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Abstract
This paper tackles the "aggregation problem" for stochastic economies

with possibly incomplete market. An "aggregation theorem" is proved to-
wards an analytic construction of the representative agent’s utility func-
tion. This is done within a general time-state setup with general utility
functions and without restrictions on the initial resource allocations. Wel-
fare implications, concerning the social welfare loss resulting from market
incompleteness, are readily reflected from the constructed representative
agent’s utility function.
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1 Introduction
Modern equilibrium asset pricing theory has been largely built upon the as-
sumption on the existence of a representative agent (Lucas 1978, Breeden 1979,
CIR 1985, Epstein-Zin 1989). The quest for the existence of such an agent in
a multi-agents environment is known as "aggregation problem" in literature.
When aggregation holds, the aggregated demand and the equilibrium security
prices can be easily characterized. It will be largely determined by the funda-
mental of the macro economy together with the psychological sentiment of the
investment community that is summarized by the representative agent’s utility
function.
The aggregation problem represents one of the most challenging problem in

modern economic theory. The proof of the aggregation theorem attracted atten-
tion from academia ever since Arrow-Debreu (1954) launched their proofs of the
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welfare theorems as a foundation of modern finance theory. For complete mar-
ket stochastic economy of Arrow-Debreu (1954), a well-defined representative
agent’s utility function can be constructed (Nigishi 1960).
When market is incomplete, equilibrium allocations may no longer be Pareto

efficient (Hart 1975, Magill and Quinzii 1986), and marginal rates of substitution
at an arbitrary equilibrium allocation may no longer equal to each other among
the agents. In consequence, the utility function defined as the maximum of
weighted individual utility functions, known as "social welfare function", no
longer constitutes the representative agent’s utility function. The existence of
the representative agent along with the construction of representative agent’s
utility function (if exists) has thus become an open question, which has been
silently waiting for answer for more than five decades. The difficulty and its
great importance associated with the aggregation problem is best reflected from
the following quote taking from Rubinstein (1974):

"The chief difficulties befouling the analysis of securities market equi-
librium is the problem of aggregation. ......" (Mark Rubinstein 1974).

The difficulty, as to be illustrated in this paper, is a conceptual one. The
existing aggregation results for incomplete market are largely derived under cer-
tain restrictions on individual agents’ utility functions. These include Gorman
(1953), Rubinstein (1974), Milne (1979), and Detemple and Gottardi (1998).
The first three papers, see also Hara (2008) for a dynamic extension, consider
utility functions falling into the HARA class with certain homogeneity struc-
ture in preferences. These aggregation results rely heavily on the HARA utility
specification because utility functions in the HARA class admit a linear risk
tolerance representation (in consumption), which in turn ensure a mutual fund
separating property to hold. Aggregation is thus obtained as a direct conse-
quence of mutual fund separation. Detemple and Gottardi (1998) alike assume
agents’ having "almost identically homothetic" utility functions. Under such
utility specifications the market becomes "effective complete" in the sense that
the equilibrium allocation fulfills the Pareto optimality condition. In this case,
the social welfare function constructed by Nigishi (1960) constitutes represen-
tative agent’s utility function.
The aggregation problem to be tackled in this paper is for incomplete mar-

kets, particularly applies for economies with its equilibrium allocations falling
outside the Pareto efficient set. The aggregation theorem obtained in this paper
does not rely on any particular specification of agents’ utility functions (ex-
cept for monotonicity, concavity and smoothness), and without imposing any
restrictions on the initial resource allocation.
The proof of the aggregation theorem is built up on an earlier result on

the "constrained Pareto optimality" of equilibrium allocations when the mar-
ket is incomplete. According to Grossman (1977), even though an equilibrium
allocation in incomplete market might fail to be Pareto efficient, yet the equi-
librium allocation must be "constrained Pareto efficient" in the sense that no
Pareto improvement can be constructed by restricting the net proceeds of the
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re-allocations belong to the market span. The latter is equivalent to say that,
no Pareto improvement can be obtained by trading within the existing market
place.
The key breakthrough leading to our proof of the aggregation theorem is

a newly proved "characterization theorem" (Theorem 3) for the set of con-
strained Pareto efficient allocations. The characterization theorem extends or
builds upon the existing results in literature (see Ohlson 1987). Indeed, the
characterization theorem itself represents an interesting and important discov-
ery because it provides an ideal venue to explore the welfare implications of
stochastic economies with possibly incomplete markets!
The remaining of the paper is organized as follows: Section 2 contains some

preliminaries and set-up of the model. Section 3 provides an characterization
theorem for the set of constrained Pareto efficient allocations. Section 4 is on
the construction of representative agent’s utility function when the equilibrium
allocation might fail to be Pareto efficient. Section 5 contains several concluding
remarks.

2 Setup of the Stochastic Economy
Consider a stochastic financial market economy of finite periods T and finite
state space Ω. A set of agents I = {1, · · · , I} have a homogeneous information
structure that is summarized by a sequence of increasing partitional information
filtration {Ft}Tt=0. Letm = ΣTt=1#(Ft), #(Ft) be the number of (base) disjoint
events in Ft.

2.1 The Agents

Each agent i ∈ I in the economy is characterized by a bundle
©
ºi, e

i
ª
in which

• ºiis agent i’s preference relation on Rm+1;

• ei ∈ Rm+1 is agent i’s endowment.1

We assume that

Condition U ºi, i ∈ I be represented by a utility function ui : Rm+1 7→ R,
where ui is continuously differentiable, strictly increasing and concave.

Let
A = Rm+1 × · · · ×Rm+1| {z }

I

be the allocation space among all society members – the agents. Given the
aggregate endowment e =

P
i∈I e

i, an allocation a ∈ A is called feasible if

1Here, the endowments are in the form of cashes across times and states. We can introduce
endowments in terms of shares in the tradable securities as well. The analysis below indeed
carries through to this general case. Our assuming no endowment in shares is for the sake of
notational simplicity.
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P
i∈I a

i = e. An feasible allocation a is said to dominate feasible allocation
b if (a) for each i, ai ºi bi, and (b) if there exists, at least, one agent i such
that ai Âi bi. A non-dominated feasible allocation is Pareto efficient. The
set of all Pareto efficient allocations is denoted PE. Recall also the following
well documented result towards the construction of the set of Pareto efficient
allocations PE.

Theorem 1 Suppose condition U are satisfied. An allocation c∗ ∈ A belongs to
PE if and only if there exist {λi}i∈I À 0 such that

c∗ = argmax

(X
i∈I

λiu
i(ci) :

X
i∈I

ci = e

)
; (1)

in particular, let MRSi(ci) = 1
∂ui(ci)/∂ci0

∇ui(ci) be the marginal rate of substi-
tution for i; then, at c∗ it must hold true that

MRS1(c1∗) = · · · = MRSI(cI∗). (2)

According to Theorem 1, the set PE can be fully characterized as outcomes of
"social-welfare maximization". Here, the welfare function refers to an arbitrary
positive linear combination of (all) agents’ utility functions.

2.2 The Market

Let p = {pt} be a Ft-adapted RJ -valued price process for the J tradable securi-
ties. A portfolio at time t corresponds to a position, measured in unit, on each
of the tradable securities at the time. Let φt ∈ RJ be the time-t portfolio. A
trading strategy, or trading plan, is thus an Ft-adapted process φ = {φt}t≥0.
The set of all trading strategies is denoted Φ = R(m+1)×J .
For any given trading strategy φ, the initial cash investment is thus given

by φ0 · p0 = pφ0 . The resulting future cash flows are thus given by the following
flow budget constraints

dφt = φt−1 · (pt + δt)− φt · pt

for t = 1, · · · , T , with dφ0 = −p
φ
0 . The market span, denoted D(p, δ), consists of

all possible cash streams that can be generated by trading; that is,

D(p, δ) =
©
d ∈ Rm+1 : ∃φ ∈ Φ such that dφ = d

ª
.

The market span D(p, δ) forms a vector subspace of Rm+1. Its orthogonal
complement is denoted D⊥(p, δ), or simply D⊥, also forms a vector subspace of
Rm+1. Recall the following well-known "orthogonal decomposition theorem":

Lemma 2 For all x ∈ Rm+1, there exist unique xD ∈ D and xD⊥ ∈ D⊥ such
that x = xD + xD⊥ ; moreover, it holds true that2

2Here, x ◦ d is an inner product defined on Rm+1; while p · y is the inner product on RJ .
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1. x ◦ xD ≥ 0 with strict inequality if x /∈ D⊥;

2. x ◦ xD⊥ ≥ 0 with strict inequality if x /∈ D.

Let M(p, δ), or simply M, be the set of all future cash flows contained in
the market span. So, for each d ∈ D, we may write d = (d0, d−0) ∈ R×M and
write D ⊆ R×M. The market at (p, δ) is complete if M = Rm; otherwise, it is
incomplete. So, in a complete market economy, all future cash streams d−0 can
be obtained by trading; but, when the market is incomplete, M ⊂ Rm forms a
strict subspace of the Euclidean space.

3 PE and CPE: A Characterization Theorem
An allocation c ∈ A is constrained feasible if (1) ci−0−ei−0 ∈M; (2)

P
i∈I c

i = e.3

A constrained feasible allocation c is said to be constrained Pareto efficient if
it is not dominated by other constrained feasible allocations. The set of all
constrained feasible allocations is denoted CF, and the set of all constraint
Pareto efficient allocations is denoted CPE.
For complete market, all Pareto efficient allocations can be achieved by trad-

ing. So, in this case, the set of CPE allocations coincides with that of PE, and
the set of CPE allocations can be fully characterized by Theorem 1. For in-
complete market, an allocation c∗ satisfying condition (2) might not belong to
CPE if it is not constrained feasible. Analoguing to Theorem 1, the set of
constrained Pareto efficient allocations can be obtained by solving the following
social welfare maximization problem.

Theorem 3 Under condition U, the following conditions are equivalent:

(a) c∗ ∈ CPE;

(b) ∃ {λi}i∈I À 0 such that

c∗ = arg max
ci−0−ei−0∈M
∀i∈I

(X
i∈I

λiu
i
¡
ci
¢
:
X
i∈I

ci = e

)
; (3)

(c) c∗ ∈ CF and ∃ {λi}i∈I À 0 and
©
ξi
ª
i∈I ⊆M

⊥ such that

c∗ = argmax

(X
i∈I

λiu
i
¡
ci
¢
− ξi ◦ ci−0 :

X
i∈I

ci = e

)
; (4)

3 It is noted that feasibility condition 2 for the financial market, together with the market
spanning condition 1, implies feasibility condition i∈I c

i = e to hold. So, generally speaking,
all constrained feasible allocations are feasible; but, not all feasible allocations are constrained
feasible. The latter is particularly true for incomplete market economies.
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(d) c∗ ∈ CF and ∃ψ ∈ Rm++ and
©
ξi
ª
i∈I ⊆M

⊥ such that

MRSi(ci∗) = ψ + ξi for all i ∈ I. (5)

Proof. The equivalence between (a) and (b) is well documented in literature
(see, Ohlson, 1987). To prove "(b)⇔ (c)", we need to proceed with the optimiza-
tion problem (3). Since M⊥ ⊆ Rm is a finite (k < m) dimensional vector space,
it can be thus spanned by k independent m-dimensional vectors {v1, · · · , vk}.4
The constraints ci−0 − ei−0 ∈M is thus equivalent to

vn ◦
¡
ci−0 − ei−0

¢
= 0 for n = 1, · · · , k.

Accordingly, we may apply the Kuhn-Tucker theorem (Luenberger 1969) to
transform the problem (3) with I × k linear constraints (plus the resource fea-
sibility constraints) into an optimization problem with resource feasibility con-
straints only. The Lagrangian function for (3) takes the formX

i∈I

£
λiu

i
¡
ci
¢
− ξi ◦

¡
ci−0 − ei−0

¢¤
in which ξi =

Pk
n=1 μinvn ∈ M⊥, and {μni} are the Lagrangian multipliers for

each of the equality constraints. The equivalence between (b) and (c) follows
also from the Kuhn-Tucker theorem.
We may apply again the Kuhn-Tucker theorem to establish the equivalence

between (c) and (d). This time we proceed with the optimization problem (4).
From the first order conditions for (4), we obtain, at the optimal solution c∗,
the necessary and sufficient condition

MRSi(ci∗) =
1

ψ0

¡
ξi + ψ

¢
for all i ∈ I

in which (ψ0, ψ) ∈ Rm+1++ corresponds to the positive Lagrangian multipliers for
the resource constraints.
From condition (d) of Theorem 3 we see that, even though, at a CPE allo-

cation c∗, agents’ marginal rates of substitution may not equal to each other,
but their marginal rates of substitutions must share the same projection on the
market span! So, as a corollary to Theorem 3, we have:

Corollary 4 At any constrained Pareto optimal allocation c∗, agents’ marginal
rates of substitution admit the following decomposition on

MRSi(ci∗) = ψ + ξi for all i ∈ I (6)

in which ψ ∈M and
©
ξi
ª
i∈I ⊆M

⊥.

4 If M is r-dimensional subspace of Rm, r ≤ m, then M⊥ would form a k = (m− r)-
dimensional vector subspace of Rm.
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Proof. Let ψ ∈ Rm++ and
©
ξi
ª
i∈I ⊆M

⊥ be for the validity of condition (d) of
Theorem 3. By Lemma 2, with ψ = ψM + ψM⊥ , we obtain

MRSi(ci∗) = ψM + ηi

in which ψM ∈M and ηi = ψM⊥ +
1
λi
ξi ∈M⊥.

As a final remark, the above characterization theorem for CPE captures
clearly the welfare loss resulting from the market incompleteness. The term
ξi ◦

¡
ci−0 − ei−0

¢
in the Lagrangian is known as "penalties" to agent i whenever

ci−0 − ei−0 falling outside the market span. Such penalties (whenever not equal
to zero) can be thus interpreted as welfare loss to the agent resulting from the
market incompleteness – keeping in mind, when market is complete,M⊥ = {∅},
agents suffer no welfare losses.

4 Aggregation in Incomplete Markets
This section formulates and studies the aggregation problem in incomplete mar-
ket. The problem is precisely formulated in section 4.1. An aggregation theorem,
the main result of this paper, is proved in section 4.2.

4.1 The Problem

Given a multi-agent stochastic market economy that is summarized by

E
³
p,
©
ei
ª
i∈I

´
=
³
D(p, δ);

©
ui, ei

ª
i∈I

´
.

In this economy, all agents act as price-takers, and each agent i’s problem is to
solve

max
©
ui
¡
ci
¢
: ci − ei ∈ D(p, δ)

ª
. (7)

By the fundamental theorem, solution to (7) exists if and only if the market
satisfies the "no-arbitrage" condition:

Condition NA: D (p, δ) ∩ Rm+1+ = {∅}.

Condition NA implies, by Lemma 2, for all x ∈ Rm+1+ , if x 6= ∅, then
x ◦ xD⊥ = kxD⊥k2 > 0. In fact, by the Hahn-Banach theorem, condition NA is
equivalent to the existence of a positive state price vector ψ ∈ Rm++ such that
(1, ψ) ∈ D⊥. This, in turn, is equivalent to existence of a positive linear pricing
rule defined over all future cash flows d−0 ∈ M. We may put this formally as
follow

Lemma 5 Condition NA is equivalent to the existence of ψ ∈ Rm++ such that

pφ0 = ψ ◦ dφ−0, φ ∈ Φ; (8)

particularly to those tradable securities j = 1, · · · , J , it yields5

pj0 = ψ ◦ δj . (9)
5 In fact, the two conditions (8) and (9) are equivalent.
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A price-allocation bundle {p, c} ∈ RJ × A is a competitive equilibrium for

E
³
p,
©
ei
ª
i∈I

´
if

• for each i, ci = argmax
©
ui
¡
ci
¢
: ci − ei ∈ D(p, δ)

ª
;

• for each i, there exists φi ∈ Φ financing ci, such that
P

i∈I φ
i = ∅.6

So, what implicitly assumed for the existence of a competitive equilibrium is
that condition NA is satisfied. The set of all competitive equilibrium allocations
is denoted CE.
We assume that the multi-agent economy E

³
p,
©
ei
ª
i∈I

´
prescribed in the

previous section is at an equilibrium status. Let c ∈ CE be the corresponding
equilibrium allocation so that7

ci = argmax
©
ui
¡
ci
¢
: ci − ei ∈ D(p, δ)

ª
,∀i ∈ I.

We consider a hypothetical single agent economy

E (p, e) = (D (p, δ) ; {u, e})

with utility function u and initial endowment to be given by the aggregate
endowment e =

P
i∈I e

i.

Definition 6 Let (p, c) ∈ RJ × A be an equilibrium for E
³
p,
©
ei
ª
i∈I

´
. Econ-

omy E (p, e) is said to be a representative agent economy of E
³
p,
©
ei
ª
i∈I

´
if

(p, e) (with φ = ∅) constitutes an competitive equilibrium for E (p, e). In this
case, the utility function u is referred to the representative agent’s utility func-

tion of E
³
p,
©
ei
ª
i∈I

´
.

The problem on the existence of representative agent for an arbitrary multi-
agent economy is known as "aggregation problem". When the equilibrium al-
location c is Pareto efficient, the representative agent exists, and its utility
function can be easily constructed. The theorem below is well known, which is
due to Nigishi (1960):

Theorem 7 Suppose condition U is satisfied. If the equilibrium allocation c for
E
³
p,
©
ei
ª
i∈I

´
is Pareto efficient, then representative agent exists with utility

function u : Rm+1 7→ R to be given by

u (c) = max

(X
i∈I

λiu
i
¡
ci
¢
:
X
i∈I

ci = c

)
(10)

where λi =
1

∂ui(ci)/∂ci0
> 0 for all i ∈ I. Moreover, the utility u so-defined

satisfies condition U.
6This, in turn, implies the validity of the feasibility condition i∈I c

i = i∈I e
i.

7Precisely, we shall put it as φ
i
, ci

i∈I
to constitute an equilibrium allocation respectively

for the assets market and cash market, in which, for all i, ci is financed by φ
i
, and i φ

i
= ∅.
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It is also noted that, for complete market, we have CE to coincide with PE,
and the aggregation theorem holds. For incomplete markets, the correspon-
dence between CE and PE, in general, breaks down.8Nevertheless, as it is well
known, the set of CE allocations admits a correspondence with the set of CPE
allocations (Grossman 1977). This forms the foundation for our construction of
representative agent’s utility function in incomplete market.

4.2 An Aggregation Theorem

We start with an review of the "welfare theorem" in incomplete market. The
theorem establishes the correspondence between the set of competitive equilib-
rium allocations and the set of constrained Pareto efficient allocations. It is
originated from Grossman (1977) and is documented in literature (see, Ohlson,
1987). We put it here for reader’s convenience.

Theorem 8 (Grossman) Any CPE allocation c in E
³
p,
©
ei
ª
i∈I

´
can be sup-

ported as a CE allocation for the economy E
³
p,
©
ci
ª
i∈I

´
with c being the initial

endowment; and each CE allocation for E
³
p,
©
ei
ª
i∈I

´
must constitute a CPE

allocation for the same economy.

With Theorem 8 and Theorem 3 we are ready to introduce the main theorem
of this paper, concerning the existence of representative agent and its utility
function when the market is not necessarily complete. Here is the aggregation
theorem:

Theorem 9 Suppose condition U is satisfied. Let (p, c) constitute an equilib-

rium for the economy E
³
p,
©
ei
ª
i∈I

´
. Then, there exists a representative agent

for E
³
p,
©
ei
ª
i∈I

´
. Moreover, let ψ be any arbitrary positive state price vector

for D, and let πi = ψ+ ξi À 0, ξi ∈ M⊥, be agent i’s marginal rate of substi-
tution at ci. Then, the representative agent’s utility function u : Rm+1 7→ R is
given by

u (c) = max

(X
i∈I

λiu
i
¡
ci
¢
− ξi ◦ ci−0 :

X
i∈I

ci = c

)
(11)

for all c ∈ Rm+1, where λi = 1
∂ui(ci)/∂ci0

> 0, i ∈ I.

Proof. The representative agent’s utility function defined by (11) is concave
and continuously differentiable. We can further show that the utility function

8The existing aggregation results documented in leterature are either based on utility func-
tions falling into a certain paramatreic class, namely, the HARA class with some homogeneity
utility structure (Gorman (1953), Rubinstein (1974), Milne (1979), and Hara 2008), or based
on the so-called "effective complete" condition illustrated in Detemple and Gottardi (1998).
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u so-defined display strict monotonicity for deviations to be located in R×M.9
Let c be an arbitrary aggregate cash stream with

©
ci
ª
i∈I being a solution to

(11), and let ∅ 6= d ∈ R×M be non-negative. Let d be obtained by dividing d
fairly among the agents. So, we have ∅ 6= d ∈ R+ ×M+. Consider the utility
incremental when c moves along direction d to c+ d ∈ Rm+1. We have:

u (c+ d) ≥
X
i∈I

λiu
i
¡
ci + d

¢
− ξi ◦

¡
ci−0 + d−0

¢
≥
X
i∈I

λiu
i
¡
ci
¢
− ξi ◦ ci−0 = u (c)

in which, the second inequality holds true because, by assumption ξi ∈M⊥, so
ξi ◦ d−0 = 0 for all i ∈ I, and also because of the strict monotonicity of ui. The
second inequality in the above assessment holds strictly for d 6= ∅.
Recall that, at equilibrium (p, δ), condition NA is satisfied with p = ψ ◦ δ for

ψ ∈ Rm++. By the fundamental theorem of finance, the representative agent’s
portfolio choice problem has a solution. In fact, the solution is given by e. First,
recall that the representative agent’s utility function is strictly increasing and
concave within the budget constraint since c− e belongs to the market span D
and c−0−e−0 ∈M. Second, following the definition of the representative agent’s
utility function, its marginal rate of substitution at e is given by MRSu (e) =
ψ À 0; that is, the necessary condition for optimality is satisfied at c = e. This,
together with the strict concavity of the utility function u, implies the solution
to the optimal portfolio choice problem (7) at p (for the representative agent) be
given by the aggregate endowment e, which is financed by φ = ∅ – no trading.
In consequence, (p, e), along with state price ψ, constitutes an equilibrium for
the representative agent economy E (p, e).
Implicitly determined as a solution to the optimization problem (11), allo-

cation at the aggregate endowment e is given by the equilibrium allocation c in
the original multi-agent economy. This is because, at

©
ci
ª
i∈I , it holds true that

MRSi
¡
ci
¢
= ψ + ξi

for all i ∈ I, which constitutes the first order condition for optimization prob-
lem (11). The strict concavity of the utility functions suggests the equilibrium
allocation

©
ci
ª
i∈I to constitute a unique solution to the problem (11).

Moreover, when equilibrium allocation is Pareto efficient, as is the case when
the market is complete, we may set ξ = 0 for all agents in conforming to Theorem
7. For the case of incomplete market, the term

P
i∈I ξ

i ◦ ci−0 on the right
hand side of equation (11), which is referred to as "social welfare function", is
interpreted as the "social cost" resulting from market incompleteness.
As a final remark, the marginal rate of substitution for the representative

agent at the aggregate consumption is given by the equilibrium state price ψ for

9Here, we prove the utility function to be monotonic on R ×M, though it is defined for
all cash streams in Rm+1. Such "constrained monotonicity" is sufficient for our purpose here
because all deviations in future cash flows are restricted to fall into the future market span.
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the multi-agent economy. So, different state price in supporting the equilibrium
would induce to different utility function for the representative agent. This
suggests the representative agent for a given economy, in general, not to be
unique (if exists); particularly when the economy has more than one equilibria
bundles (p, c) each being supported by different state price vectors ψ.

5 Concluding Remarks
In this paper, we have accomplished two things. First, we prove a characteri-
zation theorem for the set of CPE allocations by extending the existing results
documented in literature; and second, we construct the representative agent’s
utility function when the economy is at an equilibrium status. These are accom-
plished without imposing any restrictions on agents utility functions and initial
resource allocations. Moreover, we do not restrict the equilibrium allocation
to be Pareto efficient, nor assume the market to be "effective complete" in the
sense of Detemple and Gottardi (1998).
The consumption domain for the set of admissible cash streams is not re-

stricted in this paper. The results, nevertheless, readily extend to economies
with externality constraints on the set of cash streams, say, for instance, the
case of all cash streams are restricted to be non-negative or to fall into some
pre-specified convex set L of the Euclidean space. In this case, the results hold
true by assuming the aggregate endowments to fall into the "interior" of the
domain L. It also remains to see to what extent the aggregation theorem holds
for infinite economies. This leaves for future research.
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