produced

by calculating the value of the function Θ(s) and Θ̂(s) for complex values s

varying from −2− 20i to −2 + 20i with imaginary unit i as the increment.

We plot the two risk-neutral MGF’s with the real part of the complex value

s on the X-axis and the imaginary part on the Y-axis. Fig.5 shows that the

shape of the estimated risk-neutral MGF is close to the true one.

The Black-Scholes model assumes that the stock prices follow a log-

normal distribution. Therefore, we have the following distribution for the

annual logarithmic return x = ln(S1
S0

) :P (x) = 1
σ
√

2π
e−(x−(µ−σ2

2
))2/2σ2

. We

have the normal distribution with µ = 0.05, and σ = 0.2 shown in solid

curve in Fig.6. The estimated risk-neutral probability density function for

ln(S1
S0

) can be obtained by using the estimated coefficients {âlk}: p̂(x) =
∑

l

∑
k âlkψl,k(x); which is plotted in stars in Fig.6. The integral of the

estimated risk-neutral PDF through the constrained optimization over the

X-axis is equal to one.

The first derivative of the approximated call pricing function with respect

to the strike price are all negative and lie within the area (−0.9,−0.2), since

−e−rtτ = −0.9456 for r = 0.05 and τ = 1 , the area that the first derivative

falls in keeps in line with the constraint 17 above. Moreover, the second
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derivative of the approximated call pricing function with respect to the strike

price are all positive, indicating that the call pricing function is convex.

Having obtained the estimated risk-neutral MGF, we are interested in

pricing out-of-sample options. This is done as follows. The out-of-sample

options are divided into three groups. The first group has time-to-maturity

different from in-sample options while the underlying asset price and strike

prices are the same with in-sample options. The second group has both

different time-to-maturity and different strike prices from those of in-sample

options. The third group are those options with a different time-to-maturity,

different strike prices and a different underlying stock price from those of

in-sample options.

1. First, we apply the estimated risk-neutral MGF in pricing out-of-

sample options with different time-to-maturity. In this case, we em-

ploy four sub-groups of out-of-sample options with time-to-maturity

of one month, three months, six months and nine months respectively.

We give two types of the forecasting errors between the true Black-

Scholes option prices and the prices based on Ma’s model using the

revealed Θ̂(s): the squared error errsqr
i = (Cbs

i − Ĉw
i )2, and the ab-

solute error errabs
i = |Cbs

i − Ĉw
i |. Panel A (excluding the first row)

of Table 1 reports the out-of-sample forecasting errors including the

mean, minimum, maximum, and sum of errsqr
i and errabs

i . The stan-

dard deviations are also be reported. We choose the group of options

with time-to-maturity 84/365, which has the biggest errors, to be pre-

sented in Fig.7. From both Panel A of Table 1 and Fig.7, we may

conclude that the estimated risk-neutral MGF is effective in pricing

out-of-sample options with different time-to-maturity, especially those

options with time-to-maturity close to the in-sample ones.
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2. We test the capability of the revealed risk-neutral MGF to forecast

option prices of different strike prices and different time-to-maturity

as well. We change the strike prices and make them vary from 80 to

120 with one unit as the incremental size instead of 5 units as in the

first case. The underlying asset prices are kept unchanged. Prices

of five sub-groups out-of-sample options with five different time-to-

maturity for the set of strike prices (80 : 1 : 120) are calculated with

both the Black-Scholes formula and Ma’s formula 6. We present the

pricing errors in Panel B of Table 1, from which we can see that the

biggest pricing errors appear in the group with time-to-maturity of

84 days. The maximum of the squared errors is only 0.1584 among

the 41 options with an option prices average of 6.8440. Following the

convention in case 1, we choose this set of options to be plotted in

Fig.8. From Panel B of Table 1 and Fig.8, we may draw a conclusion

that the revealed risk-neutral MGF behaves well in forecasting out-

of-sample options with both different time-to-maturity and different

strike prices.

3. Both of the previous two cases are dealing with out-of-sample options

with the same underlying asset price. In this case, we want to fur-

ther the extent of out-of-sampleness, i.e., we are interested in pricing

options with not only different T and different X, but also different

underlying asset price S. It is of interest to see if we could price out-

of-sample options with different underlying asset prices. Fortunately,

we know that the risk-free interest rate r and volatility of the under-

lying asset prices σ can be regarded as a constant within a certain

short term, for instance, within three months. Therefore, the revealed

risk-neutral MGF 11which is dependent on r and σ, can also be re-
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garded as unchanged within the three months. This means that we can

use Θ̂(s) estimated from historical data to forecast prices of options

with different underlying asset prices within a certain short period.

For example, the underlying asset price S0 is now 100. We assume

it will raise up to 120 two months later, and the strike prices will

also change by varying from 100 to 140 with 5 units as the increment

accordingly. The time-to-maturity is assumed to be one, three, six,

nine months and one year respectively. Panel C in table 1 shows the

out-of-sample forecast ability for the five sub-groups of options. As

before, Fig.9 plots the prices of options with underlying asset price

120, strike prices X=100 : 5 : 140, and time-to-maturity T = 84/365.

From Panel C of Table 1 and Fig.9, we see that Θ̂(s) can price not only

out-of-sample options with different time-to-maturity, different strike

prices, but also with different underlying asset prices!

Although all of the three figures (Fig.7, 8, and 9) reflect the forecasting

errors which are relatively the biggest among each main group, we can see

from the figures that our estimated risk-neutral MGF Θ̂(s) is doing a good

job in forecasting out-of-sample options. In order to make the experiment

complete, we conduct two more estimations for simulated in-sample options

with time-to-maturity of one month and six months respectively.

6.2 Time-to-maturity: one and six months

Following section 6.1, we execute two more estimations by modifying the

time-to-maturity of in-sample options. We set the time-to-maturity as one

month and six months respectively. The other parameter settings are kept

unchanged with that in section 6.1. For simplicity, we do not draw figures
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for this estimation. The estimated coefficients are {âlk} =[ 0.0691 0.1317

0.2498 0.4743 0.6504 0.6284 0.4106 0.1744 0.0398] when using one month op-

tions and {âlk} = [0.0054 -0.0002 0.2557 0.5757 0.7206 0.6669 0.3938 0.1625

0.0480] when using six months options. The sum of estimation errors is

0.3096 and 0.0008 respectively. Comparing with the results in the above

estimation when the in-sample options have time-to-maturity of one year,

the errors are a bit larger. Furthermore, the estimated risk-neutral MGFs

also deviate from the true one a bit more than the one when T = 1. There

are probably three reasons for the estimated risk-neutral MGF from options

with one month and six months maturity to deviate from the true one a bit

more than the MGF estimated from options with one year maturity.

1. During the optimization process, the gradient should be calculated in

each iteration. However, when the time-to-maturity is not equal to 1,

the gradient is much more difficult to calculate, therefore, much larger

errors will occur during the gradient calculation process. What’s more,

the optimization process will take longer time and also more function

evaluations are needed such that the optimization will terminate be-

cause the maximum function evaluations might have been exceeded.

In this case, what we will do is to restart the optimization process with

the optimized coefficients obtained from the terminated optimization

process as the initial restart values. We may repeat this process until

we get a more satisfying result.

2. From the Eq.6, we know that to calculate the options prices, we have

to do an inverse Laplace transform. Therefore, we have to integrate

the ΘT−t(s)
s(s+1) over the interval from negative infinity to positive infinity.

But unfortunately, this is practically not achievable. We choose a

symmetrical interval such as [-2-20i ,-2+20i], or we may increase the
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interval to [-2-200i ,-2+200i], but obviously, we can not reach infinity.

This may also cause some of the estimation errors.

3. For the case when in-sample options have a time-to-maturity of one

month and the strike prices vary from 80 to 120, four out of nine

of the options have prices less than one and near to zero. Options

with prices near zero might contain relatively less information about

the risk-neutral MGF than other options do, therefore using a sample

containing about half of the options with prices close to zero results

in a bit larger estimation errors for the risk-neutral MGF.

However, despite the relatively larger estimation errors, the estimated

risk-neutral MGF still performs well in the out-of-sample forecasting. Tables

2 and 3 provide for the estimation details including both in-sample fit and

out-of-sample forecast for one month and six months respectively. They

report the estimation errors in the same order as that in Table 1 for the

case 1, 2, and 3 for the first estimation. From the tables, we can find that

the estimated risk-neutral MGF forecasts better when the out-of-sample

options have time-to-maturity closer to the in-sample one. When the time-

to-maturity increases, the forecast errors increase as well, although in very

small steps.

7 Conclusions

In this paper, we have applied the wavelet methodology for estimating the

risk-neutral MGF of the underlying asset from options prices based on the

new option pricing formula developed by Ma (2006b). The most impor-

tant contribution in our paper is that the wavelet method applied on Ma

(2006b)’s model offers a promising alternative for pricing out-of-sample op-
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tions and also for pricing other complex and illiquid derivative claims on the

underlying asset, using information obtained from simulated historical data.

Our experiment mainly contains three steps. First, we simulate a data

set for options by calculating the options prices using the benchmark Black-

Scholes formula. Second, we pretend that we do not know the option prices

are obtained from the Black-Scholes formula and we use a series of wavelet

functions with different scale and shift parameters to estimate the implied

risk-neutral MGF. Third, we compare the estimated risk-neutral MGF and

true risk-neutral MGF to see whether the wavelet method is effective in

revealing the risk-neutral MGF. We also apply the estimated risk-neutral

MGF to price out-of-sample options with different times-to-maturity, differ-

ent strike prices and different underlying asset prices. Through comparison

between the obtained option prices from the estimated risk-neutral MGF

and the true Black-Scholes risk-neutral MGF, we get strong evidence of the

superior ability of the wavelet method in estimating risk-neutral MGF.

There are at least six advantages for approximating the implied MGF

using the wavelet method: 1. The estimated MGF is continuous. 2. For

practical purpose, it is more appealing to estimate the MGF instead of the

PDF. 3. It is convenient to reveal the rich information contained in the

option prices from the implied MGF. 4. Using the wavelet method allows

for flexibility. 5. The wavelet method requires a relatively small sample of

data. 6. The wavelet method avoids ill-posed inverse problems.
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Appendix: Laplace transform

For a function f(t) which is real valued and piecewise continuous on [0,∞),

its Laplace transformation is a complex valued function given by

L{f(t)}(s) = F (s) =
∫ ∞

0
f(t)e−stdt; (19)

where s is complex value in the complex plane and L denotes the Laplace

transform operator. The inverse Laplace transform, denoted by L−1{F (s)}(t),
is defined as:

L−1{F (s)}(t) = f(t) =
1

2πi

∫ c+i∞

c−i∞
F (s)estds; (20)

where c is a specific real number so that all singularities of F (s) are to the

left of it.

To introduce the Laplace transform into the option pricing model, we

need not only positive t, but also negative t. Therefore, we need a so-called

bilateral Laplace transform and bilateral inverse Laplace transform. The

bilateral Laplace transformation of f(t), denoted by L{f(·)}(s), is given by

L{f(t)}(s) = F (s) =
∫ ∞

−∞
f(t)e−stdt; (21)

where f(t) is defined for t ∈ R, and s is a complex value in the complex

plane. Let F (s) denote L{f(x)}(s) and G(s) denote L{g(x)}(s), we have

the properties of the Laplace transform summarized as following:

1. Linearity

L{af(x) + bg(x)}(s) = aF (s) + bG(s); (22)

L−1{aF (s) + bG(s)}(x) = af(x) + bg(x). (23)

2. Frequency shifting

L{e−lxf(x)}(s) = F (s + l),∀l ∈ R; (24)
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L−1{F (s + l)}(x) = e−ltf(x),∀l ∈ R. (25)

3. Time shifting

L{f(x− x0)}(s) = e−x0sF (s),∀x0 ∈ R; (26)

L−1{e−x0sF (s)}(x) = f(x− x0),∀x0 ∈ R. (27)

4. Convolution

L{f(x) ∗ g(x)} = F (s)G(s); (28)

L−1{F (s)G(s)}(x) = f(x) ∗ g(x). (29)

where ‘*’ indicates the convolution operator on f and g. This operator

can be defined as:

f ∗ g ≡
∫ ∞

−∞
f(τ)g(t− τ)dτ =

∫ ∞

−∞
g(τ)f(t− τ)dτ. (30)

(Bracewell 1999, p. 25).

36



Table 1. In-sample and out-of-sample pricing errors for options with
one-year to maturity.

In the first column of each panel, “in”denotes the in-sample test and “out”denotes the

out-of-sample test. The second column shows time-to-maturity in days. The third

column reports the average call option prices from the benchmark model. The summary

statistics for squared and absolute errors between the simulated option prices and the

prices obtained by wavelet estimator are reported in the last five columns.

T cBS error mean min max sum std

Panel A. Case 1

in 365 12.2257 sqr 1.6046*10−5 2.3132*10−6 3.8171*10−5 1.4441*10−4 1.2081*10−5

abs 0.0037 0.0015 0.0062 0.0337 0.0015
out 28 6.1368 sqr 0.0341 0.0017 0.1489 0.3072 0.0518

abs 0.1425 0.0415 0.3859 1.2829 0.1247
out 84 7.2201 sqr 0.0449 0.0048 0.1584 0.4043 0.0496

abs 0.1859 0.0692 0.3980 1.6735 0.1079
out 168 8.8083 sqr 0.0239 0.0012 0.0879 0.2148 0.0277

abs 0.1322 0.0346 0.2965 1.1894 0.0848
out 252 10.3156 sqr 0.0054 4.5616*10−5 0.0250 0.0489 0.0081

abs 0.0573 0.0068 0.1583 0.5161 0.0491

Panel B. Case 2

out 365 12.0025 sqr 1.6808*10−5 8.4748*10−10 6.0796*10−5 6.8912*10−4 1.4882*10−5

abs 0.0036 0.0000 0.0078 0.1481 0.0020
out 28 5.6946 sqr 0.0293 3.7812*10−6 0.1489 1.2002 0.0407

abs 0.1310 0.0019 0.3859 5.3718 0.1114
out 84 6.8440 sqr 0.0407 2.2375*10−5 0.1584 1.6695 0.0419

abs 0.1739 0.0047 0.3980 7.1302 0.1036
out 168 8.5008 sqr 0.0215 2.1009*10−5 0.0879 0.8831 0.0235

abs 0.1249 0.0046 0.2965 5.1222 0.0780
out 252 10.0524 sqr 0.0047 4.8679*10−7 0.0250 0.1943 0.0067

abs 0.0543 0.0007 0.1583 2.2255 0.0429

Panel C. Case 3

out 365 14.1573 sqr 2.7375*10−5 8.8791*10−7 8.8740*10−5 2.4638*10−4 2.7234*10−5

abs 0.0046 0.0009 0.0094 0.0411 0.0027
out 28 6.3313 sqr 0.0355 1.9469*10−4 0.1500 0.3199 0.0475

abs 0.1539 0.0140 0.3873 1.3848 0.1156
out 84 7.7913 sqr 0.0517 0.0016 0.1402 0.4655 0.0512

abs 0.1970 0.0402 0.3744 1.7727 0.1206
out 168 9.8596 sqr 0.0272 8.2177*10−6 0.0846 0.2450 0.0286

abs 0.1416 0.0029 0.2908 1.2744 0.0899
out 252 11.7720 sqr 0.0057 2.1060*10−5 0.0242 0.0509 0.0077

abs 0.0612 0.0046 0.1556 0.5505 0.0464
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Table 2. In-sample and out-of-sample pricing errors for options with
1-month to maturity
This table reports the summary statistics of the pricing errors in the same format as

Table 1 for 1-year maturity.

T cBS error mean min max sum std

Panel A. Case 1

in 28 6.1368 sqr 0.0344 0.0017 0.0860 0.3096 0.0324
abs 0.1604 0.0408 0.2932 1.4440 0.0987

out 84 7.2201 sqr 0.0073 1.1401*10−4 0.0257 0.0659 0.0089
abs 0.0684 0.0107 0.1604 0.6157 0.0545

out 168 8.8083 sqr 0.0081 7.0984*10−6 0.0238 0.0730 0.0079
abs 0.0769 0.0027 0.1542 0.6923 0.0497

out 252 10.3156 sqr 0.0185 6.4067*10−4 0.1071 0.1669 0.0347
abs 0.1002 0.0253 0.3273 0.9015 0.0978

out 365 12.2257 sqr 0.0573 7.7899*10−5 0.3103 0.5153 0.1060
abs 0.1512 0.0088 0.5570 1.3605 0.1967

Panel B. Case 2

out 28 5.6946 sqr 0.0344 5.7446*10−5 0.1016 1.4093 0.0299
abs 0.1646 0.0076 0.3188 6.7470 0.0865

out 84 6.8440 sqr 0.0073 3.1225*10−6 0.0261 0.3006 0.0087
abs 0.0694 0.0018 0.1616 2.8443 0.0508

out 168 8.5008 sqr 0.0072 3.2518*10−7 0.0238 0.2937 0.0064
abs 0.0734 5.7025*10−4 0.1542 3.0106 0.0426

out 252 10.0524 sqr 0.0141 3.3319*10−7 0.1071 0.5765 0.0245
abs 0.0892 5.7722*10−4 0.3273 3.6576 0.0791

out 365 12.0025 sqr 0.0457 7.3917*10−6 0.3103 1.8742 0.0819
abs 0.1359 0.0027 0.5570 5.5710 0.1671

Panel C. Case 3

out 28 6.3313 sqr 0.0499 0.0011 0.1238 0.4495 0.0468
abs 0.1909 0.0326 0.3519 1.7185 0.1232

out 84 7.7913 sqr 0.0107 1.8593*10−4 0.0376 0.0964 0.0135
abs 0.0847 0.0136 0.1940 0.7620 0.0631

out 168 9.8596 sqr 0.0095 1.6785*10−4 0.0230 0.0855 0.0085
abs 0.0849 0.0130 0.1515 0.7640 0.0508

out 252 11.7720 sqr 0.0149 8.6825*10−5 0.0745 0.1344 0.0232
abs 0.0976 0.0093 0.2729 0.8780 0.0780

out 365 14.1573 sqr 0.0511 1.6016*10−4 0.2743 0.4601 0.0935
abs 0.1471 0.0127 0.5238 1.3240 0.1821
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Table 3. In-sample and out-of-sample pricing errors for options with
6-month to maturity.

This table reports the summary statistics of the pricing errors in the same format as

Table 1.

T cBS error mean min max sum std

Panel A. Case 1

in 168 8.8083 sqr 0.0001 0.0000 0.0004 0.0008 1.3713*10−4

abs 0.0077 0.0012 0.0207 0.0694 0.0062
out 28 6.1368 sqr 0.0212 0.0005 0.0600 0.1912 0.0214

abs 0.1271 0.0215 0.2449 1.1435 0.0758
out 84 7.2201 sqr 0.0007 0.0000 0.0017 0.0062 6.7554*10−4

abs 0.0215 0.0032 0.0408 0.1931 0.0159
out 252 10.3156 sqr 0.0030 0.0000 0.0221 0.0273 0.0072

abs 0.0335 0.0015 0.1486 0.3017 0.0464
out 365 12.2257 sqr 0.0198 0.0000 0.1089 0.1782 0.0364

abs 0.0943 0.0033 0.3300 0.8488 0.1108

Panel B. Case 2

out 168 8.5008 sqr 0.0001 0.0000 0.0004 0.0034 1.1959*10−4

abs 0.0069 0.0000 0.0207 0.2832 0.0060
out 28 5.6946 sqr 0.0224 0.0003 0.0654 0.9185 0.0192

abs 0.1329 0.0164 0.2558 5.4505 0.0696
out 84 6.8440 sqr 0.0007 0.0000 0.0017 0.0281 6.4174*10−4

abs 0.0220 0.0015 0.0418 0.9035 0.0143
out 252 10.0524 sqr 0.0001 0.0000 0.0004 0.0034 1.1959*10−4

abs 0.0069 0.0000 0.0207 0.2832 0.0060
out 365 12.0025 sqr 0.0155 0.0000 0.1089 0.6359 0.0272

abs 0.0845 0.0001 0.3300 3.4658 0.0926

Panel C. Case 3

out 168 9.8596 sqr 0.0001 0.0000 0.0004 0.0011 1.7544*10−4

abs 0.0086 0.0000 0.0207 0.0770 0.0078
out 28 6.3313 sqr 0.0341 0.0002 0.0864 0.3067 0.0296

abs 0.1581 0.0150 0.2939 1.4227 0.1011
out 84 7.7913 sqr 0.0010 0.0000 0.0024 0.0087 9.2804*10−4

abs 0.0266 0.0038 0.0492 0.2394 0.0169
out 252 11.7720 sqr 0.0015 0.0000 0.0099 0.0135 0.0032

abs 0.0266 0.0035 0.0993 0.2394 0.0299
out 365 14.1573 sqr 0.0171 0.0000 0.0880 0.1536 0.0295

abs 0.0907 0.0030 0.2967 0.8161 0.0998
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Figure 1. Dilation and translation to the Haar mother wavelet
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Figure 2. Franklin wavelet
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Figure 3. Shannon wavelet

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

2

2.5

3

x

ψ
(x

)

Shannon mother wavelet

40



Fig 4. Simulated and fitted option prices
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Fig 5. Simulated and fitted MGF
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Fig 6. Simulated and fitted PDF
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Fig 7. Out-of-sample forecast (1)
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Fig 8. Out-of-sample forecast (2)
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Fig 9. Out-of-sample forecast (3)
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